
OR I G I N A L R E S E A R C H

Integrated Analysis of Single-Cell RNA-seq and
Bulk RNA-seq in the Identification of a Novel
ceRNA Network and Key Biomarkers in Diabetic
Kidney Disease
Yuejun Wang 1, Mingming Zhao2, Yu Zhang2

1Department of Nephrology, Zhejiang Aged Care Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China;
2Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China

Correspondence: Yu Zhang, Tel +86 18801199545, Email zhangyu8225@126.com

Purpose: This study aimed to generate a competitive endogenous RNA (ceRNA) network and identify novel biomarkers for diabetic
kidney disease by combining single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data analysis.
Methods: Four datasets associated with diabetic nephropathy were downloaded, and their differentially expressed genes were
identified. Enrichment analysis was conducted using Metascape. Next, we identified co-expressed mRNA–lncRNA pairs, analyzed
subcellular lncRNA localization, and constructed a ceRNA network. Next, a specific protein–protein interaction was used to identify
key biomarkers. Then, we determined the expression profiles of key biomarkers from scRNA-seq data and validated in an external
independent dataset. Finally, we explored the correlations between key biomarkers and the clinical features and analyzed the drug
perturbation.
Results: Thirteen cell types were identified in the scRNA-seq data, and 106 common differentially expressed genes were identified in
both scRNA-seq data and bulk RNA-seq data. These genes were mainly enriched in the focal adhesion pathway of the extracellular
matrix. Next, we overlapped these genes with genes predicted by differentially expressed miRNAs, identified co-expressed mRNA–
lncRNA pairs and generated a ceRNA network containing 60 mRNAs, 10 miRNAs, and 5 lncRNAs. All lncRNAs were localized in
the cytoplasm or cytosol. Analyses identified five key biomarkers (VCAN, TIMP1, TNC, C3 and CP); these proteins were mostly
differentially expressed in fibroblasts and renal tubular cells. Furthermore, most of these proteins are associated with glomerular
filtration rate, serum creatinine, and proteinuria. In total, seven potential therapeutic molecular medicines were predicted for the
treatment of diabetic nephropathy.
Conclusion: In summary, we identified a novel ceRNA-network and five key biomarkers in diabetic kidney disease, which may help
to elucidate the mechanisms underlying diabetic nephropathy and facilitate new treatments.
Keywords: single-cell RNA sequencing, bioinformatics, diabetic nephropathy, hub gene, inflammation

Introduction
Diabetic kidney disease (DKD) is the most predominant microvascular complication of diabetes, a disease that has
replaced glomerulonephritis as the leading cause of chronic kidney disease.1 Early-stage DKD has no typical clinical
symptoms and is difficult to diagnose; in fact, when diagnosed, most patients are already in the middle to late stages of
DKD. Currently, urinary microalbumin is used as a clinical indicator for the diagnosis and progression of DKD; however,
this parameter is affected by various factors, and many patients are found to undergo a range of pathological changes,
including tubular atrophy and glomerular fibrosis before the onset of microalbuminuria.2 Consequently, it is important to
identify novel and effective biomarkers for the early diagnosis and treatment of DKD.

Diabetic nephropathy is a microvascular complication of diabetes mellitus associated with systemic or renal
inflammation.3 Clinical studies have shown that clinical features related to inflammation, such as c-reactive protein to

International Journal of General Medicine 2022:15 1985–2001 1985
© 2022 Wang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of General Medicine Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 14 December 2021
Accepted: 11 February 2022
Published: 23 February 2022

In
te

rn
at

io
na

l J
ou

rn
al

 o
f G

en
er

al
 M

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0002-4336-0255
https://www.dovepress.com/terms.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
http://www.dovepress.com/permissions.php
https://www.dovepress.com


serum albumin ratio,4 monocyte-to-lymphocyte ratio,5 serum uric acid,6,7 mean platelet volume-to-lymphocyte ratio8 and
platelet distribution width,9 are significantly elevated in patients with DKD and are independent risk factors for the
progression of DKD. In addition, it has been proved that a variety of inflammatory molecules are involved in the progress
of DKD. For example, kidney injury molecule-1 is used as an early indicator of proximal tubular injury and is also
associated with the repair of renal injury, inflammatory cell infiltration and the process of renal fibrosis.10,11 The levels of
omentin-1 and neuregulin-4, which are adipokines secreted by visceral adipose tissue, are negatively correlated with the
levels of pro-inflammatory factors in DKD.12,13 Therefore, inflammatory mediators are particularly important for the
DKD patients as biomarkers for prognosis and potential therapeutic targets.

