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Abstract: Biomolecular recognition such as binding of small molecules, nucleic acids, peptides 
and proteins to their target receptors plays key roles in cellular function and has been targeted for 
therapeutic drug design. Molecular dynamics (MD) is a computational approach to analyze these 
binding processes at an atomistic level, which provides valuable understandings of the mechan-
isms of biomolecular recognition. However, the rather slow biomolecular binding events often 
present challenges for conventional MD (cMD), due to limited simulation timescales (typically 
over hundreds of nanoseconds to tens of microseconds). In this regard, enhanced sampling 
methods, particularly accelerated MD (aMD), have proven useful to bridge the gap and enable 
all-atom simulations of biomolecular binding events. Here, we will review the recent method 
developments of Gaussian aMD (GaMD), ligand GaMD (LiGaMD) and peptide GaMD (Pep- 
GaMD), which have greatly expanded our capabilities to simulate biomolecular binding pro-
cesses. Spontaneous binding of various biomolecules to their receptors has been successfully 
simulated by GaMD. Microsecond LiGaMD and Pep-GaMD simulations have captured repeti-
tive binding and dissociation of small-molecule ligands and highly flexible peptides, and thus 
enabled ligand/peptide binding thermodynamics and kinetics calculations. We will also present 
relevant application studies in simulations of important drug targets and future perspectives for 
rational computer-aided drug design. 
Keywords: biomolecular recognition, accelerated molecular dynamics, thermodynamics, 
kinetics, drug design

Introduction
Cellular functions such as gene translation, protein folding, ligand binding and signaling 
often require conformational transitions of biological macromolecules such as proteins, 
nucleic acids and lipids into various low-energy states.1–4 Free energy landscapes of 
biomolecules essentially determine their structure, dynamics and functions.5,6 It is 
important to comprehend the dynamic nature of biomolecules. Experimental techniques 
including nuclear magnetic resonance (NMR), X-ray crystallography and cryo-electron 
microscopy (cryo-EM) have greatly advanced structural characterizations of the biomo-
lecular binding processes, but these efforts are time-consuming and very expensive. 
Moreover, these techniques often provide a rather static picture of the biomolecular 
interactions and conformations, whereas biomolecules are dynamic in vivo to perform 
the necessary cellular functions. It remains challenging and critical for us to understand 
the mechanisms, thermodynamics and kinetics of biomolecular recognition.

Molecular dynamics (MD) is a powerful “computational microscope” that helps 
us to visualize atomistic time evolution of biomolecules.7 Remarkable advances 
have been made in computing hardware (eg, Anton supercomputers and GPUs) and 
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algorithm developments over the past several decades for 
running longer and cheaper MD simulations.8–12 With 
microsecond-timescale conventional MD (cMD) simula-
tions, spontaneous ligand/drug binding was successfully 
captured to the Src protein kinase,13 the β1- and β2- 
adrenergic receptors (β1AR and β1AR)14 and the M2 and 
M3 muscarinic receptors15 by the DE Shaw Research 
Group using the Anton supercomputer, for which the 
simulation predicted ligand binding poses closely matched 
those determined in the X-ray crystal structures. Moreover, 
hundreds-of-nanosecond cMD simulations were combined 
in Markov State Models to characterize the benzamidine 
ligand binding to the trypsin model protein by the De 
Fabritiis group.16

In addition, microsecond-timescale cMD simulations 
have been successful to capture peptide binding in several 
peptide-protein complexes, including proline-rich motif 
(PRM)-SH3,17 BAD-BclXL and p53-MDM2.18 The “fold-
ing-upon-binding” mechanism of peptides was investi-
gated using a measles virus nucleoprotein fragment and 
X domain of its phosphoprotein complex.19 Anton super-
computer was used to run ~200 μs MD simulations at 400 
K elevated temperature. The simulations could capture 70 
binding and unbinding events of the peptide fragment to 
the protein domain. Therefore, cMD has been successful to 
capture binding of ligands and peptides on the microse-
cond timescales. However, cMD with limited simulation 
timescales still lacks the power to study slower biological 
processes that would occur over longer timescales (eg, 
milliseconds and beyond).15

