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Purpose: In order to prepare a biomimetic nano-carrier which has inflammatory chemotaxis, homologous targeting and reduce
immune clearance, for targeted chemotherapy of osteosarcoma, we fabricated the paclitaxel-loaded poly(lactic-co-glycolic) acid
(PLGA) nanoparticles coated with 143B-RAW hybrid membrane (PTX-PLGA@[143B-RAW] NPs) and evaluate its anti-cancer
efficacy in vitro and vivo.
Methods: PTX-PLGA@[143B-RAW] NPs were prepared by the ultrasonic method and were characterized by size, zeta potential,
polymer dispersion index (PDI), Coomassie bright blue staining, transmission electron microscopy (TEM) and high performance
liquid chromatography (HPLC). Cellular uptake, cell viability assay, flow cytometry and chemotactic effect of PTX-PLGA@[143B-
RAW] NPs were evaluated in vitro. Biodistribution, anti-cancer therapeutic efficacy and safety of PTX-PLGA@[143B-RAW] NPs
were evaluated in 143B osteosarcoma xenograft mice.
Results: The hybrid membrane successfully coated onto the surface of PLGA nanoparticles. PTX-PLGA@[143B-RAW] NPs had
a drug loading capacity of 4.24 ± 0.02% and showed targeting ability to osteosarcoma. PTX-PLGA@[143B-RAW] NPs showed high
cellular uptake and improved anti-cancer efficacy against 143B cells. More importantly, PTX-PLGA@[143B-RAW] NPs treatment
suppressed tumor growth in tumor-bearing mice with minimal damage to normal tissues.
Conclusion: PTX-PLGA@[143B-RAW] NPs could be used for targeted drug delivery and osteosarcoma therapy.
Keywords: biomimetic nano-drug delivery system, osteosarcoma, paclitaxel, targeted therapy

Introduction
Osteosarcoma is a primary malignant tumor of the bone, which spreads in blood and is highly metastatic and have high
risk of relapse.1 With the development of neoadjuvant chemotherapy and surgical techniques, amputation therapy, the
treatment osteosarcoma has been gradually replaced by chemotherapy for limb salvage therapy.2 However, the high local
aggressiveness and the potential for rapid metastasis present challenges for the treatment of osteosarcoma. For patients
with osteosarcoma who are not suitable for surgical resection, stereotactic radiotherapy, radiofrequency ablation, or
cryotherapy may be an alternative,3 but it still lacks an effective way for osteosarcoma targeting therapy.

In recent years, nano-drug delivery systems have been extensively studied in tumor targeting therapy because of their
potential to enhance and maintain the clinical efficacy of chemotherapeutic drugs with low side effects. However, it still
has drawbacks, such as being removed by the reticulo-endothelial system (RES) and low diffusion efficiency to tumor
cells.4,5 It has been found that the surface properties of nanoparticles can be easily modified with membranes from
different types of cells or biological vesicles to improve their biocompatibility and targeting efficiency. Membrane-coated
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nanomedicines can effectively avoid the surveillance of the immune system, prolong the blood circulation of drug, and
increase the drug accumulation in the tumor or inflammatory sites. For example, CD47 is a special protein with immune
escape signals, which is highly expressed on the membrane surface of red blood cells (RBCs).6 Nanoparticle coating with
the RBC membrane can avoid being recognized by immune cells.7 Therefore, cell membrane-based nanoplatforms have
a promising clinical application prospect for tumor therapy.8

The tumor microenvironment (TME) of osteosarcoma comprises various types of stromal cells, which secrete humoral
factors such as inflammatory cytokines to establish an inflammatory environment.9 As an important immune cell and antigen
presenting cell, tumor-associated macrophage (TAM), as the largest immune cell in TME, can internalize large particles, such
as fragments, apoptotic cells and pathogens, to maintain homeostasis in human body.10 Due to its ability to respond to
cytokine signals released by inflammatory cells, it has inflammatory chemotaxis.11 Therefore, macrophages not only have
a high degree of infiltration in the tumor, but also can specifically bind to the tumor tissue. Macrophage membranes have also
been further developed for use in cancer therapy. In addition, it has been reported that nanoparticles coated with macrophage
cell membranes generally have more prolonged blood circulation, significantly improving tumor therapy.12,13

Cell membranes extracted from tumor cells can express “self-markers” and “self-identifying molecules” that can be
used to coat various nanoparticles and provide homologous targeting.14 In addition, tumor membrane-coated nanopar-
ticles showed binding ability and selective uptake in homologous tumor cells, resulting in reduced immune clearance
after systematic administration compared with uncoated nanoparticles.15 The unique biological functions displayed by
tumor cell membranes have tremendous clinical potential for enhanced drug delivery, local light therapy, enhanced
imaging, or more effective immunotherapy. Hybrid membrane combine the advantages of multiple cell membranes. The
research showed that the targeting ability of hybrid membrane coated nanoparticles was enhanced and the circulation
time is prolonged due to the tumor cell membrane and erythrocyte membrane fusion.16

In this study, we prepared PLGA nanoparticles coated with hybrid membrane from the osteosarcoma cell membrane
and macrophage cell membrane as PLGA@[143B-RAW] NPs loaded with paclitaxel (PTX) for targeted chemotherapy of
osteosarcoma (Figure 1A).

Method
Materials
PTX was purchased from Shanghai Yuanye Bio-Technology Corporation. PLGA was purchased from Sigma-Aldrich,
USA. Polyvinyl alcohol was obtained from Aladdin Industrial Corporation, USA. Acetone was obtained from Sinopharm
Group, China. Acetonitrile and methanol (HPLC grade) were purchased from Tedia Company, USA. All other chemicals
and reagents employed in this study were of analytical grade.