Recent studies have shown that non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs), can play roles in DKD via different pathways, and may provide us with new insights for the
development of novel therapeutics.14 lncRNA is a form of RNA that is greater than 200 nucleotides in length; these
lncRNAs can regulate the expression of related genes at different levels (for example, at the epigenetic, transcriptional,
and post-transcriptional levels) in various forms.15 The current literature shows that many lncRNAs are differentially
expressed in the renal tissue of patients with DKD. lncRNAs can also induce a number of phenotypic changes, including
cellular matrix deposition, fibrosis, and inflammatory response, through various molecular pathways, including PI3K/
AKT and Erk.16 miRNAs endogenous non-coding RNAs that are approximately 20 nucleotides in length and can
influence gene expression by inducing mRNA degradation and by blocking protein translation. Previous studies have
shown that miRNAs can exert a significant impact on disease progression by regulating several different signaling
pathways during the pathogenesis of DKD.17 In addition, lncRNA can generate elaborate and complex regulatory
networks by interacting with mRNAs and miRNAs. In addition, lncRNAs can bind competitively with miRNAs and
cause miRNAs to lose their regulatory effects on target genes; this is referred to as a competitive endogenous RNA
(ceRNA) mechanism and has been identified as a common mechanism of lncRNAs.18

Kidney tissue contains a variety of intrinsic and interstitial cells. Previous bulk RNA-seq techniques only detected
mean changes in the levels of RNA in multiple cells; however, this strategy cannot identify the unique roles of specific
cells in the occurrence and development of disease. Single-cell RNA sequencing (scRNA-seq) can identify gene
expression profiles at the single-cell level, thus providing insights to explore the pathogenesis of kidney diseases and
discover new therapeutic targets, thus enabling the individualized and precise diagnosis and treatment of kidney
diseases.19

In this study, we generated a ceRNA network and identified key biomarkers for DKD based on scRNA-seq and bulk
RNA-seq data analysis. We used scRNA-seq to analyze a single-cell dataset of patients with diabetic nephropathy via the
gene expression omnibus (GEO). Differentially expressed genes and corresponding functional enrichment were then
identified and further combined with bulk RNA-seq data to identify differentially expressed lncRNAs (DElncRNAs),
miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) to construct a ceRNA network. Then, we used a protein–protein
interaction (PPI) network and Molecular Complex Detection (MCODE) algorithm to identify key target genes and
analyze gene expression profiles at the single cell level. Then, we performed receiver operating characteristic (ROC)
analysis of the key biomarkers using an external independent dataset. Finally, we investigated the relationship between
hub genes and clinical characteristics (eg, serum creatinine, glomerular filtration rate, and proteinuria), and identified
potential molecular drugs that could be used therapeutically. Figure 1 shows a flowchart that describes the analytical
process.

Materials and Methods
Data Collection
Four datasets (GSE131882, GSE142025, GSE51674, GSE96804) were downloaded from the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/); these contained the gene expression profiles of patients with DKD and
healthy controls. The scRNA-seq dataset (GSE131882) contained 23,980 single-cell transcriptomes from three control and
three diabetic kidney samples.20 The bulk RNA-seq dataset (GSE142025) consisted of 27 patients with DKD and eight normal
cases.21 The GSE51674 dataset, which included the microRNA (miRNA) profiles of six patients with DKD and four patients
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with normal kidneys, was also downloaded to allow us to construct a ceRNA network.22 The GSE96804 dataset (consisting of
40 patients with DKD and 21 control patients) was also prepared for independent external validation.23 Finally, we used the
Nephroseq platform for comprehensive renal disease phenotype and genotype data for further validation and clinical
investigation. Further details of the four datasets are shown in Table 1.

Differentially Expressed Genes (DEGs) in scRNA-Seq and Bulk RNA-Seq Datasets
The limma package was used to determine differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs) and
microRNAs (DEmiRNAs) between biopsies from DKD patients and healthy controls in the bulk RNA-seq dataset.24

For scRNA-seq data, we used the Seurat package (version 4.0) in the R environment (version 4.02) to analyze cells
with less than 2000 genes; in total, <10,000 transcripts were filtered.25 Following data integration, normalization, and
principal component analysis (PCA), cells were then clustered using the t-distributed stochastic neighbor embedding

Figure 1 The technology road map used in this study.

Table 1 Detailed Information Relating to the GEO Datasets Used in This Study

GEO
Series

Cases Tissue Platforms Data Type

GSE131882 DKD:3 Control:3 Kidney GPL24676: Illumina NovaSeq 6000 (Homo sapiens) scRNA-seq (training set)

GSE142025 DKD:27 Control:8 Kidney GPL20301: Illumina HiSeq 4000 (Homo sapiens) Bulk RNA-seq (training set)
GSE51674 DKD:6 Control:4 Kidney GPL10656: Agilent-029297 Human miRNA Microarray miRNA microarray (training

set)

GSE96804 DKD:40
Control:21

Kidney GPL17586 [HTA-2.0] Affymetrix Human Transcriptome Array
2.0

mRNA microarray (validation
set)

Abbreviations: DKD, diabetic kidney disease; GEO, gene expression omnibus.
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(t-SNE) method with theresolution set to 0.5. Marker genes for clustering were identified using the FindAllMarkers
function. Then, all clusters were identified as different cell types by referring to previous scRNA-seq studies relating to
renal disease26 and by considering the CellMarker online database.27 Following cell-type annotation, we chose the
FindMarkers function in Seurat to identify DEGs in specified cell-types for further analysis.

