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Abstract: Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The
etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain
polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects
of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to
pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress,
causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel
targets for the prevention and treatment of AMD and other age-related diseases.
Keywords: inflammation, long-chain polyunsaturated fatty acids, age-related macular degeneration

Introduction
Age-related macular degeneration (AMD) is a disease that damages the macular region of the retina and leads to
progressive loss of central vision, which is the leading cause of blindness in the elderly population.1 The overall
prevalence in Europe was 16.2% for AMD, and the number of global population with AMD will increase to 288 million
by 2040.2,3 AMD is not simply a “macular” disease, but involves the entire retina.4 With aging, retinal pigment
epithelium (RPE) cells lose the phagocytic and digestive ability at the outer membrane of the optic disc. The residual
bodies of the disc membrane remain and deposit on Bruch’s membrane, forming drusen and leading to macular
degeneration.5 Upon Bruch’s membrane rupture, choroidal capillaries migrate through the ruptured Bruch’s membrane
into the RPE and subcutaneous space of retinal nerve, forming choroidal neovascularization (CNV, Figure 1).6 Dry
AMD, also named non-neovascular, non-exudative or atrophic AMD, is characterized by the development of drusen,7

while wet AMD, also known as neovascular or exudative AMD, is characterized by CNV.8

It is well recognized that AMD is a multifactorial disease,9,10 including genetic predisposition,11 oxidative stress,12,13

neovascularization,14,15 inflammatory responses16 and remodeling processes of the retinal extracellular matrix.17 Rozing
et al proposed that the essence of AMD was a series of damages involved in aging and the consequently activated host
immune responses to damages.18 Low-grade inflammation is associated with many age-related complications including
AMD and neurodegeneration.19 Controlling low-grade inflammation can prevent or reduce age-related functional
decline.20 Pujol-Lereis et al stated that AMD resulted from three interrelated pathological processes, including inflam-
mation, autophagy dysfunction and chronic oxidative stress, which led to RPE degeneration, ultimately photoreceptor
cell death and vision loss.21 Under oxidative stress, the drusen are formed in the retina, activating the complement system
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to trigger chronic inflammation, and subsequently activate immune cells, such as macrophages.22 Invasive immune cells
facilitate pathology in the retina, resulting in impairment of photoreceptor cells and Bruch’s membrane integrity.23

Although the progressive course of AMD is increasingly known, current medical treatments are still limited.24–28 Intravitreal
injection of anti-vascular endothelial growth factor (VEGF) is currently the most widely used therapy,29,30 which still have many
disadvantages, such as the loss of visual acuity in long-term treatment,31 the potential increase in macular atrophy after long-term
usage,32 increased risk of complications,33 damage to ganglion cells and interfere with RPE function.34,35

Eye is one of the organs with high lipid content.36 Defects in essential fatty acid metabolism arise in many age-related
diseases, such as obesity, type 2 diabetes, hypertension, atherosclerosis, coronary heart disease, immune dysfunction, and
cancer.37–39 As an important component of retina, the metabolism of long-chain polyunsaturated fatty acids (LCUFCA) is

Figure 1 Composition of the retina and ocular neovascularization. Retinal vessels grow through the retinal nerve epithelium to form retinal neovascularization. The
choriocapillaris enter under the RPE through the ruptured Bruch’s membrane to form CNV.
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closely related to the function of retina.40 In recent years, the roles of inflammation and lipid metabolism in retinal
diseases have been highlighted.41–43 This review mainly focused on the regulation of inflammation by LCPUFA
metabolism to facilitate drug development and clinical research.