Cell Culture
The human osteosarcoma cell line 143B was obtained from the Cell Bank of the Beina Chuanglian Company (BNCC,
Beijing, China). 143B cells were maintained in RPMI 1640 (Thermo Fisher Scientific, USA) supplemented with 10%
FBS (fetal bovine serum, Thermo Fisher Scientific, USA) and 1% penicillin-streptomycin (Thermo Fisher Scientific,
USA). Mice monocyte-macrophage cell line RAW264.7 was also obtained from the Cell Bank of the Beina Chuanglian
Company (BNCC, Beijing, China). DMEM (Thermo Fisher Scientific, USA) supplemented with 10% FBS (fetal bovine
serum, Thermo Fisher Scientific, USA) and 1% penicillin-streptomycin (Thermo Fisher Scientific, USA) was used to
culture macrophages. The passage number of 143B and RAW264.7 are both 4–5. Endothelial cell line HUVEC was
obtained from American Type Culture Collection (ATCC, USA). And the culture medium was the same as that of
RAW264.7 cell. All types of cells were cultured at 37°C with 5% CO2.

Cell Membrane Extraction
Isolation buffer 1 (IB-1) and isolation buffer 2 (IB-2) were prepared according to the protocol.17 143B cells were trypsinized
for 1 min by trypsin (NCM Biotech, China) according to the product introduction. And RAW264.7 cells were blowing down
from culture dish by pipette according to the cell product introduction. Both types of cells were centrifuged and suspended in
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Figure 1 Preparation and characterization of PLGA@[143B-RAW] NPs. (A) Preparation of paclitaxel (PTX)-loaded PLGA nanoparticles with 143B-RAW hybrid membrane coating
(PTX-PLGA@[143B-RAW]NPs). (B) Membrane extraction process by gradient centrifugation. (C) The particle size and zeta potential of PLGA nanoparticles. (D) The particle size of
the membrane-coated nanoparticles prepared by the two methods. (I) co-extrusion; (II) ultrasonication. (E) TEM images of (I) bare nanoparticles and (II) hybrid membrane coated
nanoparticles. (F) Protein distribution of cell membrane. (I) PLGAnanoparticles; (II) 143B cell membrane; (III) RAW264.7 cell membrane; (IV)Hybridmembrane; (V) PLGA@143BNPs;
(VI) PLGA@RAW NPs; (VII) PLGA@[143B-RAW] NPs. (G) Comparison of protein distribution of cell membrane coated nanoparticles prepared by different methods. (I) PLGA
nanoparticles; (II) PLGA@143BNPsby co-extrusion; (III) PLGA@RAWNPs by co-extrusion; (IV) PLGA@[143B-RAW]NPsby co-extrusion; (V) PLGA@143BNPsby ultrasonication;
(VI) PLGA@RAWNPs by ultrasonication; (VII) PLGA@[143B-RAW]NPs by ultrasonication. (H) Average size of membrane coated nanoparticles over 8 days in PBS. (I) PLGA@143B
NPs; (II) PLGA@RAWNPs; (III) PLGA@[143B-RAW] NPs. (I) Western blot analysis of cell membrane proteins. (I) PLGA nanoparticles; (II) 143B cell membrane; (III) RAW264.7 cell
membrane; (IV) Hybrid membrane; (V) PLGA@143B NPs; (VI) PLGA@RAW NPs; (VII) PLGA@[143B-RAW] NPs. Characteristic 143B membrane marker was MMP-2, and
characteristic RAW264.7 membrane marker was integrin α4. (Na+-K+-ATPase was used as a reference protein) (J) PTX release from (I) PLGA NPs at pH 7.4; (II) PLGA@[143B-
RAW] NPs at pH 7.4; (III) PLGA NPs at pH 5.3; (IV) PLGA@[143B-RAW] NPs at pH 5.3.
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an appropriate amount of cold separation buffer IB-1 at 4 °C, and a protease inhibitors cocktail (NCM Biotech, China) was
added. Then, the samples were ultrasonically crushed with an ultrasonic cell crushing machine (100 W, 20s/30s) for 14
minutes, and the mixture was centrifuged at 800 × g at 4°C for 10 minutes to remove the unbroken cells and nuclei. The
supernatant was centrifuged at 10,000 × g at 4°C for 10 min and the mitochondria were removed by discarding particles. The
supernatant of 100,000 × g was ultracentrifuged at 4°C for 1 hour to obtain membrane precipitation. Finally, it was suspended
in 500 μL IB-2, lyophilized and stored at −80°C for later use.

Preparation and Characterization of PTX-PLGA@[143B-RAW] NPs
The nanoparticle was prepared by nano-precipitation method.18 A proper amount of PLGA and PTX were dissolved in
a small amount of acetone with a mass ratio of 10:1 to form the organic phase, and a certain amount of polyvinyl alcohol
(PVA) was dissolved in water to prepare 0.25% PVA solution to form the aqueous phase. The organic phase was slowly
injected into the water phase under stirring (1200 r/min), and the volume ratio of the organic phase to the water phase
was 1:10. The liquid was transferred to a 10 kDA ultrafiltration centrifuge tube and centrifuged at 2500 × g for 30
minutes to remove PVA and some water-soluble small molecular impurities. The precipitation of nanoparticles was
resuspended into pure water or PBS to obtain PLGA-PTX nanoparticles with blue opalescence, which was stored at 4°C
for future use.

PTX-PLGA@[143B-RAW] NPs were prepared by co-extrusion. The solution of 143B cell membrane was added to
the solution of RAW264.7 cell membrane, of which the membrane protein concentration ratio was 1:1. The hybrid
membrane was obtained by extruding over 400 nm polycarbonate membrane 21 times at 37°C. PLGA-PTX nanoparticles
were added to the hybrid membrane solution and coextruded over the 400 nm polycarbonate membrane for 21 times to
obtain PTX-PLGA@[143B-RAW] NPs, and then stored at 4°C. Meanwhile, the above method was used to prepare PTX-
loaded PLGA NPs coated with 143B membrane (PTX-PLGA@143B NPs) and PTX-loaded PLGA NPs coated with
RAW264.7 membrane (PTX-PLGA@RAW NPs).