Functional Enrichment Analysis
To explore the unique biological significance and important pathways between DKD and control patients, we employed
the Gene Ontology (GO) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis based on DEGs in
scRNA-seq data by using Metascape website (http://metascape.org).28

ceRNA Network Construction
To better understand the relationship between the mRNAs, miRNAs, and lncRNAs, we constructed a ceRNA network for
DKD. First, we imported the DEmiRNAs that we identified previously into the DIANA-LncBase v2 database (http://
carolina.imis.athena-innovation.gr/diana_tools/web/index.php) to predict relationships between lncRNAs and miRNAs and
acquired a set of predicted lncRNAs.29 Next, we identified miRNA-targeted mRNAs by applying the miRTarBase30 (http://
mirtarbase.mbc.nctu.edu.tw/), miRDB31 (http://www.mirdb.org/), and TargetScan32 (http://www.targetscan.org/) databases.
To improve the effectiveness of our analyses, we intersected the predicted mRNAs and lncRNAs with the DEmRNAs and
DElncRNAs we acquired from the scRNA-seq and bulk-seq data and identified candidate mRNAs and lncRNAs that could
be used to construct a ceRNA network. Based on the competitive endogenous RNA theory,33 only mRNA–lncRNA pairs that
showed positive and significant correlation (R > 0.6 and p < 0.05; Pearson correlation) were selected. Furthermore, sequences
of lncRNAs in the ceRNA network were obtained by the LNCipedia online tool (https://lncipedia.org/).34 Then, we uploaded
sequences into the lncLocator tool35 (http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/) to predict the subcellular localizations
of the candidate lncRNAs. We did this because the specific functions of lncRNAs are closely related to their intracellular
localization. The main location of ceRNAs is the cytoplasm or cytosol. The lncLocator can score each potential subcellular
localization of lncRNAs, including exosomes, cytosol, ribosome, nucleus, and cytoplasm. Finally, we merged the co-
expressed mRNA–lncRNA pairs and related miRNAs to generate a ceRNA network.

The Identification of Key Biomarkers
Next, we used the Metascape online tool to construct a protein–protein interaction (PPI) network and then determined
functional enrichment by analyzing target mRNAs within the ceRNA network. The core gene modules of the PPI work
were then identified as key biomarkers by the Molecular Complex Detection (MCODE) algorithm.36 The gene expression
profiles of key biomarkers in the scRNA-seq data were illustrated by the FeaturePlot and VlnPlot functions in Seurat.

Independent and External Data Verification
The hub genes identified in the previous step were next verified in the GSE142025 dataset and an independent validation
cohort (GSE96804). We demonstrated the differentially expressed levels of key biomarkers in DKD patients and control
cases as violin plots by applying the ggplot2 tool in the R environment. Next, we used the ROCR package37 in
R software to estimate the area under curve (AUC) from the receiver operating characteristic (ROC) curve; this allowed
us to evaluate the capability of each selected hub gene. A larger |AUC-0.5| value indicated that a specific gene exhibited
significant capability for distinguishing DKD from control samples. The diagnostic power of hub genes was then
determined by analyzing the AUC values.

The Correlation Between Biomarkers and Clinical Features
To further validate the relationship between the biomarkers and the clinical features, we access the Nephroseq database
(https://www.nephroseq.org/), which is a free platform for the academic and non-profit renal research community for
integrative data mining of genotype/phenotype data. The database incorporates clinical data, which is often difficult to
collect from public sources. We then analyzed the expression of key biomarkers and the correlation between the
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expression level of hub genes and three significant clinical, including the glomerular filtration rate (GFR), the proteinuria
and the serum creatinine (SCr) in patients with DKD and healthy control.

Drug Perturbation Analysis
Connectivity Map (CMap) (https://portals.broadinstitute.org/cmap/) is an important database in the field of pharmaco-
genomic research. This database contains more than 1300 compounds and can be used to perform transcriptomic analysis
of gene expression for relevant diseases, thus revealing the relationships between disease genes and potential
compounds.38 The differentially expressed genes identified in the scRNA-seq and bulk RNA-seq datasets were converted
into a list of corresponding probes following processing in R language and then uploaded to the CMap database to screen
for potential compounds. Compounds with negative CMap score values showed a negative correlation with the uploaded
disease gene expression profile, thus indicating their potential role in the treatment of diabetic nephropathy.