LCPUFA and AMD
The retina is one of the tissues with the highest lipid content in the human body.44 The rod outer segment of
photoreceptor cells consists of a light-sensitive disc containing proteins and lipids including phospholipids (90–95% of
total lipids) and cholesterol (4–6%).45 Among retinal phospholipids, LCPUFA account for approximately 45% of total
phospholipids, saturated fatty acids account for approximately 37%, and monounsaturated fatty acids account for
approximately 10%.45 The retinas of healthy older adults contain 16.7% ω-6 LCPUFA and 16.6% ω-3 LCPUFA.46

High concentration of LCPUFA maintains proper fluidity of cell membrane, which is the premise of effective visual
transduction and essential to the function of retina.47 Genomic analysis shows that variations in lipid metabolism
pathways are important contributors to early and late AMD,48 ω-3 and ω-6 LCPUFA, as well as their metabolites, are
associated with AMD pathogenesis and prognosis.49 Omega-3 LCPUFA include docosahexaenoic acid (DHA) and
eicosapentaenoic acid (EPA),50 while ω-6 LCPUFA include arachidonic acid (AA) and linoleic acid (LA).51 The
major ω-3 LCPUFA, DHA, comprises ∼20% of retinal weight,52 and the major ω-6 LCPUFA, AA, comprises ∼10%
of retinal weight.53

Omega-3 and ω-6 LCPUFA cannot be synthesized by human body itself, which must be obtained from diet.54 The
ratio of AA to DHA and EPA can be changed by oral administration of DHA and EPA.55 High LA intake is associated
with 49% increases in the risks of AMD, while high DHA intake is associated with 30% decreases.56 Most nutrition
guidelines recommend increased intake of food-based EPA, DHA and their precursors (250–1000 mg/day) to reduce the
prevalence of AMD.49 Many clinical studies show that the high intake of food-based ω-3 LCPUFA (100–800 mg DHA +
30–60 mg EPA/day) is associated with lower AMD incidence rate and less development.57–60

A large cohort study, which involved 38,022 Americans, showed that the incidence rate of AMD in population with
higher plasma concentration of ω-3 LCPUFA was 42% lower than that in patients with lower levels.60 The age-related
eye disease study (AREDS) suggests that bilateral drusen of those with higher intake of ω-3 LCPUFA are 30% less likely
to develop into geographic atrophy (GA) or CNV.61 A prospective control study based on 75,889 females and 38,961
males in the United States indicated that higher intakes of EPA and DHA prevented or delayed the occurrence of visually
significant intermediate AMD.7 Similar results were obtained in both European and Asian countries.62–65

However, AREDS2 reported conflicting results. Omega-3 LCPUFA supplementation (350 mg DHA + 650 mg EPA/
day) does not benefit patients with the lowest fish intake.66 These results suggested that a minimum concentration of ω-3
LCPUFA may be required to maintain retinal stability, and above this threshold, supplement of ω-3 LCPUFA may not
increase benefits.67 Nutritional AMD Treatment-2 (NAT-2), a clinical trial on oral supplementation of ω-3 LCPUFA (840
mg DHA + 270 mg EPA/day) in 263 patients with early lesions of AMD, indicated no significant difference in visual
acuity, drusen progression and CNV incidence after oral supplementation. However, the risk of CNV occurrence in
individuals with high levels of erythrocyte membrane EPA+DHA within 3 years was reduced by 68%.68 One reason for
this discrepancy is the inability to measure retinal ω-3 LCPUFA content directly.69 Acar et al developed a more robust
prediction model of retinal ω-3 LCPUFA content in AMD based on seven plasma cholesteryl esters, rather than the use of
red blood cells or total plasma.69 The blood and retinal levels of ω-3 and ω-6 LCPUFA and their relationship with AMD
may also depend on genetic polymorphism.70 Interestingly, previous studies also suggested that the protective effects of
ω-3 LCPUFA on retinal neovascularization may be based on its interaction with AA.71,72 The protective and therapeu-
tical effects of LCPUFA on AMD are still to be investigated.