PTX-PLGA@[143B-RAW] NPs were prepared by ultrasonic method. The solution of 143B cell membrane was
added to the solution of RAW264.7 cell membrane with ultrasonic treatment at 37°C for 10 minutes, of which the
membrane protein concentration ratio was 1:1. Then PLGA-PTX nanoparticles were added to the hybrid membrane
solution, with ultrasonic treatment at 37°C for 2 minutes to coat hybrid membrane on the surface of the nanoparticles.
The mixed solution was centrifuged at 10,000 × g for 5 minutes to remove the excess membrane, and PTX-PLGA@
[143B-RAW] NPs, was obtained, stored at 4°C for reserve. The above ultrasonic method was also used to prepare PTX-
PLGA@143B NPs and PTX-PLGA@RAW NPs.

The particle size and zeta potential of the nanoparticles coated by the hybrid film were measured by the Dynamic
Light Scattering (DLS). The morphology of the nanoparticles in the hybrid film was investigated by transmission electron
microscopy (TEM, 2100F, JEOL Ltd., Japan). Finally, the membrane proteins were investigated by polyacrylamide gel
electrophoresis (SDS-PAGE) (Bosterbio, USA) with 5% stacking gel and 12% separating gel and Coomassie brilliant
blue (Beyotime Biotech Corporation, Shanghai, China) was used to stain in order to observe the protein distribution.
Specific protein markers were verified by Western blot analysis and Na+-K+-ATPase (Abcam, USA) was used as
a reference protein. After transferring the proteins to a nitrocellulose membrane, the membranes were probed with
antibodies against matrix metalloproteinase 2 (MMP-2) (EPR1184; Abcam, USA) and integrin alpha-4 (EPR1355Y;
Abcam, USA). Anti-rabbit IgG (ZB-5301; ZSGB-BIO, China) were conjugated with horseradish peroxidase for signal
visualization.

The Release of PTX-PLGA@[143B-RAW] NPs
Tumor microenvironment is an acidic environment with pH about to 5.3. To simulate physiological pH or tumor
microenvironment, drug release was conducted using phosphate buffered saline (PBS) solutions containing 0.5%
Tween-20 at pH 7.4 and 5.3, respectively. In short, free PTX, PLGA-PTX, PTX-PLGA@[143B-RAW] NPs 500 μL
were added to the upper chamber of each ultrafiltration tube (10 kDa), and corresponding release buffer was added to the
lower chamber to meet the leakage tank conditions (Vup /V down>3). The ultrafiltration tube was placed in a constant
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temperature water bath at 37°C. The concentration of PTX was measured by HPLC with a certain amount of lower
chamber liquid at a fixed time point, and fresh PBS was added after sampling.

Cell Uptake Assay
PLGA nanoparticles were labeled with Dil dye (Yeasen Biotech Corporation, Shanghai, China). The 143B tumor cells
were inoculated in 24-well plates. The cells were cultured overnight in a cell incubator for adherent treatment. The four
groups PLGA NPs, PLGA@143B NPs, PLGA@RAW NPs and PLGA@[143B-RAW] NPs with Dil labeled were added
to each well, respectively, and incubated in the cell incubator for specific time. After reaching the expected time point,
DAPI staining (Yuheng Biotechnology Corporation, Suzhou, China) was performed according to the instructions, and
then observed under a fluorescence microscope.

Cell Viability Assay
143B cells were evenly planted on a 96-well cell culture plate at a density of 5×104 cells per well. After growing for 24 h,
PLGA-PTX NPs, PTX-PLGA@143B NPs, PTX-PLGA@RAW NPs and PTX-PLGA@[143B-RAW] NPs were added to
the 96-well plate, respectively, according to the concentration gradient and incubated for 48 h. The cellular viability was
determined using MTS Cell Proliferation Colorimetric Assay (Promega, USA) by measuring the absorbance at 490 nm
using a Multiskan FC (Thermo Fisher Scientific, USA). Experiments were repeated three times, and the data are
representative of three experiments. And the IC50 values of 143B in each preparation group were calculated and
compared.

Apoptosis Assay
For investigation of the induction of apoptosis, 143B cells were treated with PLGA-PTX NPs, PTX-PLGA@143B NPs,
PTX-PLGA@RAW NPs and PTX-PLGA@[143B-RAW] NPs, respectively. After incubated 48h, cells were then stained
by Annexin V-FITC/PI (BD Pharmingen) according to the instructions of the product. The percentage of the apoptotic
cells was analyzed using flow cytometry (BD Biosciences).

Chemotaxis Experiment
HUVEC cells were planted on 24-well plates at a cell density of 5000 cells per well and incubated for 24 hours. After
that, these cells were stimulated with 3 ng/mL TNF-α for 8 h while those cells that were not stimulated by TNF-α were
used as controls. Then HUVEC cells were added with equal amounts of PLGA NPs, PLGA@143B NPs, PLGA@RAW
NPs and PLGA@[143B-RAW] NPs with Dil staining and incubated at 37°C for 2 hours. After reaching the expected
time point, DAPI staining was performed according to the instructions. The fluorescent intensity of groups was observed
with a fluorescence microscope. Fluorescence intensity was analyzed with Image J and bar charts were drawn for
comparison.

In vivo Biodistribution
To study the biodistribution of PLGA@[143B-RAW] NPs, a xenograft tumor model was established by subcutaneous
injection of 1×107 143B cells into the right flank region of male BALB/c nude mice. Briefly, 1 mg PLGA nanoparticles
were labeled by 16 μg DiR dye (1 mg/mL, Yeasen Biotech Corporation, Shanghai, China), unbounded DiR dye was
removed by ultrafiltration. When the tumors reached about 200 mm3, mice were randomly divided into five groups with
the different treatment of free DiR, DiR labeled PLGA NPs, PLGA@RAW NPs, PLGA@143B NPs and PLGA@[143B-
RAW] NPs via tail vein injection, respectively. Biofluorescence images were obtained with the help of an FX PRO
in vivo imaging system (Bruker, Germany) at 24 h after treatment, then mice were euthanized, and the major organs and
tumors were excised and immediately imaged to obtain ex vivo images.