Statistical Analysis
In our study, R and corresponding R packages were utilized for statistical analysis. Significant differentially expressed genes
between the two different groups of subjects were identified by adopting a specific threshold: a log2|fold change|>1.0 and
a false discovery rate (fdr) <0.05 in GSE142025. For the GSE51674 dataset, the threshold was a log2|fold change|>1.5 and
a p-value <0.001. When we chose the FindMarkers function in Seurat to identify DEGs in specified cell-types in scRNA-seq
data, a log2|fold change| >0.25 and an adjusted p-value <0.05 were significantly modulated, as described in the official
guideline. The mRNA–lncRNA pairs that showed positive and significant correlation (R > 0.6 and p < 0.05; Pearson
correlation) were selected for further analysis. Receiver operating characteristic (ROC) curve was used to analyze the
diagnosis value, including the area under the curve (AUC), sensitivity, and specificity. Unpaired t-test was used to distinguish
the differences between the two groups. P < 0.05 was considered as a statistically significant difference with 2-tailed tests.

Results
DEGs Derived from scRNA-Seq Data and Functional Enrichment Analysis
The SCTransform function in the Seurat package was used to pre-process and reduce the batch effect. Cells containing
less than 200 genes, and with a proportion of mitochondrial DNA-derived gene expression that exceeded 25%, were first
removed; then, the remaining cells were used for subsequent analysis (Figure S1A). T-SNE was performed for non-linear
dimension reduction and unsupervised clustering. Eventually, 21 clusters, and their highly variable markers, were
obtained (Figures 2A, B and S1B, Table S1). Then, we manually identified 13 cell types for all clusters and subclusters
in the scRNA-seq data (Figure 2C, Table 2). Following cell annotation, we identified 1209 DEGs in different cell types;
of these, 511 were up-regulated genes and 698 were down-regulated (Table S2).

To further investigate the functionality of the DEGs based on scRNA-seq data, we next conducted GO and KEGG
analyses. As shown in Figure 2D and Table S3, GO analysis showed that the up-regulated DEGs were associated with
cell adhesion in the biological process (BP) term, plasma membrane and extracellular matrix in the cellular component
(CC) term, and ion channel binding and extracellular matrix structural constituent in the molecular function (MF) term.
KEGG pathway analysis revealed that the DEGs were mainly enriched in focal adhesion, cell adhesion molecules and the
calcium signaling pathway (Figure 2E, Table S3). However, the down-regulated DEGs were mainly enriched in
urogenital system development and kidney development in BP, the apical parts of cells and collagen-containing
extracellular matrix in CC, and metal ion transmembrane transporter activity in MF (Figure 2D, Table S3). KEGG
pathway analysis showed that these DEGs might affect mineral absorption, the calcium signaling pathway, and the AGE-
RAGE signaling pathway in diabetic complications (Figure 2E, Table S3).

The Prediction of miRNA–mRNA and lncRNA–miRNA Pairs
Within the GSE142025 RNA-seq dataset, a total of 1161 DEGs were obtained, including mRNAs and lncRNAs
(Figure 3A and B, Table S4). There were 53 DEmiRNAs in the GSE51674 dataset (Figure 3C and D, Table S5).
Furthermore, we intersected up- and down-regulated DEGs in the scRNA-seq and RNA-seq datasets, respectively. Then,

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S351971

DovePress
1989

Dovepress Wang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://portals.broadinstitute.org/cmap/
https://www.dovepress.com/get_supplementary_file.php?f=351971.pdf
https://www.dovepress.com/get_supplementary_file.php?f=351971.pdf
https://www.dovepress.com/get_supplementary_file.php?f=351971.pdf
https://www.dovepress.com/get_supplementary_file.php?f=351971.pdf
https://www.dovepress.com/get_supplementary_file.php?f=351971.pdf
https://www.dovepress.com/get_supplementary_file.php?f=351971.pdf
https://www.dovepress.com/get_supplementary_file.php?f=351971.pdf
https://www.dovepress.com/get_supplementary_file.php?f=351971.pdf
https://www.dovepress.com/get_supplementary_file.php?f=351971.pdf
https://www.dovepress.com/get_supplementary_file.php?f=351971.pdf
https://www.dovepress.com
https://www.dovepress.com


we identified 35 intersecting (common) up-regulated DEGs (Figure 3E) and 71 down-regulated DEGs (Figure 3F). When
these were combined, we identified 106 common DEGs for further analysis. We also performed miRNA–mRNA
prediction with the DEmiRNAs we acquired previously using the miRTarBase, miRDB, and TargetScan databases;
this allowed us to acquire 15,119 target mRNAs. When these data were combined with 106 candidate DEGs, we
identified 72 candidate mRNAs (Figure 3G). In addition, application of the DIANA-LncBase v2 database allowed the
identification of 526 lncRNA–miRNA pairs; five candidate lncRNAs were then identified to construct the ceRNA
network (Figure 3H).