Inflammation and AMD
Inflammation involves a series of processes aimed at ultimately clearing pathogens and repairing damaged tissues, and is
an important pathogenesis in AMD. Local inflammation causes edema of macular and retinal, degeneration of RPE and
photoreceptor outer segments (POS), destruction of Bruch’s membrane and the development of CNV.73 RPE cells help to
maintain the health of the retina, including the formation of outer blood–retinal barrier, the phagocytosis of POS,
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screening of growth factor screening and scavenging of damaged reactive oxygen species (ROS).74 When the barrier is
disrupted, the inflammatory responses are activated in the retina, resulting in the release of pattern recognition receptors
(PRRs) and inflammasomes, and the activation of complement system, immune cells and cytokines.22 RPE and immune
cells produce cytokines and chemokines leading to the inflammatory cascades.75 These cytokines include interleukin
(IL)-4/5/6/8/10/13/17, interferon-β/γ, transforming growth factor (TGF)-α, monocyte chemoattractant protein-1 (MCP-1),
and VEGF.76 Many studies demonstrated that the levels of pro-inflammatory factor such as IL-6, IL-8, MCP-1 and VEGF
were elevated in intraocular fluid of patients with dry and wet AMD.77,78 Inflammatory cytokines also enhance VEGF
secretion, which initiates and causes pathological CNV and retinal neovascularization in AMD.79,80 When the long-term
struggle between pro- and anti-inflammatory responses ultimately loses balance, AMD occurs.81 In addition, innate
immune cells such as macrophages, microglias, dendritic cells, and neutrophils are closely associated with the develop-
ment of AMD,82–85 but whether adaptive immunity has a role in AMD is highly debated.86

Inflammatory responses contribute to both dry and wet AMD through different mechanisms.82 CNV is closely linked
to inflammatory cytokines, complement system activation, and promotion.87 Animal and in vitro experiments showed
that complement activation and membrane attack complex (MAC) formation induced CNV and that inhibiting C3a, C5a
and MAC effectively inhibited CNV.88,89 After anti-VEGF treatment, the elevated concentrations of interferon gamma-
inducible protein-10 (IP-10), IL-6, IL-8, C-X-C motif chemokine-12 (CXCL12), CXCL13, IL-10 and MCP-1 in the
aqueous humor of AMD patients were decreased,90,91 while Sato et al found IL-6 and IP-10 were considerably
increased.92

Complement components, the important component of drusen, and inflammasomes are involved in the inflammatory
responses in AMD.93–95 The activated complement component C3a was higher in both the blood and drusen of patients
with dry AMD, and the inhibitors of complement such as complement factor H (CFH), CD59 and CD46 were reduced,
implicating a hyperactive complement system in AMD.96–98 Upon oxidative stress, lysosomal destabilization and P2X7
receptor activation, inflammasomes can be activated by the nucleotide-binding and oligomerization domain-like receptor
(NLR) family containing 1 (NLRP1), NLRP3, NLR-family CARD-containing protein 4, absent-in-melanoma 2 or pyrin,
ultimately cause pyroptosis.99 Immunohistochemistry revealed the presence of the NLRP3 inflammasomes in the lesion
area of the eye in both GA and CNV.100 In an acute model of AMD, inflammasome activation and increased IL-18
prevent CNV, but lead to RPE cell loss during a chronic model of GA,101 which may be related to the degree and
duration of inflammation.

Taken together, pathological processes of AMD are delicately regulated by various immune-mediated inflammatory
events, including oxidative stress, mitochondrial dysfunction, autophagy, endoplasmic reticulum stress and cellular
senescence, which are associated and interacted with each other.102,103

Regulation of Inflammation by LCPUFA in AMD
The metabolites of LCPUFA, metabolized by enzymatic or non-enzymatic pathways, regulate inflammatory processes and
have complex effects on AMD. For instance, ω-3 LCPUFA downregulate insulin-like growth factor-1, attenuate the activation
of nuclear factor-κB (NF-κB), IL-β, VEGF and tumor necrosis factor-α (TNF-α), and suppress inflammation,104–106 in part
through the sphingomyelinase pathway.107 Currently, there are many drugs, such as saffron and fenofibrate, targeting lipid
metabolism and inflammatory process at different periods of development (Table 1). Several lipid metabolites are being
investigated as therapeutical products as well (Table 2).