In vivo Anti-Tumor Study
All animal studies were approved by the Institutional Animal Care and Use Committee (IACUC), The Second Xiangya
Hospital, Central South University and all animals were treated following the IACUC approved procedures. Animals
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were obtained from HUNAN SJA LABORATORY ANIMAL CO., LTD and housed according to the regulations of the
IACUC. Tumor-bearing mice were generated by injecting 1×107 143B cells subcutaneously into the right flank region of
male BALB/c nude mice (6 weeks). After the tumor volume reached approximately 100 mm3, PBS, free PTX (5 mg/kg),
PLGA-PTX NPs (5 mg/kg PTX), PTX-PLGA@143B NPs (5 mg/kg PTX), PTX-PLGA@RAW NPs (5 mg/kg PTX) and
PTX-PLGA@[143B-RAW] NPs (5 mg/kg PTX) were administrated through tail vein injection for four times with an
interval of 2 days. Tumor volume and mice weight were measured every day for 8 days from the first administration. The
mice were sacrificed on the second day of the last dose, blood samples, major organs and tumors were collected.
According to the manufacturer’s instructions, plasma levels of alanine aminotransferase (ALT), aspartate aminotransfer-
ase (AST), blood urea nitrogen (BUN) and creatinine (Cr) were measured using assay kits (Huili Biotech, China). For
histopathological assessment, tumors and major organs were weighed and fixed in 4% paraformaldehyde (PFA) and then
stained with haematoxylin and eosin (H&E). Tumors were also stained with terminal deoxynucleotidyl transferase-
mediated dUTP nick end-labeling (TUNEL). The stained tissue sections were visualized by a microscope
(OlympusIX51).

Statistical Analysis
Data were presented as mean values ± SD. T-Test and Two-way analysis of variance (ANOVA) were performed at the
significance level α = 0.05.

Results
Characterization of PTX-PLGA@[143B-RAW] NPs
Gradient centrifugation was used to extract the cell membrane of 143B and RAW264.7, respectively. As the extraction
process is shown in Figure 1B, the precipitation was removed successively. The supernatant containing the cell
membrane presented milky white. The cell membrane precipitate was obtained by ultracentrifugation, closely attached
to the bottom of the centrifugal tube. After membrane precipitate resuspended by special buffer IB-2, the protein
concentration of cell membrane was quantified by bicinchoninic acid (BCA) and cell membrane was stored at −80°C
after lyophilization.

PLGA nanoparticles were prepared by nano-precipitation method. Their particle size and potential were characterized
by DLS (Figure 1C), which was 132.73±0.61 nm and −24.60±1.32 mV, respectively. The encapsulated efficiency of
PLGA-PTX was 64.86±0.17%, while drug loading was 4.24%±0.02, shown in Table S1.

The hybrid membrane requires the fusion of two different cell membranes. At present, there are two methods of
extracting hybrid membranes from cells. One is to fuse the two cells and then perform membrane extraction (first fusion
and then membrane extraction), and the other is to extract and fuse each cell membrane (first membrane extraction and
then fusion).19 Studies had shown that using the first method to prepare hybrid membrane, new membrane proteins were
obtained compared with the membrane protein of the original cell.20 In the latter method, different membranes were
fused by ultrasonic treatment. It showed that the composition of the hybrid membrane and the original membrane
remained the same, which was easier to control. Therefore, 143B cell membrane was fused with RAW264.7 cell
membrane by the latter method, with ultrasonic treatment promoting their fusion. The membrane proteins were
characterized by Coomassie bright blue (Figure 1F). The protein distribution of 143B-RAW overlapped with 143B cell
membrane and RAW264.7 cell membrane, respectively, demonstrating the successful fusion of the two cell membranes.

To form the biomimetic nanoparticles, the hybrid membrane needs to cover the surface of core nanoparticles in
a specific way. At present, membrane extrusion and ultrasonic treatment are the two most used methods according to
research.21 We prepared PLGA@ [143B-RAW] NPs by the two methods, respectively, and characterized their particle
size, zeta potential and protein distribution. The size and potential of nanoparticles prepared by the two methods were
compared in Table S2. The size of nanoparticles prepared by the ultrasonic method was smaller than that by the co-
extrusion method. In addition, the size of nanoparticles encapsulated by the three membranes prepared by the co-
extrusion method had a significant difference. In comparison, the size range of nanoparticles encapsulated by the three
membranes prepared by the ultrasonic method remained consistent (Figure 1D), indicating that the ultrasonic method
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may be better and repeatable. The morphology of PLGA nanoparticles and PLGA@ [143B-RAW] NPs was observed by
TEM. PLGA nanoparticles were a white spherical shape, while PLGA@ [143B-RAW] NPs displayed an obvious core-
shell structure, indicating that PLGA nanoparticles were successfully coated by the hybrid membrane (Figure 1E). The
result of Coomassie brilliant blue staining showed that PLGA nanoparticles had no bands, indicating that they did not
carry any proteins. It also showed that the protein content in the cell membrane suspension was higher than that of the
membrane coated nanoparticles, which meant a slight loss of membrane proteins during the preparation process, but most
of the membrane proteins were still retained. The hybrid membrane and the nanoparticles covered by the hybrid
membrane overlap with the first two bands, indicating they had proteins from two different cell membranes
(Figure 1F). To analyze specific protein markers in the two cell membrane materials, Western blotting analysis was
performed (Figure 1I). The MMP-2 was a invasion-associated protein and was a tumor target, with high expression in
osteosarcoma.22,23 Stronger signals for MMP-2 was observed on the 143B membrane, 143B-RAW hybrid membrane,
PLGA@143B NPs and PLGA@ [143B-RAW] NPs. The specific marker, integrin α4, was expressed on the RAW264.7
membrane, 143B-RAW hybrid membrane, PLGA@RAW NPs and PLGA@ [143B-RAW] NPs.

