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Purpose: Breast cancer (BC) is a multi-factorial disease. Its individual prognosis varies; thus, individualized patient profiling is
instrumental to improving BC management and individual outcomes. An economical, multiparametric, and practical model to
predict BC recurrence is needed.
Patients and Methods: We retrospectively investigated the clinical data of BC patients treated at the Third Affiliated Hospital of
Sun Yat-sen University and Liuzhou Women and Children’s Medical Center from January 2013 to December 2020. Random forest-
recursive feature elimination (run by R caret package) was used to determine the best variable set, and the random survival forest
method was used to develop a predictive model for BC recurrence.
Results: The training and validations sets included 623 and 151 patients, respectively. We selected 14 variables, the pathological
(TNM) stage, gamma-glutamyl transpeptidase, total cholesterol, Ki-67, lymphocyte count, low-density lipoprotein, age, apolipoprotein
B, high-density lipoprotein, globulin, neutrophil count to lymphocyte count ratio, alanine aminotransferase, triglyceride, and albumin
to globulin ratio, using random survival forest (RSF)-recursive feature elimination. We developed a recurrence prediction model using
RSF. Using area under the receiver operating characteristic curve and Kaplan–Meier survival analyses, the model performance was
determined to be accurate. C-indexes were 0.997 and 0.936 for the training and validation sets, respectively.
Conclusion: The model could accurately predict BC recurrence. It aids clinicians in identifying high-risk patients and making
treatment decisions for Breast cancer patients in China. This new multiparametric RSF model is instrumental for breast cancer
recurrence prediction and potentially improves individual outcomes.
Keywords: breast cancer, random survival forest, recurrence, individualized patient profiles, multi-level diagnostics and disease
modeling

Introduction
Breast cancer (BC) is a malignant tumor originating from the epithelial tissue of the breast. The incidence of BC has been
increasing annually, and BC has become a significant threat to women’s health. According to the data of GLOBOCAN
2020, the number of new cases of female BC is estimated to be 2.3 million (11.7%), surpassing lung cancer as the most
common cancer type.1 In China, morbidity and mortality rates of BC have increased in recent years because of lifestyle
changes, dietary regimens, and the natural environment.2,3

Conventional prognostic factors for BC include tumor-node-metastasis (TNM) stage (tumor size, number of meta-
static lymph nodes, distant metastatic state), tumor grade, and expression of molecular biomarkers such as estrogen
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receptor (ER), progesterone receptor (PR), Ki-67, and human epidermal growth factor receptor 2 (HER-2).4 However,
patient characteristics, including age, body fat, and nutritional and inflammatory status, affect tumor prognosis.5–8 With
the recent development of gene technology, several studies have focused on the genetic diagnosis of BC, and researchers
have proposed the integration of multiple genes and molecular markers to construct new prognostic models for
predicting BC prognosis. One of them was the 21-gene recurrence score assay, which considers the expression of 21
genes to accurately predict the risk of BC recurrence in patients.9 However, gene detection requires proficient techno-
logical devices and is costly; thus, it is still not widely used.9

Overall, prognostic factors of BC include not only the tumor itself but also patient characteristics. Using tumor or
patient characteristics separately to predict BC recurrence may be inaccurate.10,11 The genetic prediction of BC
recurrence has been shown to be accurate, but obtaining genetic information is laborious, time-consuming, and relatively
expensive, which has greatly limited use in clinical practice.9

Breast cancer is a multi-factorial disease, so individualized patient profiling is instrumental to improving BC
management and individual outcomes. Thus, the paradigm shift from a reactive to a predictive, preventive, and
personalized medicine approach is essential to improve BC management.12–14 Thus, a comprehensive, accurate, and
low-cost predictive model using multi-level diagnostics and disease modeling that can be used in clinical practice is
needed.

