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Introduction: Accumulating evidences disclose that COVID-19, caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has a marked effect on acute myocardial infarction (AMI). Nevertheless, the underlying pathophysiology correla-
tion between the AMI and COVID-19 remains vague.
Materials and Methods: Bioinformatics analyses of the altered transcriptional profiling of peripheral blood mononuclear cells
(PBMCs) in patients with AMI and COVID-19 were implemented, including identification of differentially expressed genes and
common genes between AMI and COVID-19, protein–protein interactions, Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes pathway analyses, TF-genes and miRNA coregulatory networks, to explore their biological functions and potential roles in
the pathogenesis of COVID-19-related AMI.
Conclusion: Our bioinformatic analyses of gene expression profiling of PBMCs in patients with AMI and COVID-19 provide us with
a unique view regarding underlying pathophysiology correlation between the two vital diseases.
Keywords: AMI, SARS-CoV-2, differentially expressed genes, DEGs, bioinformatics, pathophysiology

Introduction
So far, acute myocardial infarction (AMI) still has a soaring morbidity and mortality globally, whose survival rate is
approaching malignant tumors, a severe menace to public health. The major latent pathological alteration acknowledged
are coronary inflammation, atherosclerotic plaques’ tendency to instability and rupture, endothelial dysfunction, platelet
activation, coagulation disorder and acute coronary thrombosis event. With the propagation of COVID-19 attributed to
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), accumulating evidences disclose that the lethal virus
can also invade the cardiovascular system, debilitating endothelial barrier, causing coronary thromboembolic events and
acute myocardial injury.1 The endotheliocytes and myocardial cells highly express angiotensin converting enzyme 2
(ACE2) receptors, via which SARS-CoV-2 could smite into cardiovascular system leading to endothelial malfunction,
vessel or cardiomyocytes inflammation, and subsequent plaque rupture and extemporary heart attacks.2,3 It has been
reported by Huang et al4 that approximate 12% of sufferers of COVID-19 were diagnosed acute myocardial injury,
characterized by elevated levels of high-sensitive troponin I. Once attacked by SARS-CoV-2, systemic inflammation
storm will perturb body’s immune system balance, prone to coronary plaque rupture, thrombogenesis and even acute
stent thrombosis in cardiovascular diseases (CVD) sufferers.5 What’s more, vaccination against SARS-CoV-2, which
mimics a mild viral infection and is crucial to eradicate the pandemic, was reported to be implicated into acute
myocardial infarction.6 Whether and how COVID-19 serves as a trigger for acute myocardial infarction and the detailed
pathogenic molecular mechanism remains vague. Hence, it’s of tremendous clinical significance to investigate and
decipher the underlying pathophysiology relevancy between the acute myocardial infarction and COVID-19.
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Both acute myocardial infarction and COVID-19 could provoke a transformation of original gene expression profiling
of hematological cells. This prerequisite taken into account, we comprehensively analyze the altered gene expression
profiles of the two vital diseases via bioinformatic methods, to disclose their possible relevance. In our current study, we
integrate altered gene expression status of peripheral blood mononuclear cells (PBMCs) in patients with acute myocardial
infarction and novel coronavirus infection, identify their common differentially expressed genes (DEGs) and hub genes,
probe their function and involved molecular mechanisms, to probe whether COVID-19 plays a causative role in the onset
of AMI. The workflow for the current research is shown in Figure 1.

Methods
Dataset’s Collection
Dataset (GSE62646) expounds the transcriptional profiling of PBMCs in patients with AMI and dataset (GSE164805)
elucidates the specifical transcriptional signatures of PBMCs in COVID-19 patients. Both datasets were extracted from GEO
database of the National Center for Biotechnology Information platform (www.ncbi.nlm.nih.gov/geo).7–9 GPL6244
(Affymetrix Human Gene 1.0 STArray) platform and GPL26963 (Agilent-085982 Arraystar human lncRNAV5 microarray)
platform are for the GSE62646 dataset and GSE164805 dataset, respectively. GSE62646 dataset was contributed by Kiliszek
et al,10 in which 14 patients with stable coronary artery disease, without history of myocardial infarction and 28 patients
suffering acute ST-segment elevation myocardial infarction (STEMI) are included. Drugs prescription’s perturbation taken
into consideration, bloods samples collected on admission were applied in the current study, while blood sampling on
discharge and 6 months after MI were excluded. Zhang Q et al furnished the dataset GSE164805, containing 5 healthy
subjects and 10 patients suffering from COVID-19.11 The study complied with the Declaration of Helsinki and was approved
by the Ethics Committee of Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China.