The Identification of lncRNA–mRNA Pairs and ceRNA Network Construction
Based on the 72 candidate mRNAs and 5 lncRNAs identified previously, we obtained 125 co-expressed mRNA–lncRNA
pairs according to the competitive endogenous RNA theory (Figure 3I, Table S6). After merging the miRNA–mRNA and
lncRNA–miRNA pairs, we constructed a ceRNA network that featured 60 mRNAs, 10 miRNAs, and 5 lncRNAs
(Figure 4A). Prediction analysis of subcellular localization showed that all five lncRNAs exhibited the highest score in
the cytoplasm or cytosol, thus indicating that they exerted biological function in ceRNA network (Figure 4B).

Figure 2 The identification differentially expressed genes (DEGs) and enrichment analysis based on different cell types in the single-cell RNA-seq dataset. (A) T-SNE plot of
a 21-cell cluster distribution (0–20) in the GSE131882 single-cell RNA-seq dataset. (B) Bubble plot showing the expression of highly variable gene markers in each cell
cluster. (C) Thirteen cell types were identified manually by considering high variability gene markers. The top three significant GO enrichment terms (D) and the top five
KEGG pathway terms (E) in up-regulated and down-regulated DEGs based on scRNA-seq data.
Abbreviations: CD-ICA, collecting duct type A intercalated cell; CD-ICB, collecting duct type B intercalated cell; CT, connecting tubule cell; DCT, distal convoluted tubule
cell; ENDO, endothelium cell; FIB, fibroblast cell; LEUK, leukocyte cell; LOH, loop of Henle cell; MES, mesangial cell; PCT, proximal convoluted tubule cell; PEC, parietal
epithelial cell; PODO, podocyte cell; PST, proximal straight tubule cell; t-SNE, t-distributed stochastic neighbor embedding; GO, gene ontology; KEGG, the Kyoto
encyclopedia of genes and genomes.
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PPI Network Construction and the Identification of Hub Genes
mRNAs from the ceRNA network were imported into Metascape so that we could investigate functional enrichment and
generated a PPI network containing 15 mRNAs. Biological enrichment was observed in the NABA CORE
MATRISOME (a curated gene set encoding the core extracellular matrix including glycoproteins, collagens, and
proteoglycans) and primary focal segmental glomerulosclerosis (Figure 4C). The MCODE algorithm identified five
hub genes (VCAN, TIMP1, TNC, C3 and CP) (Figure 4D and E).

The Expression of Hub Genes in scRNA-Seq and Bulk RNA-Seq Data
The FeaturePlot function in Seurat was used to demonstrate the expression profiles of hub lncRNAs (Figure 5A–E) and
mRNAs (Figure 5F–J) in the scRNA-seq data. The VlnPlot function was applied to illustrate gene expression levels in
the DKD and control groups. However, only statistically significant results arising from this analysis are shown. Of the
lncRNAs within the ceRNA network, TEX41 was highly expressed in collecting duct type A intercalated cells and
proximal straight tubule (PST) cells, while lower levels were evident in the podocyte cells of patients with DKD
(Figure 5K). In the DKD group, DRAIC and LINC00639 were expressed at high levels in leukocytes (LEUK)
(Figure 5L) and endothelial (ENDO) cells (Figure 5M), respectively. WT1-AS was expressed at high levels in fibroblast
(FIB) cells in the control group (Figure 5N). MSC-AS1 was highly expressed in FIB cells in the DKD group
(Figure 5O).

With regard to mRNAs, VCAN was expressed at high levels in the FIB cells of DKD patients (Figure 5P). TNC
showed high expression levels in mesangial cells and proximal straight tubule cells in patients with DKD but lower levels
in parietal epithelial cells (Figure 5Q). However, C3 was expressed at low levels in fibroblast cells and at high levels in
the parietal epithelial cells of DKD patients (Figure 5R). CP was only found in the FIB cells of DKD patients and was
expressed at high levels Figure 5S). In addition, TIMP1 was expressed at high levels in mesangial cells but lower levels
in fibroblast cells from DKD patients (Figure 5T).