The rapid development of machine learning technologies has facilitated the construction of predictive models that can
efficiently evaluate numerous parameters. However, conventional models often have a low level of predictive accuracy
due to overfitting.15 Random survival forest (RSF), derived from random forest, is a machine learning method based on
both random forest and survival analysis.16 It has the following advantages: it has no special requirements for the data set
and can be used to analyze data for which a number of variables are significantly larger than the sample size. Moreover,
RSF effectively avoids problems associated with overfitting and collinearity.17–19 Further, no restrictions on the type of
data or the association between predictive variables and outcomes are needed, nor is RSF constrained by proportional
risk or logarithmic linear assumptions. As a result, higher levels of accuracy are achieved.16,20 To capitalize on the
advantages of the machine learning method, we developed a new predictive model for BC recurrence using RSF, which
was based on baseline, cross-sectional, common clinical variables, including general patient information, blood tests,
pathological examinations, and adverse events due to treatment.

Here, we hypothesized that multi-level diagnostics and disease modeling may lead to the identification of risk of
recurrence for BC patients. Furthermore, a multi-omic predictive model using machine learning was considered a potent
tool for stratifying patients with high versus low risk for BC recurrence.

Methods
A retrospective survey of BC patients’ medical records was performed at the Third Affiliated Hospital of Sun Yat-sen
University and Liuzhou Women and Children’s Medical Center between January 2013 and December 2020. All patients
enrolled in this cohort study were diagnosed with stage 0 to III primary BC and had received primary BC therapy.
Patients lost to follow-up and those with tumor stage IV, a history of cancer, other synchronous malignancies, or
incomplete important information (lacking more than 50% variables) were excluded from the study. Patients diagnosed
and treated at the Third Affiliated Hospital of Sun Yat-sen University were included in the training set for model
development, and patients diagnosed and treated at Liuzhou Women and Children’s Medical Center were included in the
validation set for model validation. The flowchart of the study design and patient selection is shown in Figure 1.

This study was approved by the ethics committee of the Third Affiliated Hospital of Sun Yat-sen University and
Liuzhou Women and Children’s Medical Center. The study was in compliance with the Declaration of Helsinki and its
later amendments. All study participants provided informed consent to review their medical records. Identifiable data
involving the individuals in this study were encrypted.

Potential Predictors
The patients’ data were obtained from their medical records. The results of the routine peripheral blood parameters and
biochemical parameters before initiating any treatment were reviewed. The complete blood cell counts and biochemical
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parameters were measured by standard clinical laboratory methods. White blood cell (WBC), neutrophil (NEUT), and
platelet (PLT) counts were collected, and the neutrophil count to lymphocyte count ratio (NLR) and platelet count to
lymphocyte count ratio (PLR) were calculated. We retrospectively investigated patients’ characteristics, including age,
type of chemotherapy, chemotherapy toxicities, and prognoses based on a review of patients’ medical records or
telephonic follow-up.

ER, PR, and Ki67 status was assessed by immunohistochemistry (IHC). HER-2 status was evaluated by IHC and/or
fluorescence in situ hybridization (FISH). Tumors exhibiting greater than or equal to 10% positivity for ER or PR at any staining
intensity among the total tumor cells were considered positive. The HER-2 staining intensity score was evaluated from 0 to 3+.
HER-2 membranous staining was evaluated as 0 if no cells showed staining; as 1+ if incomplete, faint staining was present in
>10% of cells; as 2+ if complete, moderate staining was present in >10% of cells; and as 3+ if complete, strong staining was
present in >10% of cells. An HER-2 score of 0–1+ was considered negative, and when HER-2 score was 2+ and 3+, further
examination of FISH was performed. Specimens scored as 3+ or confirmed to display amplification based on FISH were
considered positive. The patientswere categorized into four subtypes based onER, PR,HER-2, andKi67 via IHCof their tumor in
the followingmanner: Luminal A (ER+ and/or PR+, HER-2-, Ki67 <14%), Luminal B (ER+ and/or PR+, HER-2+) or (ER+ and/
or PR+, HER-2-, Ki67 ≥ 14%), HER-2+ (ER-, PR-, HER-2+), and TNBC (ER-, PR-, HER-2-). The TNM staging was performed
according to histopathology results using the recommendation of the American Joint Committee on Cancer.