Effects of LCPUFA Oxidative Metabolites on Inflammation in AMD
LCPUFA participate in processes that cause or resolve inflammation through oxidized lipids.107 Phospholipase A2
catalyzes the hydrolysis of cell membrane lipids, releasing them for further metabolism and signaling.129 Membrane-
bound ω-3 and ω-6 LCPUFA are oxidized by three pathways, the cyclooxygenases (COXs), lipoxygenases (LOXs) and
cytochrome P450 oxidases (CYPs).130 The metabolites of ω-6 LCPUFA through COX are prostaglandin (PG) E2 and
thromboxane, while the metabolites of ω-3 LCPUFA through COX are PGE3 and resolvins (Figure 2). PGE2 stimulates
pathological retinal neovascularization.131 PGE3 antagonizes PGE2, inhibiting endothelial tubule formation via reducing
angiopoietin 2 and matrix metalloproteinase (MMP) 9 production.125 Resolvins have anti-inflammatory properties,128
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activating chemokine receptor 23 and antagonizing leukotriene B4 (LTB4) receptor, which mediates the pro-inflamma-
tory effects of LTB4.132

Aspirin and other nonsteroidal anti-inflammatory drugs are the most commonly used COX inhibitors in the clinic, and
COX inhibition does not affect proliferative retinopathy, possibly due to the concomitant reduction in the intraocular anti-
inflammatory ω-3 and pro-inflammatory ω-6 LCPUFA mediators.133 However, the COX-2-selective antagonist NS-398
reduced VEGF and TGF-β secretion, and attenuated experimental CNV lesions and retinal fibrosis in vivo.116

LOX is a lipid peroxidase devoid of heme containing iron that catalyzes the dioxygenesis of LCPUFA to form various
bioactive lipids.134 5-LOX and 12/15-LOX were reported to regulate chronic inflammation and oxidative stress.135

Previous studies showed that 5-LOX and its metabolite 4-hydroxydocosahexaenoic acid mediated the protective effects
of ω-3 LCPUFA against AMD.124 The metabolites of ω-3 LCPUFA through LOX pathways contained anti-inflammatory
factors, but also pro-inflammatory catabolism such as D-series resolvins, neuroprotectins, and maresins.107 Resolvins
were powerful regulators of innate immune cells during inflammation and reduced ROS.127 Neuroprotectin D1 attenuated
CNV and significantly inhibited ROS-mediated damage, apoptosis, and inflammation, resulting in photoreceptor cell
integrity.126 Maresins are synthesized by macrophages and potent anti-inflammatory mediators.127

The roles of LCPUFA metabolites from CYPs are currently attracting increasing attentions. AA is metabolized to
hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids (EETs) by CYPs, while EPA and DHA are metabolized to
epoxyeicosatetraenoic acids (EEQs) and epoxyeicosapentaenoic acids (EDPs).136 These products are all further meta-
bolized into substances with low activity by soluble epoxide hydrolase (sEH).137 Both the ω-6 LCPUFA metabolite
14,15-EET and the ω-3 LCPUFA metabolite 19,20-EDP of CYP2C promote ocular neovascularization.138 Inhibition of
CYP2C activity increased the protective effects of dietary ω-3 LCPUFA on pathological retinal and choroidal
angiogenesis.139 However, Hasegawa et al found the inhibitory effects of ω-3 LCPUFA on CNV were impaired by the
metabolic degradation of EDP and EEQ.140 Other studies showed that 11,12-EET and 19,20-EDP reduced TNFα-induced
NF-κB activity and the expression of IL-1β, IL-6 and leukocyte adhesion protein VCAM1 in human retinal

Table 1 Drugs Targeting Lipid Metabolism and Inflammatory Processes

Medicine Period Target Mechanism

NAC,108 saffron,109 vitamin C, E,
zinc,110 resveratrol111

Clinical experiment SOD, GPx, GSH activator Reduce ROS levels, stimulate
autophagy112

Troglitazone, rosiglitazone113 Clinical experiment PPARγ activator Anti-inflammatory, inhibit CNV114

Celecoxib115 Clinical experiment COX-2 inhibitor Anti-inflammatory, inhibit CNV
NS-398116 Cell experiment

Fenofibrate117 Animal experiment PPARα, CYP2C activator Anti-inflammatory, inhibit CNV

SH-11037118,119 Clinical experiment sEH inhibitor Anti-inflammatory, inhibit CNV
SR1001120,121 Cell experiment RORα inhibitor122 Control transcription of lipid

metabolism, reduce inflammation
MRZ-99030115 Clinical experiment Amyloid-β inhibitor Reduce drusen formation

Avacincaptad pegol123 Clinical experiment C5 inhibitor Inhibit complement activation

Abbreviations: NAC, acetyl-L-cysteine; SOD, superoxide dismutase; GPx, glutathione peroxidase; GSH, glutathione reductase; ROR, retinoic acid receptor-related orphan
receptor.