Identification of DEGs and Common Genes Identification Between AMI and
COVID-19
Datasets GSE62646 and GSE164805 were analyzed via GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) web tool
which takes advantage of limma package of R programming language for identifying differentially expressed genes
(DEGs). Benjamini-Hochberg was applied for both the datasets for controlling of false discovery rate (FDR).12 Cut-off
criteria was set as adjusted P-value < 0.05 and log2-fold change (absolute) > 0.0 for dataset GSE62646, while adjusted

Figure 1Workflow for the current study. The DEGs for GSE62646 dataset of AMI and GSE164805 dataset of COVID-19 were identified using the GEO2R. Common DEGs
of the two diseases was obtained via the “VennDiagram”. GO and KEGG analyses were conducted for all common DEGs by the R programming language. From all common
DEGs, a PPI network was created, and hub genes identification and enrichment analysis were performed. TF-miRNA coregulatory network for hub genes were conducted by
NetworkAnalyst.
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P-value < 0.05 and log2-fold change (absolute) > 1.0 for dataset GSE164805. The DEGs were visualized in a volcano
plot using the R package “ggplot2” (https://cran.r-project.org/web/packages/ggplot2/). The common genes identification
between DEGs of GSE62646 and GSE164805 datasets was acquired by virtue of the R programming language and
visualized through the “VennDiagram” (https://cran.r-project.org/web/packages/VennDiagram/).

GO and KEGG Pathway Enrichment Analysis of DEGs
Gene Ontology (GO)13,14 and Kyoto Encyclopedia of Genes and Genomes (KEGG)15,16 pathway enrichment analysis of
common DEGs or hub genes were performed by the R package “clusterProfiler” (http://www.bioconductor.org/packages/
release/bioc/html/clusterProfiler.html).17 The enrichment analysis results of GO categories including biological process
(BP), cellular component (CC) and molecular function (MF) were obtained to elucidate the molecular activity, cellular
role and the distribution in a cell where the genes exert their functionality.18 To illustrate and understand the metabolic or
signaling pathways which the DEGs might convolved in, KEGG enrichment analysis was simultaneously implemented.
The significance threshold was P-adjusted<0.05.

PPIs Network Construction and Hub Genes Identification
Protein–protein interactions (PPIs) network can furnish luxuriant information on the functional interactions between
proteins in cellular biology study.19,20 The common DEGs were input into Search Tool for the Retrieval of Interacting
Genes (STRING) (https://string-db.org/) online for coming into being a PPIs network.21 STRING transmits experimental
and predictive interaction-founded information and the interaction generated via the online tool is defined with
3-dimensional structures, auxiliary biomedical information and confidence score.22 The confidence score in the current
study was set as 0.900 considered to be a highest confidence score utilizing the STRING platform. Subsequently, the
acquired PPIs network was reimported into Cytoscape for further analysis (https://cytoscape.org/), which is identified as
the most potent instrument when it relates to integration with larger databases of genetic interactions, protein–protein and
protein-DNA interactions.23,24 Cytoscape software plugin cytoHubba uses multiple scoring methods to dissect the PPIs
network. Top 30 genes in the topological algorithm of Degree were identified as hub genes.