Assessment of Adverse Events
Data on adverse events were collected and assessed by the Common Terminology Criteria for Adverse Events version
5.0. The severity of adverse events was measured using grades 1 to 5 as follows:

Grade 1: Mild, asymptomatic or mild symptoms, clinical or diagnostic observations only, and intervention not
indicated.

Grade 2: Moderate; minimal, local, or noninvasive intervention indicated; limiting age-appropriate instrumental
activities of daily living (ADLs).

Figure 1 Flowchart of the study design and patient selection.
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Grade 3: Severe or medically significant but not immediately life-threatening; hospitalization or prolongation of
hospitalization indicated; disabling; and limiting self-care ADLs.

Grade 4: Life-threatening consequences and urgent intervention indicated.
Grade 5: Death related to adverse events.
Severe adverse events included grades 3 to 5.

Statistical Analyses
The patients’ baseline demographic and clinical characteristics are listed as percentages or means with standard
deviation. Student’s t-test or Mann–Whitney U-test was employed to estimate the continuous data, and the chi-squared
test was employed to estimate the categorical data. R software was employed when performing all statistical analyses. All
analyses were two-tailed, and differences were statistically significant when P was < 0.05.

We used the R mice package (PMM) to interpolate the missing data in the training and validation sets. Based on the
characteristics of BC, demographic characteristics, routine blood tests, treatment adverse events, and interruption of
treatment, the random forest-recursive feature elimination (RF-RFE) (run by R caret package) was used to determine the
best variable set, and the RSF method was used to develop a predictive model for the recurrence risk of BC patients. All
the pairs of ntree and mtry were formed by a grid search using 10-fold cross-validation, and those with the best
concordance index (C-index) values were identified as the optimized parameters. Moreover, the C-index was used to
evaluate the discrimination of the predictive model, and the receiver operating characteristic (ROC) curve and Kaplan-
Meier (KM) survival analysis were used to evaluate the precision of the model in predicting BC recurrence.

Results
In total, 774 patients were included in the study. Patients diagnosed with BC and treated at the Third Affiliated Hospital
of Sun Yat-sen University were included in the training set (n=623) for model development, and patients diagnosed
with BC and treated at Liuzhou Women and Children’s Medical Center were included in the validation set (n=151) for
model validation.

We used R-Pack mice (PMM) to interpolate the missing data in the training and validation sets. Basic information
regarding the training and validation sets is shown in Table 1.

The RF-RFE program of the R caret package was used to filter the most highly predictive variables of the set, and we
selected the optimal number of variables according to the root mean square error (RMSE). To evaluate the accuracy of
a model, the RMSE of test and predicted values is determined. The lower the RMSE value, the higher the predictive
accuracy of the model. Figure 2 shows that when the model included 14 variables, the RMSE value was lowest.

The best variable set (14 variables) filtered by RF-RFE included the pathological (TNM) stage, gamma-glutamyl
transpeptidase (GGT), total cholesterol (CHOL), Ki-67, lymphocyte count, low-density lipoprotein (LDL), age, apoli-
poprotein B (ApoB), high-density lipoprotein (HDL), serum globulin (GLB), neutrophil count to lymphocyte count ratio
(NLR), alanine aminotransferase (ALT), triglyceride (TRIG), and serum albumin to serum GLB (A/G) ratio data.
Variable importance (VIMP) indicated by RF-RFE is shown in Figure 3. The positive VIMP value indicates that one
variable improves predictive accuracy, while the negative value indicates an adverse effect in the prediction.21 VIMP
indicated the contribution of each variable to model prediction separately, but it did not consider the contribution of
combinations of variables.22,23 VIMPs of A/G were negative, but when they were included in the variable set, the RMSE
value was reduced to the lowest level measured, indicating that the variable set that included A/G had the best predictive
performance. Moreover, the previous studies reported that the increased A/G ratio often predicts a good prognosis,6,24–26