Table 2 Products of Lipase Metabolism with Anti-Inflammatory Effects

Metabolism Enzyme Mechanism

4-HDHA124 COX, CYP Activate PPARγ
PEG3125 COX Antagonize PEG2

Neuroprotectin D1126 LOX Attenuate CNV formation and inflammation
Maresins127 COX, LOX Anti-inflammatory and pro-resolving

Resolvins128 COX Activate chemokine receptor 23 and antagonize LTB4R

Abbreviations: 4-HDHA, 4-hydroxydocosahexaenoic acid; PEG, polyethylene glycol; LTB4R, leukotriene B4 receptor.
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microvascular endothelial and Müller cells.141,142 Fenofibrate, a peroxisome proliferator activated receptor α agonist and
CYP2C antagonist,117 was reported to suppress CYP2C activity and add to the protective effects of ω-3 LCPUFA on the
retina in both in vivo AMD mouse model and ex vivo angiogenesis, via downregulating the levels of 19,20-EDP.143

Peroxidation products of non-enzymatic pathways can also modulate cytokines. Acid-N-retinoic ethanolamine (A2E)
can increase the secretion of inflammatory cytokines and chemokine such as IL-6, MCP-1, CXCL8, TNF and VEGF both
in vitro and in vivo.22,23,144

LCPUFA Peroxidation and Its Effects on Inflammation in AMD
Lipid peroxidation is an important component of oxidative stress, which causes ROS-induced cell damage and has been
linked to many degenerative diseases.145,146 The unsaturated structure of LCPUFA is particularly susceptible to oxidative
degradation by lipid peroxidation, generating harmful end products that lead to irreversible alterations in cellular
components.147 ROS and oxidized lipoproteins cause cellular stress, resulting in innate immune responses through the
activation of cell-associated and soluble PRRs.148 Kim et al applied a rat model with subretinal injection of human lipid
hydroperoxide to mimic the pathogenesis of AMD.149 Pro-inflammatory factors, including TNF-α, IL-1β and IL-6, were
upregulated both in the retinal and choroidal tissues, followed by the increase of LCPUFA peroxidation products such as
4-hydroxynonenal (4-HNE), lipofuscin and carboxy ethyl pyrrole (CEP),149 which bind to cellular proteins to form
advanced lipoxidation end products (ALEs).150

Oxidized lipoproteins were taken up through the CD36 receptor, together with the lipid peroxidation end product 4-
HNE (Figure 3), activate the NLRP3 inflammasomes in RPE cells through the activation of toll-like receptors (TLRs),
receptor for advanced glycation end products (RAGEs), and NF-κB.151–153 When inflammasomes were initiated, RPE

Figure 2 Schematic of the COX and LOX pathways metabolizing ω-6 and ω-3 LCPUFA. The metabolites derived from ω-6 LCPUFA are pro-inflammatory and pro-
angiogenic, whereas those derived from ω-3 LCPUFA are anti-inflammatory and anti-angiogenic.
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cells died of photo oxidative damage and pyroptosis.154 DHA was reported to alter the composition of lipid rafts via
entering the cell membrane, leading to the efflux of inflammatory receptors such as TLR2 and TLR4 from lipid rafts, and
inhibiting their activation.100 4-HNE can also inhibit the production of IL-8 and MCP-1,155 induce epidermal growth
factor receptor activation to prevent oxidative stress damage at lower concentrations, but induces p53-mediated apoptosis
in RPE cells at a higher concentration.156,157

Lipofuscin is the main source of ROS, and its main component is A2E, which is a by-product of vitamin A
metabolism and lipid peroxidation.158 The process of lipid peroxidation cleaves A2E, activating complement C2 and
C3, releasing cytotoxic carbonyl species and aggravating RPE damage.144,159 On one hand, these peroxidation products
can activate the alternative lectin pathways of complement and enhance and amplify the inflammatory responses through
many pathways, including enhancing the phagocytosis of macrophages, forming MAC to cause cell death, inducing
many inflammatory mediators and recruiting inflammatory cells.160 On the other hand, lipoproteins also compete with
CFH for binding sites in Bruch’s membrane.161