After investigating hub mRNAs and lncRNAs in the bulk RNA-seq data, we used a violin plot to demonstrate
expression levels and used ROC curves to indicate the ability of these hub factors to distinguish between DKD patients
and normal cases in the GSE142025 dataset. Results showed that LINC00639 and MSC-AS1 were expressed at
significantly higher expression levels in kidney samples from DKD patients than normal controls. Furthermore, WT1-
AS, TEX41 and DRAIC were expressed at significantly higher levels in control cases (Figure 6A). However, all mRNA
markers, including VCAN, TIMP1, TNC, C3 and CP, showed considerably higher expression levels in the kidneys of
patients with DKD (Figure 6B).

Table 2 Identification of Cell Types in scRNA-Seq Data via Highly Variable Markers

Cell Type Cluster Markers

Collecting duct Type A intercalated (CD-ICA) cell 4 SLC26A7, CLNK, ADGRF5
Collecting duct Type B intercalated (CD-ICB) cell 15 SLC26A4, SLC4A9, CELF2

Connecting tubule (CT) cell 1, 7, 11, 20 SLC8A1, SNTG1, LSAMP

Distal convoluted tubule (DCT) cell 0 SLC12A3, TRPM6, CNNM2
Endothelium (ENDO) cell 9 LDB2, EMCN, MEIS2

Fibroblast (FIB) cell 18 C7, NEGR1, TSHZ2, SVEP1

Leukocyte (LEUK) cell 16 ARHGAP15, PTPRC, PRKCB
Loop of Henle (LOH) cell 2, 6, 14 SLC12A1, PLCB1, RP1

Mesangial (MES) cell 17 CACNA1C, EBF1, NTRK3
Proximal convoluted tubule (PCT) cell 3, 5, 8 SORCS1, SLC5A12, UGT2B7

Parietal epithelial (PEC) cell 12 ALDH1A2, CFH, KCNT2

Podocyte (PODO) cell 13 PTPRQ, PTPRO, PLA2R1
Proximal straight tubule (PST) cell 10, 19 ITGB8, VCAM1
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Validation in an Independent External Dataset
We downloaded GSE96804 as an independent dataset to verify the lncRNAs and hub mRNAs that were included in the
ceRNA network. For the lncRNAs, the gene expression profiles of MSC-AS1, WT1-AS and DRAIC are consistent with
the GSE142025 dataset. However, TEX41 was not detected in the GSE96804 dataset; there was no statistical difference
in the levels of LINC00639 when compared between DKD and control cases (Figure 6C). With regard to the hub
mRNAs, VCAN, TNC, C3 and CP showed high expression levels; the levels of TIMP1 were significantly different when
compared between the DKD and control groups (Figure 6D). Furthermore, ROC curve analysis illustrated that all
lncRNAs and key biomarkers had large AUC values, thus indicating that they had the potential predictive ability to
discriminate between DKD and normal cases (Figure 6E–H).

The Association Between Key Biomarkers and Clinical Characters
Next, we used the Nephroseq platform to explore the relationship between key biomarkers and clinical significance. Violin
plots showed that VCAN, TIMP1, TNC, C3 and CP were highly expressed in patients with DKD and were negatively
correlated with GFR (R=−0.87 and p=1.1e-07 for VCAN; R=−0.87 and p=1.2e-07 for TNC; R=−0.84 and p=8.9e-07 for C3;
R=−0.58 and p=6.3e-05 for CP; R=−0.85 and p=5.4e-07 for TIMP; Figure 7B, F, J, N, R, respectively).

Figure 3 DEGs in the bulk RNA-seq dataset and the identification of co-expressed lncRNA–mRNA pairs. (A) Volcano map showing DEGs in the GSE142025 dataset. Blue
dots represent downregulated genes and red dots represent upregulated genes. (B) Heatmap demonstrating DEGs in the GSE142025 dataset. (C) DEmiRNAs in the
GSE51674 dataset were plotted as volcano plots with different colors, including downregulated (blue) and upregulated (red) genes. (D) Heatmap illustrating DEmiRNAs in
the GSE51674 dataset. (E) Venn diagram showing that there were 35 intersected up-regulated DEGs in the scRNA-seq and bulk RNA-seq dataset. (F) Venn diagram showing
that there were 71 down-regulated DEGs overlapping in these two datasets. Candidate mRNAs (G) and lncRNAs (H) obtained by the intersection of predicted genes and
merged DEGs. (I) Co-expression mRNA–lncRNA pairs (R>0.6 and p<0.05) were selected by Pearson correlation. (*p<0.05; **p<0.01; the red color represents a positive
correlation between lncRNAs and mRNAs; the blue color indicates a negative correlation.).
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Serum creatinine (SCr) is used for the measurement of renal function. We found that all key biomarkers except CP
had positively correlation with SCr (R = 0.67 and p = 0.0032 in VCAN, R = 0.73 and p = 0.011 in TNC, R = 0.79, and
p = 0.00018 in C3, R = 0.58 and p = 0.015 in TIMP1) (Figure 7C, G, K, O, S).