which was reversed to recurrence. Therefore, A/G ratios were included in the variable set.
RSF using the R software RandomForestSRC package was used to construct the model. As shown in Figure 4, the error

rate of the model gradually stabilized as the numbers of fixed trees increased. Between 4000 and 6000, the out-of-bag error
rate steadily decreased and tended to be approximately 0.3. The error rate was stable when the number of fixed trees was
10,000. Therefore, the selection of 10,000 trees (ntree = 10,000) was appropriate, and the best performing parameters (ntree =
10,000; mtry = 4) were selected to develop the RSF prognostic model. Subsequently, RSF-based scores for individual
samples were calculated. The C-index was 0.997 (95% confidence interval [CI], 0.995–0.998) (strong discriminatory
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Table 1 Basic Information of the Training and Validation Sets

Total Set Training Set Validation Set P value

Total (n) 774 623 151 –

Female (n) 774 623 151 –

Age (year) 49.76±10.83 50.50±10.84 46.74±10.27 0.001

≥60 (n) 155 (20.03%) 138 (22.15%) 17 (11.26%) 0.011

<60 (n) 619 (79.97%) 485 (77.85%) 134 (88.74%)

≥35 (n) 713 (92.12%) 577 (92.62%) 136 (90.07%) 0.569

<35 (n) 61 (7.88%) 46 (7.38%) 15 (9.93%)

BMI (kg/m2) 23.19±3.18 23.69±3.36 21.49±1.54 <0.001

ALT (U/L) 20.24±12.94 19.52 ± 13.84 23.23 ± 7.59 <0.001

AST (U/L) 21.0±10.02 21.34±11.07 19.62±2.59 0.167

TBIL (μmol/L) 11.12±4.82 10.92±4.34 11.96±6.34 0.312

DBIL (μmol/L) 3.31±1.45 3.18±1.46 3.81±1.26 <0.001

GGT (U/L) 25.40±17.80 26.81±8.62 25.03±19.46 <0.001

ALP (U/L) 64.84±20.94 65.14±22.63 63.66±12.14 0.738

ALB (g/L) 42.63±4.37 42.59±3.58 42.80± 6.72 0.875

GLB (g/L) 27.30±4.21 27.15±3.99 27.88±5.02 0.169

A/G 1.60±0.28 1.60±0.25 1.58±0.37 0.821

Cr (μmol/L) 65.13±17.03 59.88±12.19 86.71±17.15 <0.001

GLU 5.40±1.73 5.47±1.41 5.13±2.67 <0.001

UA 313.78±80.62 315.80±89.10 305.96±29.50 0.409

CHOL 4.98±0.94 4.94±1.04 5.12±0.36 0.112

TRIG 1.24±0.88 1.35±0.95 0.81±0.34 <0.001

HDL 1.36±0.45 1.30±0.32 1.59±0.73 <0.001

LDL 3.06±0.87 3.11±0.90 2.88±0.76 0.017

ApoA 1.47±0.22 1.43±0.22 1.62±0.09 <0.001

ApoB 1.01±0.27 1.03±0.30 0.94±0.07 0.005

Lpa 198.07±217.58 210.55±241.54 149.30±38.15 0.009

WBC (×109/L) 5.88±1.81 6.28±1.65 4.25±1.46 <0.001

NEUT (×109/L) 3.69±1.40 3.91±1.42 2.75±0.81 <0.001

LYMPH (×109/L) 1.77±0.58 1.82 ± 0.6 1.53±0.41 <0.001

RBC (×1012/L) 4.42±0.52 4.43±0.55 4.37±0.35 0.449

HCT 0.37±0.04 0.38±0.04 0.35±0.02 <0.001

Hb (g/L) 124.94±12.18 125.60±13.25 122.22±5.15 0.009

(Continued)
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Table 1 (Continued).