CEP can activate specific T cells to cause inflammatory M1 polarization of retinal macrophages to induce dry AMD,
and are also involved in the TLR2-induced neovascularization, considered as an early marker of high-risk AMD
development.162–164 M2-like macrophages produced MMPs, which enhanced the penetration of CNV through Bruch’s
membrane, while M1 macrophages ameliorated CNV.165–169 Previous studies also showed that CNV could be inhibited
by downregulating M1 macrophage/microglia polarization.170 Allingham et al suggested that the early recruitment of
inflammatory M1 macrophages promoted the induction and initial development of CNV, followed by the sustained
recruitment of reparative M2 macrophages that mediated the sustained CNV formation and growth.160 ALEs are found in
drusen and Bruch’s membrane of AMD patients, and act as haptens to induce autoantibody formation against lipid
peroxide-modified retinal proteins, causing inflammatory responses and complement activation, and damaging the RPE
cells.171

A positive feedback loop of oxidative stress and related inflammation may be involved in the pathogenesis of
AMD.172,173 In animal models, dietary supplementation with antioxidants and ω-3 LCPUFA have been seen to rapidly
modify the fatty acid content and to increase the retinal content of EPA by over 70% and protect the retina against light-
induced oxidative stress.174 Previous studies found that inhibition of inflammatory mediators, such as angiotensin II type
1 receptor blockers,175 reduced ROS as antioxidants such as N-acetyl-L-cysteine,154 saffron,108 vitamin C, E and zinc.110

In conclusion, oxidized lipoproteins increase oxidative stress, inflammation, and paracellular permeability of RPE cells,
inducing outer blood retinal barrier dysfunction and causing VEGF production and wet AMD.176,177

Figure 3 Oxidative stress results in innate immunity responses through the activation of TLRs, CD36, RAGEs, NF-κB and NLRP3 in stressed RPE cells.
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An important target for lipid metabolism regulation is the peroxisome proliferator activated receptor (PPAR).178

Three different subtypes of PPAR have been isolated so far: α, β, and γ.179 Both DHA and EPA are the ligands of all the
three PPAR isoforms.180 PPARs advance the entry of LCPUFA into mitochondria and peroxisomes, and regulate their
metabolism181 via upregulating the expression of carnitine palmitoyl translocase, fatty acyl CoA dehydrogenase, and
fatty acyl CoA dehydrogenase.113,182 PPARs were reported to enhance the phagocytosis of apoptotic cells by
macrophages,183 promote M2 macrophage polarization,184 reduce MMP2 and MMP9, and inhibit CNV.114 They are
also necessary for ω-3 LCPUFA to attenuate retinal neovascularization in mice.181 Fontaine et al found that A2E
promoted inflammation and angiogenesis partially via inducing the transactivation of PPARs and retinoid X receptors
(RXR) in RPE cells.185,186 PPARγ coactivator (PGC)-1α is a protein that increases RPE metabolism, maintains
mitochondrial homeostasis, and protects against ROS damage.187 Zhang et al found that PGC-1α−/− mice on a high-fat
diet were more prone to developing AMD.188 Loss of nuclear factor-erythroid 2-related factor-2 and PGC-1α leads to
RPE damage and dry AMD.189 Strong light stimulation not only enhances POS phagocytosis in RPE cells but also
induces activation of the PGC-1α/EERα pathway, upregulating VEGF.181 Therefore, targeting PGC-1α may be consid-
ered in anti-VEGF strategies to increase its efficacy for wet AMD.190 PPARs and PGC-1α can regulate retinal lipid
metabolism, and are avenues to manipulate in the treatment of diseases.