The evaluation of proteinuria is used as an indicator for the progression of kidney disease. We found that the higher
the expression levels of VCAN and C3, the higher the degree of proteinuria would occur in patients with DKD (R = 0.78
and p = 0.0043 for VCAN; R = 0.54 and p = 0.085 for C3) (Figure 7D and L). However, there was not statistically
association detected for other gene markers (R = 0.31 and p = 0.35 for TNC; R = 0.23 and p = 0.49 for CP; R = 0.6 and
p = 0.053 for TIMP1) (Figure 7H, P, T).

Drug Prediction
The enrichment scores for CMap ranged from −1 to 1. A positive score indicated that a drug was positively associated
with disease progression, while a negative score indicated that a drug inhibited disease progression; a higher absolute
value indicated a higher correlation with disease. A list of processed differential gene probes was submitted to the CMap
database, and seven negatively correlated compounds with p < 0.01 were identified. Their two-dimensional (2D)
structures were obtained from ChemSpider (http://www.chemspider.com/), an open-access platform for chemical
research (Table 3).

Figure 4 Construction of a ceRNA network and the identification of hub genes. (A) The competitive endogenous RNA network contained 60 mRNAs (green circles), 10
miRNAs (red squares), and 5 lncRNAs (yellow circles). (B) Histogram depicting the subcellular locations of lncRNAs. (C) Bar graph demonstrating the functional enrichment
of mRNAs in the ceRNA network. (D) Protein–protein interaction (PPI) network composed of 15 mRNAs. (E) Hub genes obtained by the Molecular Complex Detection
(MCODE) algorithm.
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Discussion
In this study, we identified thirteen cell types in DKD kidney samples, thus indicating the heterogeneity and complexity
of kidney tissue. Using the Seurat package in R, we screened the DEGs in every cell type, and finally identified 511 up-
regulated genes and 698 down-regulated genes. Functional enrichment analysis further showed that these genes were
mainly enriched in the plasma membrane and extracellular matrix, and were primarily involved in the cell adhesion
biological process.

Previous studies have shown that cell adhesion plays a vital role in a number of pathological processes, including the
recirculation and movement of leukocytes,39 cell differentiation,40 and the activation of and communication between
immune cells.41 Furthermore, changes in the levels of adhesion molecules and cytokines have been detected in diabetic
nephropathy and reported to represent vital mediators of injury in several types of glomerulonephritis and tubulo-
interstitial nephritis, thus underscoring their diagnostic roles in this renal microvascular complication.42,43 A total of 77
DEGs, including 72 mRNAs and 5 lncRNAs, were shown to be associated with DKD and selected from the intersection
of scRNA-seq and bulk RNA-seq data and predicted genes. According to the ceRNA hypothesis, we selected co-
expressed lncRNA–mRNA pairs and lncRNAs that were located in the cytoplasm or cytosol of the cell. Finally, we
constructed a ceRNA network that featured 60 mRNAs, 5 lncRNAs and 10 miRNAs, thus providing us with

Figure 5 Expression profile of key biomarkers in the scRNA-seq data. Distribution diagram showing the expression profile of lncRNAs (A–E) and mRNAs (F–J) in the DKD
kidney scRNA-seq dataset. A Violin plot was used to illustrate the differential expression of lncRNAs (K–O) and mRNAs (P–T) in DKD and control groups in the scRNA-
seq data. (*p<0.05; **p<0.01; *** p<0.001, compared DKD and control group).
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a comprehensive understanding of molecular interactions in the lncRNA–miRNA–mRNA signaling pathways involved
in DKD. Our analysis identified TEX41, MSC-AS1, LINC00639, DRAIC and WT1-AS as the five key lncRNAs, thus
suggesting that these lncRNAs may be potential biomarkers for DKD. However, most previous studies have reported that
WT1-AS, MSC-AS1 and DRAIC predominantly exert carcinogenic effects on cell proliferation, apoptosis, migration,
and invasion in various cancers.44–46 No previous study has specifically investigated the role of TEX41 and LINC00639
in DKD.