Total Set Training Set Validation Set P value

PLT (×109/L) 239.73±65.38 253.51±63.0 182.87±39.08 <0.001

AST/PLT 0.09±0.11 0.09±0.12 0.11±0.02 0.268

NLR 2.29±1.27 2.39±1.37 1.85±0.59 <0.001

PLR 146.78±57.36 152.87±61.37 121.68±23.51 <0.001

PT (s) 12.86±0.71 12.95±0.74 12.51±0.36 <0.001

INR 0.99±0.36 1.00±0.39 0.95±0.03 0.799

Follow-up (months) 55.59±25.43 60.24±25.68 36.42±11.77 <0.001

Tumor pathology

Tumor stage 0.569

0 29 (3.75%) 27 (4.33%) 2 (1.32%)

I 191 (24.68%) 117 (18.78%) 74 (49.01%)

II 382 (49.35%) 330 (52.97%) 52 (34.44%)

III 172 (22.22%) 149 (23.92%) 23 (15.23%)

Histology 0.569

Invasive ductal carcinoma 650 (83.98%) 540 (86.68%) 110 (72.85%)

Invasive lobular carcinoma 35 (4.52%) 26 (4.17%) 9 (5.96%)

Carcinoma in situ 51 (6.59%) 32 (5.14%) 19 (12.58%)

Special types (inflammatory breast cancer, Paget’s disease,
mucinous carcinoma, malignant phyllodes tumor)

38 (4.91%) 25 (4.01%) 13 (8.61%)

Immunohistochemistry

ER statue 0.005

Negative 150 (19.38%) 135 (21.67%) 15 (9.93%)

Positive 624 (80.62%) 488 (78.33%) 136 (90.07%)

PR 0.027

Negative 188 (24.29%) 164 (26.32%) 24 (15.89%)

Positive 586 (75.71%) 459 (73.68%) 127 (84.11%)

HER2 status 0.001

Negative 543 (70.16%) 418 (67.09%) 125 (82.78%)

Positive 231 (29.84%) 205 (32.91%) 26 (17.22%)

Ki-67 0.028

<14% 257 (33.20%) 193 (30.98%) 64 (42.38%)

≥15% 517 (66.80%) 430 (69.02%) 87 (57.62%)

Axillary lymph node metastasis 0.023

(Continued)
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power).27 ROC curve analysis was used to evaluate the performance of the developed RSF prognostic model in the training
set. Based on RSF scores, the area under the ROC curve (AUROC) was 0.994 (95% CI, 0.9848–1.0), with a sensitivity of
97.9%, specificity of 98.4%, and an optimal cut-off value of 2.81 in the training set (Figure 5).

We divided samples into high-and low-risk groups, which included above- and below RSF-based scores of 2.81,
respectively. KM analyses revealed highly significant differences between overall survival times of the high-risk and low-
risk groups (P < 0.0001) (Figure 6). Results showed that the developed RSF prognostic model was able to predict BC
recurrence accurately.

The developed RSF prognostic model was applied in the assessment of an independent validation set, and the
predictive performance of the model was evaluated using data of the Liuzhou Women and Children’s Medical Center
cohort. The C-index was determined to be 0.936 (95% CI, 0.891–0.981) (strong discriminatory power).27

ROC curve analysis was used to evaluate the performance of the developed RSF prognostic model in the validation
set. Based on the RSF-based scores, the AUROC was 0.961 (95% CI, 0.926–0.996), with a sensitivity of 100% and
specificity of 87.9% (Figure 7).

The optimal cut-off value of 2.81 in the RSF-based score in the training set was used to stratify patients into high-risk
and low-risk groups in the validation set. KM analyses revealed highly significant differences in recurrence-free survival
between high-risk and low-risk groups (P < 0.0001) (Figure 8).

Table 1 (Continued).