LCPUFA Metabolism Regulates Autophagy and Senescence
Autophagy is a protective, homeostatic mechanism, which is designed to remove faulty cellular components.191

Compromised autophagy can result in dysfunctional RPE and induce an AMD-like phenotype in mice.192 Toxic
LCPUFA peroxidation products are mainly metabolized and cleared by lysosomal enzymes.154 RPE lysosomal enzymes
are important regulators in this process and targets of lipid peroxide-mediated damages.193 Previous studies indicated that
phagocytosis of lipid peroxide increased lipofuscin production and disrupted cell self-renewal through autophagy,
resulting in release of undegraded POS proteins to the drusen.194,195 Drusen contain lipids, carbohydrates, proteins,
and cellular debris that are processed by autophagy.196 It is well known that disturbed autophagy is one of the
characteristics of AMD.197

In early AMD, RPE cells increase autophagy in response to acute oxidative stress. However, at the late stage of
AMD, the autophagic process is unable to cope with the increased number of damaged organelles.198 Autophagy
inhibition leads to inflammasome activation and increased angiogenesis in RPE, and NLRP3 inflammasome activation
induces pyroptosis.199 In addition, lipid peroxide-related lysosomal dysfunction induces VEGF secretion from RPE cells,
causing CNV generation and leading to wet AMD.200

A2E induces autophagy by activating the Akt/mTOR pathway in RPE cells.199 The combination of A2E and
autophagy inhibitor 3-methyladenine upregulates inflammation-related proteins IL-1β, IL-2, IL-6 and IL-8, promoting
the production of ROS and leading to RPE cell death.201 Rapamycin augments A2E-mediated autophagy and down-
regulates inflammatory factors and VEGF.202 Impaired autophagy or mitophagy in RPE cells leads to macrophage
recruitment and inflammasome activation, thereby promoting RPE and photoreceptor degeneration.203 Several researches
implicated impaired mitochondria in AMD.204,205 When the mitochondrial membrane is damaged, mitochondrial DNA,
apoptosis-inducing factors and cytochrome c can be released, causing mitophagy, leading to necroptosis or pyroptosis
and triggering chronic sterile inflammation.206

Elovanoids (ELVs) are a class of endogenous pro-homeostatic mediators synthesized from DHA.207 When retinal
cells need to counteract neuroinflammatory responses to protect their integrity and to sustain survival and functions,
ELVs are made rapidly.208 In AMD, amyloid-β peptide accumulates in the subretinal drusen. ELV was reported to abolish
the destructive effects of RPE, preventing inflammation, autophagy, extracellular matrix remodeling and AMD.209

Senescence is a state of permanent inhibition of cell growth and an important pathological mechanism of AMD.177 A
large number of immune cells are present in the choroidal circulation.210 Senescent immune cells reduce phagocytosis
and clearance, and induce angiogenesis and pro-inflammatory mediators such as IL-6, IL-8 and TNF-α,211 which are
collectively known as aging-related secretory phenotype.192 These cytokines promote a series of inflammatory cascades,
and induce age-related inflammatory reactions, metabolic disorders, and chronic diseases.212 Chronic sterile inflammation
may be the core of AMD.213
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Senescence decreases the biosynthetic capacity of LCPUFA.214 Omega-3 LCPUFA supplementation can improve
brain neurocognitive functions, limit neuroinflammation and stress response defects in aged animal models and clinical
trials.215–218 Meanwhile, peroxide products of LCPUFA, such as A2E, can cause telomere dysfunction and accelerate
RPE cell senescence.219

Conclusion
Dyslipidemia and chronic inflammation are both the manifestations of aging, and the common pathogenic factors of
many age-related diseases. Oxidative stress, lipid disorder and inflammation are closely related. First, the metabolites of
LCPUFA include anti-inflammatory and pro-inflammatory regulatory factors. Second, the peroxidation products of lipids
promote the inflammatory process via activating complement and inflammasomes, and recruiting immune cells. Third,
LCPUFA metabolism regulates inflammatory responses via modulating senescence and autophagy. The deposited lipids
cause chronic sterile inflammation and innate immune responses. The combination of direct damage of oxidized lipid and
maladjusted chronic inflammation leads to RPE degeneration, photoreceptor cell death, visual loss and macular
degeneration.43 Many drug targets have been identified to alleviate AMD. Epidemiological, clinical, and experimental
studies have shown that ω-3 LCPUFA are associated with a decreased risk of AMD and that ω-6 LCPUFA are associated
with an increased risk.63,220
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