PPI network and MCODE analysis further identified five key mRNAs (VCAN, TIMP1, CP, C3, TNC), thus indicating
that these mRNAs play vital roles in the progression of DKD. VCAN belongs to the extracellular matrix chondroitin sulphate
proteoglycan family. Previous studies have reported that VCAN is up-regulated in DKD and is associated with immune cell
injury in diabetic kidney tissue.47,48 TIMP1 is a pro-fibrotic protein that belongs to the TIMP family that exists in the
extracellular matrix and is involved in the inhibition of degradation in the extracellular matrix and the promotion of cell
proliferation.49 Animal experiments have shown that TIMP-1 promotes fibrotic progression in renal tubular cells by exerting
toxic effects;50 however, the potential association between TIMP1 and DKD has yet to be elucidated. Ceruloplasmin (CP) is
a pro-oxidant in conditions of severe oxidative stress; increased levels of CP have been detected in the urinary exosomes of
patients with diabetic nephropathy.51 Another longitudinal observational study showed that CP is an independent predictor for
the progression of diabetic nephropathy in patients with type 2 diabetes.52 Other studies have shown that complement C3 can
cause fibrosis and renal dysfunction in podocytes and renal tubular cells in animal models of DKD.53 Moreover, patients with
a greater degree of C3 deposition in the kidney are associated with worse clinical endpoints.54 In our previous study, we also
demonstrated that C3 was expressed at high levels in DKD cases and associated with M2 macrophages during immune cell
infiltration in DKD kidney tissue.55 Clinical research reported that tenascin-C (TNC) can be used as a prognostic indicator to

Figure 6 The expression profiles of hub genes in the bulk RNA-seq dataset and validation in an external and independent dataset. Differential expression of key lncRNAs
(A) and mRNAs (B) in the disease and control groups of the bulk RNA-seq data (GSE142025). In the external independent dataset GSE96804, violin plots were used to
demonstrate the differential expression of key lncRNAs (C) and mRNAs (D) in the DKD and control groups. The receiver operating characteristic curve of key lncRNAs (E)
and mRNAs (F) in the GSE142025 dataset. Performance of the key lncRNAs (G) and mRNAs (H) in the GSE96804 dataset, as reflected by their receiver operating
characteristic curves. (**p<0.01; ***p<0.001, compared DKD and control group).
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Figure 7 Correlation between key genes and clinical features. Based on a clinical database, we used violin plots to demonstrate differential expression profiles of VCAN (A),
TNC (E), C3 (I), CP (M), and TIMP1 (Q) in normal subjects and patients with diabetic kidney disease. Scatter diagram showing that the levels of VCAN (B), TNC (F), C3
(J), CP (N), TIMP1 (R) were negatively associated with the levels of GFR. The association between serum creatinine and the expression of VCAN (C), TNC (G), C3 (K), CP
(O), and TIMP1 (S). The relationships of proteinuria and the expression of VCAN (D), TNC (H), C3 (L), CP (P), and TIMP1 (T) are displayed by scatter diagrams.
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Table 3 Perturbation Analysis of Therapeutic Molecular Compounds (p<0.01)

Name Enrichment Score p-value 2D Structure

Ikarugamycin −0.945 0.00028

Thapsigargin −0.933 0.0005

MG-262 −0.928 0.00062

Ciclopirox −0.907 0.0001

Cyclobenzaprine −0.893 0.00026

Puromycin −0.874 0.00054

(Continued)
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predict the development of microalbuminuria in patients with DKD.56 Mechanistic studies further suggested that TNC can
promote the development and progression of DKD by interfering with the TNC/TLR4/NF-κB p65/miR-155-5p pathway.57

Furthermore, we investigated the expression profiles of these biomarkers using scRNA-seq and found that most of the
hub genes (VCAN, C3, CP and TIMP1) were highly expressed in fibroblast cells; this was consistent with a previous
bulk RNA-seq study, which reported that fibroblasts were expressed at significantly higher levels in patients with
advanced DKD and negatively associated with GFR.21 Interestingly, various types of renal tubular cells, such as proximal
straight tubule cell, parietal epithelial cell, and collecting duct type A intercalated cell, have been shown to express high
levels of biomarkers, thus indicating that the proximal tubule may be particularly susceptible to kidney injury under
hyperglycemic conditions and could represent a novel therapeutic target for DKD.58

Finally, we investigated potential therapeutic molecular components for DKD and identified seven predicted drugs.
Of these, thapsigargin can activate store-operated Ca2+ channels to reduce the expression of fibronectin protein and
collagen IV mRNA in human mesangial cells with DKD, and further down-regulate high glucose- and TGF-
β1-stimulated matrix protein expression.59 Another study found that disulfiram suppressed the production and develop-
ment of inflammation, fibrosis and cellular pyroptosis in proximal renal tubular epithelial cells, both in vitro and
in vivo.60 However, there is a clear need for DKD to identify and investigate other drugs.

Conclusion
In summary, we constructed a novel lncRNA–miRNA–mRNA ceRNA network for DKD by integrating scRNA-seq and
bulk RNA-seq data analysis. Enrichment analysis showed that most of the targets in the ceRNA network were in
extracellular matrix and correlated with inflammatory mechanism in DKD. Furthermore, five key biomarkers (VCAN,
TIMP1, TNC, C3 and CP) were identified in fibroblasts and renal tubular cells, and have relationshipswith glomerular
filtration rate, serum creatinine, and proteinuria in patients with DKD.
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