To compare the effects of the co-extrusion method and ultrasonic method on membrane proteins, the protein content
of membrane-coated nanoparticles prepared by the two methods was compared. The results showed that the bands of
membrane-coated nanoparticles prepared by the ultrasonic method were darker, indicating higher protein content
(Figure 1G). Therefore, the ultrasonic method was selected as the following preparation method so that the loss of
membrane protein was less than that of the co-extrusion method.

In order to investigate the stability of the membrane-coated nanoparticles prepared by ultrasonic method, the particle
size of the membrane-coated nanoparticles prepared by this method in PBS was measured for 8 consecutive days.
Figure 1H shows that the particle size of the three kinds of nanoparticles was stable at about 220 nm, with no significant
change, indicating that the nanoparticles prepared by this method are relatively stable.

PTX release from PTX-PLGA@ [143B-RAW] NPs and PLGA-PTX NPs in different pH environments (pH 5.3 and
7.4) was analyzed (Figure 1J). The membrane coating does not change the release behavior of PTX from the PLGA
which consists of burst release period and plateau release period. And the PTX release is a controlled slow release. It was
found that PTX release was pH-dependent, and the cumulative release rate of PTX increased at a low pH condition as
time going on. In the environment of pH 5.3, PTX of PTX-PLGA@[143B-RAW] NPs was released about 90% within 72
h, before which the release curve reached a plateau. And it was released about 70% in the environment of pH 7.4.
Regarding the release rate of PTX-PLGA@[143B-RAW] NPs at pH 7.4 and 5.3 are relatively faster than others, it
requires further research.

The Cellular Uptake of PLGA@[143B-RAW] NPs by 143B Cells in vitro
Fluorescence co-localization was used to observe the uptake of PLGA@[143B-RAW] NPs by 143B cells (Figure 2A).
The result showed that PLGA nanoparticles were almost not taken up by 143B cells, while PLGA@143B NPs and
PLGA@[143B-RAW] NPs were more taken up by 143B cells. The uptake of PLGA@RAW NPs was less.

Semi-quantitative analysis of the fluorescence intensity showed that the fluorescence intensity of PLGA@143B NPs
and PLGA@[143B-RAW] NPs group was almost the same (Figure 2C), indicating that the increased uptake rate was
mainly related to the modification of 143B cell membrane. The fluorescence intensity of PLGA@RAW NPs was
significantly weaker than that of PLGA@143B NPs and PLGA@[143B-RAW] NPs, indicating the uptake of macrophage
membrane-modified nanoparticles by tumor cells was significantly lower than that of tumor membrane-modified
nanoparticles. To sum up, it was proved that the tumor cell membrane has homologous targeting. The fluorescence
intensity of PLGA nanoparticles without membrane modification was the lowest, indicating that they were hardly taken
up by tumor cells within one hour.

The uptake of PLGA@[143B-RAW] NPs by 143B cells at different times was investigated (Figure 2B). The result
showed that the uptake of PLGA@[143B-RAW] NPs by 143B cells increased with time going by. Through the
fluorescence semi-quantitative analysis, PLGA@ [143B-RAW] NPs had the higher fluorescence intensity when incubat-
ing with 143B cells longer, indicating that the uptake of PLGA@[143B-RAW] NPs by 143B cells was time-dependent
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Figure 2 The uptake of PLGA@[143B-RAW] NPs. (A) 143B cells uptake of different nanoparticles. (B) 143B cells uptake of PLGA@[143B-RAW] NPs at different times.
Nucleus was labeled by DAPI (Blue). PLGA NPs was labeled by Dil (Red). (C) Semi-quantitative analysis of 143B cells uptake of Dil stained nanoparticles. (D) Semi-
quantitative analysis of 143B cells uptake of PLGA@[143B-RAW] NPs at different times. (I) PLGA NPs; (II) PLGA@143B NPs; (III) PLGA@RAW NPs; (IV) PLGA@[143B-
RAW] NPs. Scale bar=50 μm. Each point represents the mean ± SD, ****P < 0.0001.
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(Figure 2D). After 4 hours, the increased fluorescence intensity rate slowed down, indicating that the uptake rate of
PLGA@[143B-RAW] NPs gradually slowed down and reached saturation.

Anti-Tumor Effect of PTX-PLGA@[143B-RAW] NPs on Osteosarcoma Cells
The anti-tumor effect of PTX-PLGA@[143B-RAW] NPs was investigated in vitro firstly (Figure 3A). It was found that
PLGA-PTX NPs had the weakest anti-tumor effect on 143B cells. The effect of PTX-PLGA@143B NPs was slightly
stronger than that of PLGA-PTX NPs at low concentration, but there was no significant difference at high concentration.
PTX-PLGA@RAW NPs and PTX-PLGA@[143B-RAW] NPs had stronger cytotoxicity on 143B cells. PTX-PLGA
@RAW NPs showed the anti-tumor effect to 143B cells at low concentrations, while the effect of PTX-PLGA@[143B-
RAW] NPs was the strongest at high concentrations. In general, the cytotoxic effect on osteosarcoma cells of PLGA
nanoparticles with membrane modified was significantly enhanced compared with the unmodified PLGA nanoparticles.