TF-miRNA Coregulatory Network
TFs and miRNAs reciprocity with the hub genes might participate a vital part in regulating the expression of hub genes.
TF-miRNA coregulatory network for current hub genes was established by feat of NetworkAnalyst (https://www.
networkanalyst.ca/), a powerful online-based platform for comprehensive analyses, systematic interpretation and deci-
phering of gene expression25,26 and RegNetwork repository, a synthetical database of transcriptional and post-
transcriptional regulating networks.27

Results
Identification of DEGs and Common Genes Between AMI and COVID-19
In dataset GSE62646, 4035 DEGs were up-regulated, while 3366 DEGs were down-regulated. For dataset GSE164805,
6983 DEGs were up-regulated, while 6246 DEGs were down-regulated. The DEGs were visualized in a volcano plot,
respectively (Figure 2A and B). As shown in Figure 2C, there were 2529 DEGs overlapped among the 7401 AMI DEGs
and the 13228 COVID-19 DEGs.

GO and KEGG Pathway Enrichment Analysis of Common DEGs
GO and KEGG pathway enrichment analysis of 2529 common DEGs were performed. Top 10 terms of each category
(BP, CC and MF) were visualized in bubble diagram (Figure 3A). KEGG analysis was showed in Figure 3B. GO and
KEGG analyses information were presented in Supplementary Table 1 in detail. BP subset indicates common DEGs were
highly enhanced in regulation of mRNA metabolic process, regulation of mRNA processing and proteasomal protein
catabolic process; CC subsection mainly manifests spliceosomal complex, nuclear speck, chromosomal region and
catalytic step 2 spliceosome; MF part expounds ribonucleoprotein complex binding, ubiquitin-protein transferase activity
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and ubiquitin protein ligase activity. KEGG pathway enrichment analyses clarify that common DEGs were significantly
involved in spliceosome, yersinia infection, salmonella infection, platelet activation, Wnt signaling pathway, B cell
receptor signaling pathway, T cell receptor signaling pathway, osteoclast differentiation, Fc gamma R-mediated phago-
cytosis, mTOR signaling pathway, insulin resistance and cellular senescence.

PPIs Network and Hub Genes Identification
The PPIs network contains 364 nodes and 4216 edges, and top 30 hub genes were identified based on Degree topological
algorithm, picturized and highlighted in Figure 4. Top 30 identified hub genes are RAC1, CUL1, BTRC, NHP2L1, MAGOH,
ANAPC10, PLK1, SRSF1, ALYREF, SNRPE, RHOA, FBXW5, SRSF7, SNRPF, SF3B1, FBXL3, CPSF2, SNRPD3,
SNRPD1, SNW1, PIK3R1, VAMP8, KBTBD7, HIST1H2BL, KLHL20, FBXO2, KBTBD13, FBXL13, ASB18 and
FBXO11. Topological result exploration for hub genes identification was presented in Supplementary Table 2.

Figure 2 (Left) Volcano plot of the distributions of all DEGs for GSE62646 dataset of AMI, mapping 4035 upregulated genes (red dots) and 3366 downregulated genes (blue
dots). |Log2FC|>0 and P-adjusted <0.05 were the cut-off criteria. (Middle) Volcano plot of the distributions of all DEGs for GSE164805 dataset of COVID-19, mapping 6983
upregulated genes (red dots) and 6246 downregulated genes (blue dots). |Log2FC|>1 and P-adjusted <0.05 were the cut-off criteria. (Right) Venn diagram. The two datasets
for AMI and COVID-19 showed an overlap of 2529 common DEGs.

Figure 3 (Left) Partial visualization of GO enrichment analysis for all common DEGs. (Right) Partial visualization of KEGG pathway enrichment analysis for all common
DEGs.
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GO and KEGG Enrichment Analysis of Hub Genes
To further probe the role of hub genes of common genes between AMI and COVID-19, functional enrichment analysis of
hub genes was implemented. The top 10 terms of BP, CC and MF were visualized in a bubble diagram (Figure 5A).
Figure 5B shows us the KEGG analysis outcome. And the concrete information was displayed in Supplementary Table 3.
GO enrichment analyses illustrate that hub genes were significantly involved in RNA splicing, post-translational protein
modification, catalytic step 2 spliceosome, cullin-RING ubiquitin ligase complex, spliceosomal complex, ubiquitin-
protein transferase activity, protein phosphorylated amino acid binding and ubiquitin-like protein transferase activity, etc.
Interrelations between GO terms and hub genes were partially displayed in Figure 6A–C. With regard to KEGG pathway
enrichment analyses, hub genes were significantly involved in spliceosome, circadian rhythm, oocyte meiosis, shigello-
sis, ubiquitin mediated proteolysis, Wnt signaling pathway, bacterial invasion of epithelial cells, colorectal cancer, viral
carcinogenesis, mRNA surveillance pathway, human immunodeficiency virus 1 infection, progesterone-mediated oocyte
maturation, leukocyte transendothelial migration, sphingolipid signaling pathway, neurotrophin signaling pathway, cell
cycle, platelet activation, yersinia infection, fluid shear stress and atherosclerosis and hedgehog signaling pathway.