Total Set Training Set Validation Set P value

No 446 (57.62%) 344 (55.22%) 102 (67.55%)

Yes 328 (42.38%) 279 (44.78%) 49 (32.45%)

Molecular type 0.023

Luminal A 203 (26.23%) 162 (26.0%) 41 (27.15%)

Luminal B 414 (53.49%) 343 (55.06%) 71 (47.02%)

HER2 enriched 64 (8.27%) 54 (8.67%) 10 (6.62%)

TNBC 80 (10.34%) 51 (8.19%) 29 (19.21%)

Adverse event <0.001

No 137 (17.70%) 136 (21.83%) 1 (0.66%)

Yes 637 (82.30%) 487 (78.17%) 150 (99.64%)

Serious adverse events (CTCTE>3) <0.001

No 569 (73.51%) 426 (68.38%) 143 (94.70%)

Yes 205 (26.49%) 197 (31.62%) 8 (5.30%)

Disruptions of therapy 0.028

No 746 (96.38%) 595 (95.51%) 151 (100%)

Yes 28 (3.62%) 28 (4.49%) 0

Recurrence 0.938

No 717 (92.64%) 576 (92.46%) 141 (93.38%)

Yes 57 (7.36%) 47 (7.54%) 10 (6.62%)

Recurrence time (months) 53.47±25.11 58.04±25.45 34.74±11.08 <0.001
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Discussion
This study employed an RF-RFE algorithm28 to automatically select the most relevant features among 40 variables
identified for further RSF model development. Variable selection is the process of selecting a data set that includes
relevant features for further analysis to minimize possible generalization error.

The 14 selected variables for the model developed included pathological (TNM) stage, GGT, CHOL, Ki-67,
lymphocyte count, LDL, age, ApoB, HDL, GLB, NLR, ALT, TRIG, and A/G. These were reported to be closely
associated with BC recurrence risk in previous studies, and they were used in this study to develop a reliable model.

Figure 2 Evaluating the number of variables contained in the optimal set using the root mean square error.

Figure 3 Variable importance values derived from the random forest-recursive feature elimination analysis.
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Figure 4 Change in the prediction error rate of the recurrence risk model of breast cancer patients with tree number.

Figure 5 Receiver operating characteristic curve of the developed random survival forest model.
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The Characteristic of the Selected Variables
The most important variable selected was pathological stage (TNM stage). Pathological stage has been widely used in
clinical practice to predict prognosis and survival as well as guide clinical treatment.29 Proliferating cell nuclear antigen
(Ki-67) is a protein closely related to cell proliferation. Current studies have shown that Ki-67 is highly correlated with
the differentiation, invasion, and metastasis of BC,30 which can be used to predict the prognosis of BC patients. Some
studies have confirmed that Ki-67-positive BC patients have a poor treatment response and prognosis.29,31

Lymphocyte count, NLR, and platelet count to lymphocyte count ratio (PLR) are variables assessed in routine blood
tests. In previous studies, it was found that a change in the white blood cell (WBC) count in peripheral blood is related to
the systemic inflammatory response.5 Moreover, some studies have found that tumor-related systemic inflammatory
response is an independent predictor of tumor prognosis in patients.32,33 NLR and PLR can reliably reflect the body’s
inflammatory status. In fact, studies confirmed the classification of WBC count in peripheral blood, and NLR and PLR
can be used to predict the prognosis of BC.5,34–36 Increases in NLR and PLR often indicate poor response to treatment
and poor prognosis, whereas low NLR and PLR are often indicative of good treatment response and good prognosis.37–39

Age is an independent risk factor for BC. The incidence and mortality rate of BC increases with age. Many factors
related to age play an important role in the occurrence and development of BC, such as changes in hormone levels before
and after menopause, cumulative DNA damage with aging, the occurrence of various types of chronic infections, and
changes in the immune system.40–42 At the same time, some studies have shown that the prognosis of young BC patients
is often poor, which may be due to the higher pathological grade of young patients’ tumors, as these patients are also
often cancer cell hormone receptor-negative and HER-2-positive and may have other adverse indications.8,43