The ability of PTX-PLGA@[143B-RAW] NPs to induce apoptosis was investigated further (Figure 3B). It was found
that the percentages of apoptosis induced by PTX-PLGA@RAW NPs and PTX-PLGA@[143B-RAW] NPs were 14.59%
and 17.63%, respectively, which meant PTX-PLGA@[143B-RAW] NPs had the most potent ability to induce apoptosis
of 143B cells. And notably, PTX-PLGA@[143B-RAW] NPs and PTX-PLGA@RAW NPs significantly improved early
apoptosis rate compared to other group, which was 9.34% and 7.00% respectively. The apoptosis rate was 9.70% in PTX-
PLGA@143B NPs group and 9.71% in free PTX group, which accounted mainly for late phase. PLGA-PTX NPs had the
weakest apoptosis induction, and also the weakest early apoptosis rate (1.81%). The reason why the free PTX group has
a higher apoptosis-inducing rate than PLGA-PTX group may be that free PTX group can be taken up faster by tumor
cells in vitro, so as to act on cells faster.

Chemotactic Effect of PLGA@[143B-RAW] NPs on Inflammatory Environment
In tumor microenvironment and pre-metastatic niche, the endothelium was often activated by the inflammatory cytokine
and formed a inflammatory environment. To mimic the physical environment, HUVEC cells were stimulated with
inflammatory factor TNF-α. Using HUVEC cells without TNF-α stimulation as control, the chemotactic effect of each
group of nanoparticles on the inflammatory environment was investigated by fluorescence co-localization. As shown in
Figure 4A, PLGA@[143B-RAW] NPs had the most substantial chemotactic effect on the inflammatory environment,
followed by PLGA@RAW NPs. The chemotactic effect of PLGA@143B NPs on the inflammatory environment of
HUVEC cells was weak, and PLGA nanoparticles had almost no chemotactic effect on HUVEC cells. The results
showed that macrophage cell membrane could improve the chemotactic effect of nanoparticles on the inflammatory
environment. According to the results of fluorescence co-localization, the fluorescence of each group of nanoparticles
gathered around the cell. However, it did not enter the cell and surround the nucleus, indicating that the nanoparticles
only had a chemotactic effect on inflammatory HUVEC cells, but would not be taken up by them.

The fluorescence semi-quantitative results (Figure 4B) showed that for the PLGA@[143B-RAW] group and the
PLGA@RAW group, the fluorescence intensity of the group stimulated by inflammatory factors was higher than that of
the group without inflammatory factors stimulation, indicating that the nanoparticles modified by macrophage cell
membrane had a stronger chemokine for the inflammatory environment. The fluorescence intensity of PLGA@143B
NPs was not significantly affected by inflammatory factors, indicating that PLGA@143B NPs had no chemotactic effect
on the inflammatory environment. PLGA nanoparticles showed very weak chemotaxis to HUVEC cells in both
environments, with almost no chemotaxis. The result revealed that nanoparticles coating with macrophage membrane
were more tend to inflammatory sites than nanoparticles without macrophage membrane modification.

Biodistribution
The in vivo biodistribution of PLGA@[143B-RAW] NPs was observed using a live imaging system. Tumor-bearing mice
were administrated with free DiR, DiR labeled PLGA NPs, PLGA@RAW NPs, PLGA@143B NPs and PLGA@[143B-
RAW] NPs via tail vein injection and were imaged at 6 h, 10 h and 24 h after administration. As shown in Figure 5A,
similar to in vitro uptake experiments, free DiR and other four formulations accumulated in tumor in a time-dependent
way, and they were also detected in other tissues. Tumors and major organs were excised after live mice imaging. The
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Figure 3 The cytotoxicity of PTX-PLGA@[143B-RAW] NPs in vitro. (A) Effects of different preparations on the viability of 143B cells. (I) PLGA-PTX NPs; (II) PTX-PLGA
@143B NPs; (III) PTX-PLGA@RAW NPs; (IV) PTX-PLGA@[143B-RAW] NPs. (B) Apoptosis of 143B cells induced by different preparations. (I) Free PTX; (II) PLGA-PTX
NPs; (III) PTX-PLGA@143B NPs; (IV) PTX-PLGA@RAW NPs; (V) PTX-PLGA@[143B-RAW] NPs. Each point represents the mean ± SD, **P < 0.01.
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DiR labeled PLGA@143B NPs and PLGA@[143B-RAW] NPs could effectively reach the tumor site 24 h after
administration (Figure 5B), and the fluorescence intensity of the DiR labeled PLGA@[143B-RAW] NPs was obviously
higher than the DiR labeled PLGA@143B NPs (Figure 5C). In comparison, other formulations failed to reach the tumor
site effectively over 24 h.

In vivo Anti-Tumor Effects of PTX-PLGA@[143B-RAW] NPs
For the investigation of the in vivo anti-cancer therapeutic efficacy of PTX-PLGA@[143B-RAW] NPs on osteosar-
coma xenograft mice, mice were treated with different formulations intravenously four times with an interval of two
days. The tumor of mice receiving PBS grew very fast as control, and mice receiving PLGA-PTX NPs and PTX-

Figure 4 Chemotaxis of different nanoparticles on HUVEC cells. (A) The fluorescence co-localization of different preparations and HUVEC cells. The nucleus was labeled
by DAPI (Blue). PLGA NPs were labeled by Dil (Red). (B) Semi-quantitative analysis of chemotaxis of HUVEC cells by different nanoparticles. The inflammatory factor TNF-
α provided the inflammatory environment. (I) PLGA NPs; (II) PLGA@143B NPs; (III) PLGA@RAW NPs; (IV) PLGA@[143B-RAW] NPs. Scale bar=50 μm. Each point
represents the mean ± SD, ****P < 0.0001.
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PLGA@RAW NPs showed similar tumor growth to that of the PBS group (Figure 6A and B, Figure S1). PTX-PLGA
@143B NPs could suppress tumor growth to a certain extent, while free PTX or PTX-PLGA@[143B-RAW] NPs
exhibited a greater decrease of tumor volume than PTX-PLGA@143B NPs, and PTX-PLGA@[143B-RAW] NPs was
the most effective one. Excised tumors (Figure 6C) and tumor weight (Figure 6D) also confirmed the improved anti-
cancer efficacy of PTX-PLGA@[143B-RAW] NPs as compared to free PTX. Additionally, the H&E staining and
TUNEL immunohistochemistry showed clear cell death in the tumors of PTX-PLGA@[143B-RAW] NPs, PTX-PLGA
@143B NPs, PTX-PLGA@RAW NPs and PLGA-PTX NPs treated mice (Figure 7). Blank areas of the PTX-PLGA@
[143B-RAW] NPs group were the largest, with cell nuclear shrinkage, while the tumor cells in the PBS group were
still full.