TF-miRNA Coregulatory Network
The TF-miRNA coregulatory network was shown in Figure 7, constituting 473 nodes, 766 edges and 28 hub genes. The
complicated coregulatory network includes abundant interactions between TFs and miRNAs and hub genes. TFs, namely,
MYC, E2F1, EGR1, YY1, SNRPF, MAX, MEF2A, NFYA5, CTCF5 and TFAP2C interact with 9, 8, 7, 7, 6, 6, 6, 5, 5

Figure 4 Identification of hub genes from the PPIs network of all common DEGs. The 30 highlighted hub genes based on the degree topological algorithm are RAC1, CUL1,
BTRC, NHP2L1, MAGOH, ANAPC10, PLK1, SRSF1, ALYREF, SNRPE, RHOA, FBXW5, SRSF7, SNRPF, SF3B1, FBXL3, CPSF2, SNRPD3, SNRPD1, SNW1, PIK3R1, VAMP8,
KBTBD7, HIST1H2BL, KLHL20, FBXO2, KBTBD13, FBXL13, ASB18 and FBXO11. The PPI network contains 442 nodes and 4951 edges.
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and 5 hub genes, respectively. Hsa-miR-495, hsa-miR-16, hsa-miR-429, hsa-miR-200c and hsa-miR-300 interacts with 8,
5, 5, 5 and 5 hub genes simultaneously.

Discussion
With the accumulation of clinical data, cardiovascular complications induced by COVID-19 have attracted more and
more attention. AMI, as an acute manifestation of cardiovascular diseases, is not only a common complication of SARS-
CoV-2 viral infection, but also an important cause of poor prognosis in patients with COVID-19.1,4 However, the
underlying mechanisms of how this viral infection leading to AMI are still blurry.

In the present study, we used two datasets, which expounded the transcriptional profiling of PBMCs in patients with
AMI and COVID-19 respectively and performed a series of bioinformatics analysis trying to illustrate the pathogenesis
of AMI in patients with SARS-CoV-2 infection. First, we identified common DEGs between these two diseases and

Figure 5 (Left) Partial visualization of GO enrichment analysis for hub genes. (Right) Partial visualization of KEGG pathway enrichment analysis for hub genes.

Figure 6 (Left) Partial visualization of interrelations between BP terms and hub genes. (Middle) Partial visualization of interrelations between CC terms and hub genes.
(Right) Partial visualization of interrelations between MF terms and hub genes.
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explored functional annotations of these DEGs by means of GO and KEGG pathway enrichment analysis. Second, we
constructed PPIs network and picked hub genes out among the whole common DEGs and carried on the functional
analysis of hub genes similarly. Third, we established TF-miRNA coregulatory network in order to find out the targets of
prevention and therapy of AMI in patients with COVID-19.