The liver function test is routinely performed to assess ALT, AST, total bilirubin, ALP, GGT, ALB, GLB, and A/G.
Some researchers have used ALT and GGT to predict all-cause mortality in the general population and found that
predictions using the factors were moderately accurate.44 Previous studies have shown that high levels of GLB are
associated with a poor prognosis in patients with breast and rectal cancers.6,45,46 On the other hand, in various tumors
including BC, non-small cell lung cancer, renal cell cancer, and laryngeal cancer, increased ALB levels and ALB/GLB
ratios (A/Gs) are often predictive of a good prognosis.6,24–26 Therefore, these liver function parameters can be used as
predictors of BC prognosis.

Figure 6 Kaplan-Meier survival curves of recurrence-free survival for the training set.
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BC patients with baseline hypertriglyceridemia may have poor prognosis.47 Moreover, CHOL is associated with BC
recurrence,48 whereas a high HDL/CHOL ratio is associated with a good prognosis.47

Novelty of the Proposed Model
However, breast cancer is a multi-factorial disease, and individualized patient profiling is instrumental to improving BC
management and individual outcomes.12–14 It is widely accepted that the prognosis of cancer patients depends on not
only tumor characteristics but also patient characteristics.49 Thus, we determined that it would be best to develop
a predictive model using both tumor characteristics and patient characteristics. In terms of validity and reliability, we
found that our predictive model performed well even upon external validation using an independent data set. C-indexes
were 0.997 and 0.936 for the training and external validation sets, respectively, and discriminatory power was good. The
KM analyses (P < 0.0001 for both training and validation sets) were used to evaluate the performance of the model, and
we found that our model could accurately predict BC recurrence. Further, AUROCs were 0.994 and 0.961 for training
and validation sets, respectively, indicating that our model was able to reliably predict BC recurrence. Moreover, the
AUROC of the previously reported predictive model ranged from 0.69 to 0.92, suggesting that our model was more
accurate than the models previously described.50–53

Compared with published predictive models created based on new molecular biomarkers derived from gene or protein
expression analysis, our existing models rely on simple and easy-to-obtain demographic data and clinical routine
examination indicators obtainable in clinical practice. This means that a high-accuracy prediction may be made without

Figure 7 Receiver operating characteristic curve of the developed random survival forest model assessment by the validation set.
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increasing cost to patients. From the perspective of economic cost, using conventional laboratory indicators has lower
cost than using new molecular biomarkers, particularly since new molecular biomarkers measurements are not routinely
conducted in clinical practice. Further, this additional expense is not covered by insurance. The model constructed in this
study included comprehensive selected features for both tumor and patient-related features and can be performed without
additional cost to patients and is easy to operate. The model has the potential to help clinicians identify and provide
interventions for high-risk patients in the early stage of disease and allow physicians to perform more accurate, targeted,
efficient, and individualized treatment plans to improve the prognosis of BC patients.

Our study has some limitations. First, all study participants were of Han descent. Thus, the model has limited
applicability to other races until external validation using data of patients from other regions and ethnicities is performed.
Second, this is a cross-sectional study, which created a prediction model based on the baseline level, suggesting that
timing and causality could not be determined. Thus, studies conducted at multiple centers that include larger cohorts are
required.

Conclusions
We developed and validated a model to predict BC recurrence in patients in China. Predictive variables were selected
based on data commonly obtained in clinical practice, which would not incur an additional cost to patients. The RSF
model exhibited high discriminatory accuracy and good calibration, which may facilitate recurrence prediction.
Moreover, by using the model, clinicians can deliver precise and efficient individualized treatment for BC patients to
improve their prognosis. This new multiparametric RSF model is instrumental for breast cancer recurrence prediction and
potentially improves individual outcomes.
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cholesterol; LYMPH, lymphocyte; BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
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Figure 8 Kaplan-Meier survival curves of recurrence-free survival for the validation set.
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