Figure 5 In vivo biodistribution of PLGA@[143B-RAW] NPs. (A) In vivo biodistribution of different formulations intravenously administered to 143B xenograft mice at
different times. (B) Ex vivo images of major organs and tumors from 143B xenograft mice 24 h after intravenous injection of the five formulations. (C) Fluorescence intensity
of the five formulations at tumors and major organs 24 h after intravenous injection. (I) DIR; (II) PLGA NPs; (III) PLGA@RAW NPs; (IV) PLGA@143B NPs; (V) PLGA@
[143B-RAW] NPs.
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Safety Evaluation
To investigate the safety properties of PTX-PLGA@[143B-RAW] NPs, the change of mice body weight was recorded
and evaluated. The body weight of mice receiving free PTX exhibited a significant reduction during treatment (Figure 8A
and B). In contrast, the PTX-PLGA@[143B-RAW] NPs group did not occur significant body weight reduction during the
whole treatment period, indicating the potential safety of PTX-PLGA@[143B-RAW] NPs. To further confirm its safety,
the H&E staining immunohistochemistry of major organs was observed, which showed PTX group had the most damage
in the liver and kidney, with inflammatory cell infiltration (Figure 8C). Moreover, mice receiving PTX-PLGA@[143B-
RAW] NPs showed no negative effect on lung, heart, spleen and had slight injuries in the liver and kidney, but much less
than the PTX group, suggesting its protection for organs. Additionally, we analyzed the relative levels of ALT and AST
to reflect liver functions, and BUN and Cr to reflect renal functions. Briefly, the group with PTX treatment exhibited
significantly increased levels of all measures, suggesting its toxicity to liver and renal. However, there was no significant
difference between PTX-PLGA@[143B-RAW] NPs and PBS group in ALT, AST, BUN, and Cr levels, indicating PTX-
PLGA@[143B-RAW] NPs had little effect on the liver and kidney (Figure 8D–G).

Discussion
Nano-drug delivery system has attracted more and more attention in recent years. Niosomes are widely used in the
treatment of various diseases due to their unique advantages, such as outstanding stability and biocompatibility. For
example, the novel drug delivery vehicle obtained by hybridizing bio-synthetic selenium nanoparticles with niosomes not

Figure 6 Therapeutic efficacy of PTX-PLGA@[143B-RAW] NPs against 143B tumors. (A) Absolute and (B) relative 143B tumor growth in mice during the experimental
period. (C) Excised tumors at the end of experiments. (D) Tumor weight at the end of experiments. (I) PBS; (II) Free PTX; (III) PLGA-PTX NPs; (IV) PTX-PLGA@RAW
NPs; (V) PTX-PLGA@143B NPs; (VI) PTX-PLGA@[143B-RAW] NPs. N = 5, each point represents the mean ± SD, *P < 0.05, **P < 0.01.
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only had high biocompatibility, could significantly induce tumor cell apoptosis and necrosis, but also protected normal
cells from the toxic effects or other side effects of chemotherapy, thereby achieving the purpose of effective treating lung
cancer.24 In addition, bovine serum albumin (BSA)-coated niosomes could also effectively encapsulate genetic drugs
such as decoy oligodeoxynucleotides to inhibit the metastasis of glioblastoma multiforme, which could be a promising
approach for targeted gene delivery in cancer therapy.25 The PLGA nanoparticles coated with hybrid membrane from the

Figure 7 Histopathological confirmation of efficient therapeutic efficacy of PTX-PLGA@[143B-RAW] NPs against 143B tumor. H&E and TUNEL-stained tumors of mice after
treatment. (I) PBS; (II) Free PTX; (III) PLGA-PTX NPs; (IV) PTX-PLGA@RAW NPs; (V) PTX-PLGA@143B NPs; (VI) PTX-PLGA@[143B-RAW] NPs. Scale bar = 200 μm.
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Figure 8 Safety and biocompatibility evaluation of PTX-PLGA@[143B-RAW] NPs. (A) Absolute and (B) relative body weight change of tumor-bearing mice during the
experimental period, n = 5. (C) H&E-stained hearts, livers, spleens, lungs and kidneys of mice after treatment. Scale bar = 200 μm. Plasma levels of (D) ALT, (E) AST, (F)
BUN, (G) Cr in tumor-bearing mice two days after treatment for four times with an interval of two days, n = 5. (I) PBS; (II) Free PTX; (III) PLGA-PTX NPs; (IV) PTX-PLGA
@RAW NPs; (V) PTX-PLGA@143B NPs; (VI) PTX-PLGA@[143B-RAW] NPs. Each point represents the mean ± SD, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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osteosarcoma cell membrane and macrophage cell membrane also show high biocompatibility and high targeting ability
to osteosarcoma cells. In this study, we chose the human osteosarcoma cell line 143B and mice monocyte-macrophage
cell line RAW264.7. Although 143B and RAW 264.7 from different species, they both belong to eukaryotic cells and
have similarities in their membrane structure. They were used mostly in other related research and animal models. And
RAW264.7 could stably grow and passage and the proliferation rate of 143B cells was high, which were convenient for
cell culture and cell membrane extraction. In the present study, we successfully prepared PLGA@[143B-RAW] NPs to
load PTX, and the drug loading was approximately 4%. The method we used to construct PTX-PLGA@[143B-RAW]
NPs was the ultrasonic method.21 Compared with the co-extrusion method, the effect on protein content with the
ultrasonic method was more negligible, which may be because mechanical squeezing would squeeze the membrane
protein into fragments, thereby destroying the content and function of some membrane proteins. Therefore, the ultrasonic
method was selected for further experiments and may be suitable for clinical application. In the drug release study, PTX
released from PTX-PLGA@[143B-RAW] NPs was faster at 0–8 h, and then gradually slowed down. Compared with pH
7.4, PTX released faster under pH 5.3 because the acidic environment would cause the hydrolysis and degradation of the
polymer, and the solubility of PTX at low pH was increased, which may promote PTX released and diffused into the
surrounding medium faster.