First of all, GO and KEGG analysis were conducted to preliminarily analyze the functional annotation and pathway
enrichment of common DEGs. For GO, proteasomal protein catabolic process was listed at the top in the GO terms. The
maintenance of cellular homeostasis depends on the proteostasis network to a great extent, which mainly includes
autophagy and the ubiquitin-proteasome system. The network removes dysfunctional cellular components while main-
tains or replenishes normal and functional molecules via synthesizing. Therefore, the dysregulation of the proteostasis
network results in several severe life-threatening diseases including COVID-19.28 Nevertheless, this kind of dysregulated
metabolism might resulted in the activation of numerous pro-inflammatory cytokines and a hyper-inflammatory state,
which has been a well-recognized mechanism of coronary artery disease.29,30 Zhang et al have reported that PA28γ, the
11S proteasomal activator, could decrease levels of the SARS-CoV-2 N protein nucleocapsid protein of SARS-CoV-2
through increasing 20S proteasome activity.31 Gassen et al also found that autophagy-inducing compounds such as
spermidine, MK-2206 and niclosamide could inhibit SARS-CoV-2 propagation.32 These results indicated that the

Figure 7 The TF-miRNA coregulatory network. The network constitutes of 473 nodes and 766 edges, including 28 hub genes. The nodes in red or orange are the hub
genes, a blue node represents miRNA and purple nodes indicate TF genes.
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ubiquitin-proteasome system and autophagy induction to limit the infection and inflammatory response might be
a therapeutic potential as an effective treatment for COVID-19 and subsequent cardiovascular injuries.

For KEGG, platelet activation was of great concern. Clinical data has indicated the relationship between COVID-19 and
a significant risk of various thrombotic complications.33 SARS-CoV-2 infection increased platelet activity partially by means
of MAPK pathway activation and thromboxane generation.34 In addition, SARS-CoV-2 could induce platelet activation via
the bind of spike to ACE2 causing thrombosis.35 Besides platelet aggregation and thrombus formation, platelets were reported
to modulate critical leukocyte responses such as monocyte expression of tissue factor, which was an essential trigger of
coagulation and thrombosis.36,37 This effect has been proved in patients with severe COVID-19.37–39 Platelet activation and it-
mediated release of tissue factor might play a critical role in the development of coagulopathy and thrombosis in patients with
COVID-19, which shared a similar process with the fracture of the atherosclerotic plaque causing occlusion of the vessel and
leading to an acute ischemic event.30 Our analysis revealed that common DEGs also enriched in Wnt signaling pathway. The
Wnt/β-catenin/HIF-1α pathway has been confirmed to be activated in COVID-19 patients and caused pulmonary injury
probably through inducing inflammation and a cytokine storm.30,40 Meanwhile, the persistent activation of Wnt was related to
the pathological process of MI, including inflammatory response, myocardial apoptosis, granulation tissue formation and
fibrosis.41,42 In addition, mTOR signaling pathway was also indicated in the pathogenesis of COVID-19 and AMI. The mTOR
signaling pathway has been well-known in regulating apoptosis, cell survival and host transcription and translation and was
activated in SARS-CoV-2 infection. Researchers has proved that MK-2206 could reduce SARS-CoV-2 production through
inhibition of mTOR signaling pathway.43–45 The mTOR pathway also played a key role in cardiovascular physiology and
pathology. Activation of mTOR increased myocardial damage, induced apoptosis, and cardiac rupture after AMI.46–49 These
pathways mentioned above probably participated the occurrence and development of AMI after SARS-CoV-2 infection.

Secondly, we identified hub genes via the construction of the PPIs network. We retrieved all 30 hub genes in PubMed.
Several genes have been researched in both COVID-19 and AMI. For example, reduced RAC1 activity was associated
with acute lung injury in COVID-19 through endothelial barrier dysfunction.50 RAC1 has also been implicated in
cardiovascular disorders including AMI. The adverse effect of the up-regulation of RAC1 on AMI was probably related
with the increasing of ischemia/reperfusion injury, inflammation, proliferation and migration of endothelial cells and
myocardial stunning.51–54 SRSF1, as an exonic splicing enhancer, played a significant role in genome stability. SRSF1
depletion led to infection spread to adjacent pneumocytes and other tissue and organs in SARS-CoV-2 infection.55 In
AMI, SRSF1 took part in myocardial ischemia-reperfusion injury.56 Some genes were only studied in COVID-19. For
instance, VAMP8, as an important component of the STX17-SNAP29-VAMP8 SNARE complex, mediated autophago-
some/amphisome fusion with lysosomes. However, SARS-CoV-2 inhibited the assembly of the complex in order to
escape from lysosomal destruction.57 Other genes were also indicated in COVID-19 through bioinformatics methods,
such as PLK1, RHOA and PIK3R1.58–60 How the latter two kinds of hub genes triggered AMI in patients with COVID-
19 needed further researches.

Then we carried on the functional analysis of hub genes and the results were widely consistent with mentioned above.
Specially, hub genes were involved in the pathway of leukocyte transendothelial migration via KEGG enrichment
analysis. A part of COVID-19 patients died from acute respiratory distress syndrome (ARDS), which was characterized
by a massive migration of leukocytes to the lungs. Researchers has reported GT-73, a blocker of leukocyte transendothe-
lial migration from blood to the peripheral tissues, might serve as a candidate drug for the treatment of ARDS in COVID-
19 patients.61 It was well-known that leukocyte transendothelial migration was a crucial process in atherogenesis.30 This
common pathogenesis probably accounted for AMI in COVID-19 patients.

Thirdly, we constructed the TF-miRNA coregulatory network in order to find the regulatory molecules of hub genes.
Previous studies have proposed that MYC, a transcription factor, was one of key cellular factors to mediate and promote
the glutamine metabolic reprogramming to meet the demand of energy and biosynthetic requirements during the infection
cycle in SARS-CoV-2 infected cells.62 Others also suggested that MYC was a potential drug target for COVID-19, which
were consistent with ours.63,64 Meanwhile, MYC also played a critical role in the control of the mitochondrial function in
hypoxic ischemic injury and the protection of cardiomyocytes through enhancing the bone marrow mesenchymal stem
cell viability, migration and anti-apoptosis effects in AMI.65,66 The dysfunction of MYC was probably a common
pathway in the pathogenesis of COVID-19 and AMI. As for miRNA, Li et al has reported that hsa-miR-16 was the top
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one upregulated miRNA in the peripheral blood in patients with COVID-19 compared to that of the healthy controls.67

Furthermore, Wicik et al found that hsa-miR-16 might mediate the interactions between SARS-CoV-2 and angiotensin-
converting enzyme 2 functional networks, which was an important regulator in AMI.68 TF-miRNA-hub genes were
a complicated regulatory network. These TF and miRNAs might become therapeutic targets for patients with COVID-19
and high risk for AMI.

Lots of biomarkers have been reported in COVID-19 patients complicated with ischemic heart diseases. For example,
a decrease in fibrinogen and an increase in D-dimer, which indicated systemic hypercoagulable state, might have
predictive values in these patients. And anticoagulation therapy based on these two indicators might improve the
prognosis of patients with COVID-19 and cardiovascular complications.69 Moreover, most researchers consider that
there is a close association between this troponin increasing and the worse prognosis in COVID-19 patients no matter
with ischemic heart injury or not.70,71 However, it is also worth noting that there is still no evidence of direct infection of
SARS-CoV-2 in myocardium. Myocardial injury, defined by a troponin elevation in patients with COVID-19, is to a great
extent related to severe hypoxia, sepsis, systemic inflammation, pulmonary thrombosis embolism, and also probably
related to stress cardiomyopathy, myocarditis.72 Hence, the pathogenesis of AMI in COVID-19 still need to be addressed
in further studies.

Conclusion
Our bioinformatic analyses of gene expression profiling of PBMCs in patients with AMI and COVID-19 provide us with
a unique view regarding underlying pathophysiology correlation between the two vital diseases.
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ACE2, angiotensin converting enzyme 2; AMI, acute myocardial infarction; ARDS, acute respiratory distress syndrome;
BP, biological process; CC, cellular component; CVD, cardiovascular diseases; DEGs, differentially expressed genes;
FDR, false discovery rate; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular
function; PBMCs, peripheral blood mononuclear cells; PPIs, protein–protein interactions; SARS-CoV-2, severe acute
respiratory syndrome coronavirus 2; STEMI, ST-segment elevation myocardial infarction.
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