For the cellular uptake assay, the uptake efficiency of PLGA@[143B-RAW] NPs and PLGA@143B NPs by
osteosarcoma cells in vitro was significantly greater than that of unmodified PLGA NPs and PLGA@RAW NPs,
suggesting that the targeting ability of PLGA@[143B-RAW] NPs to osteosarcoma cells mainly depended on the
modification of the 143B cell membrane, which may be related to the homologous targeting of the tumor cell
membrane.15 In addition, the cellular uptake of PLGA@[143B-RAW] NPs by osteosarcoma cells was time-
dependent, indicating that PLGA@[143B-RAW] NPs could continue to release PTX into osteosarcoma cells through
membrane fusion, thereby the accumulation of PTX in 143B cells increased, so as to achieve the purpose of killing
tumor cells.

PTX can polymerize tubulin into stable microtubules and induce the formation of stable microtubule bundles in the
G2/M phase, thereby promoting cell apoptosis.26 For the cell viability assay, we observed PTX-PLGA@[143B-RAW]
NPs significantly improved the apoptosis of 143B cells compared with free PTX and PLGA-PTX NPs, because it was
more taken up by osteosarcoma cells. Furthermore, compared with PTX-PLGA@RAW NPs and PTX-PLGA@[143B-
RAW] NPs, the anti-tumor effect of PTX-PLGA@143B NPs was reduced, which may be because the tumor cell
membrane carried a specific biomolecule that could inhibit tumor cell apoptosis or suppressed the anti-tumor effect of
PTX on osteosarcoma cells to a certain extent. The mechanism needs to be further studied.

Macrophages, one of the most abundant cells in tumor microenvironments, also have the tendency to inflammatory
sites.27 It was also reported that nanoparticles modified by macrophage membrane not only showed an immune escape
ability and prolonged blood circulation time, but also had the chemotaxis on inflammatory environments.28 In this study,
the chemotactic effect of PLGA@[143B-RAW] NPs on the inflammatory environment was also investigated. Compared
with PLGA@143B NPs, PLGA@[143B-RAW] NPs and PLGA@RAW NPs showed a more substantial chemotactic
effect on the inflammatory environment, which may be because inflammatory factor TNF-α could stimulate HUVEC
cells to express ICAM-1, which could induce the adhesion of macrophages,29,30 so that the macrophage membrane
coated nanocarriers could actively target the inflammatory sites, such as pre-metastatic niches and tumor sites.

In the biodistribution study, vigorous fluorescence intensity at liver, spleen and lung was detected, but there was
a decrease in intensity later, suggesting that all four formulations firstly reached the liver, spleen, and lungs. After
injection for 24 hours, we only observed fluorescence intensity at the tumor in PLGA@143B NPs and PLGA@[143B-
RAW] NPs groups, which was because tumor membrane express CD47, the “don’t eat me” signal, so that PLGA@143B
NPs and PLGA@[143B-RAW] NPs could escape from phagocytosis and arrived at tumor site gradually by CD47–SIRPα
binding.31 Collectively, hybrid membrane-modified nanoparticles have a prolonged circulation time, and can increase the
accumulation of PTX at the tumor site.

In the animal study, the five formulations were administered to mice at a dose of 5 mg/kg of PTX. We observed that
the tumor volume and tumor weight of mice receiving PTX-PLGA@[143B-RAW] NPs was the smallest, and the other
four groups had similar tumor weights, both higher than the hybrid membrane group. However, there was no significant
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difference between the free PTX and the PTX-PLGA@[143B-RAW] NPs, which may be because the actual drug loading
of the nanoparticles was not as high as theoretically, so that its actual dose was not as much as that of free PTX. And
a more considerable anticancer effect was feasible if higher PTX-PLGA@[143B-RAW] NPs were used. Although PTX-
PLGA@[143B-RAW] NPs can effectively kill osteosarcoma cells, their effect on normal cells is also important for its
clinical application. It is well known that PTX is toxic to tumor cells but also normal cells.32 In the safety evaluation, we
observed that the body weight of mice receiving free PTX decreased rapidly after the first administration, and then
dropped more later, while the body weight of the other groups did not change significantly. H&E staining of major organs
and biocompatibility evaluation further proved that free PTX would cause obvious damage to the liver and kidney of
mice, while the values of mice in the hybrid membrane group were all within the normal range. It may be because drugs
were metabolized by the liver and the accumulation of a large amount of drug hurts the liver, and PTX-PLGA@[143B-
RAW] NPs could reduce the uptake of PTX by other cells in normal tissues for its reduced toxicity. In conclusion, our
study demonstrated that PLGA@[143B-RAW] NPs are safe and efficient delivery vehicles for the delivery of PTX to
treat osteosarcoma.

Conclusion
In this study, PLGA@[143B-RAW] NPs were successfully prepared as biomimetic delivery platforms by coating hybrid
membrane onto PLGA NPs. In vitro experiments showed that PTX-PLGA@[143B-RAW] NPs could promote the uptake
of PTX by osteosarcoma cells, and induced apoptosis of osteosarcoma cells. It also had chemotactic effects on pre-
metastatic niches in inflammatory environments. PLGA@[143B-RAW] NPs exhibited superior targeting efficacy to the
tumor site. PTX-PLGA@[143B-RAW] NPs inhibited significantly the growth of tumor and also showed lower toxicity
than free PTX. This study provided a drug delivery strategy for targeted therapy of osteosarcoma.
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