Metadynamics,20,21 umbrella sampling,22,23 adaptive 
biasing force (ABF) calculations24,25 and conformational 
flooding26,27 represent more advanced simulation methods 
for enhanced sampling of biomolecules developed over 
the past few decades. Metadynamics, in particular, has 
enabled investigating ligand binding to receptors in 
terms of the kinetic rates of binding and unbinding, resi-
dence time28,29 and binding free energies.30–33 The bind-
ing rate constant of peptide p53 to MDM2 protein 
predicted by ~120 μs weighted ensemble simulations 
was in good agreement with the experimentally calculated 
values.34 Enhanced sampling implemented with 
a combination of long microsecond cMD and 
Hamiltonian replica exchange method could simulate 
rare events such as binding and unbinding of the PMI 
peptide inhibitor-MDM2 oncoprotein fragment 
complex35 and the resulting kinetic rates agreed well 
with experiments.35 Moreover, infrequent metadynamics 

could predict peptide association and dissociation rates of 
the p53-MDM2 peptide-protein complex, whereas, bias- 
exchange metadynamics could calculate binding free 
energy of the same system with 27 μs simulations.36 

Although these methods have shown remarkable improve-
ments in sampling and capturing rare events that happen 
over exceedingly long timescales, they often pose 
a limitation for the requirement of predefined reaction 
coordinates and collective variables (CVs).27,37,38

To address the above limitations, more enhanced sam-
pling methods that do not require CVs have been 
developed,39 including replica exchange MD,40,41 self- 
guided MD,42–45 and accelerated MD (aMD),46–55 etc. In 
particular, aMD adds a boost potential ΔV to smooth the 
system potential energy surface to sample biomolecular 
transitions across reduced energy barriers.55,56 The aMD 
simulations have been successful in capturing spontaneous 
ligand binding to a muscarinic G-protein-coupled receptor 
(GPCR).57 However, aMD poses a drawback of large 
energetic noise during reweighting because of very high 
boost potential that is normally on the order of tens to 
hundreds of kcal/mol.58 Recovering the original free 
energy landscapes represents a major limitation of aMD 
simulations.57,59,60 To address this issue, Gaussian aMD 
(GaMD)61,62 has been developed using a harmonic func-
tion to construct the boost potential that exhibits 
a Gaussian distribution. Through cumulant expansion to 
the second order, accurate reweighting can be achieved 
from GaMD simulations.63 Without the need of predefined 
CVs, GaMD provides “unconstrained” enhanced sampling 
and can be easier to use for simulations of complex bio-
molecules than CV-based enhanced sampling methods. 
GaMD has been also shown to clearly identify distinct 
low-energy intermediate states during large protein con-
formational changes, ligand binding and protein–protein 
interactions. These intermediate states may not be suffi-
ciently sampled in the CV-biasing simulation methods. On 
the other hand, relatively longer GaMD simulations could 
be needed in order to achieve sufficient sampling. 
Nevertheless, hundreds-of-nanosecond to microsecond 
timescale GaMD simulations have been successfully 
applied to sample large conformational changes of various 
biomolecules, including fast-folding proteins,61,62,64 the 
CRISPR-Cas9 gene-editing system,65,66 GPCRs,62,67–71 

protein kinases,72,73 ligand binding61,62,67–71,74,75 and pro-
tein-protein/membrane/nucleic acid interactions.66,76–80

The principles of GaMD and notably applications in 
understanding drug binding pathways were reviewed 
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recently.74,81 Here, we will review recent method develop-
ments of GaMD, Ligand GaMD (LiGaMD)82 and Peptide 
GaMD (Pep-GaMD),83 which have greatly expanded our 
capabilities to simulate biomolecular binding processes. 
More recently, spontaneous binding of various biomole-
cules to their receptors such as drug binding to membrane 
proteins like chemokine GPCRs,71 human angiotensin- 
converting enzyme 2 (ACE2),84 and RNA-protein 
binding85,86 has been demonstrated by GaMD simulations. 
Furthermore, microsecond LiGaMD and Pep-GaMD simu-
lations were able to simulate repetitive binding and dis-
sociation of small-molecule ligands82 and highly flexible 
peptides,83 and thus enabled ligand/peptide binding ther-
modynamics and kinetics calculations. We will also pre-
sent relevant application studies in simulations of 
important drug targets and future perspectives for rational 
computer-aided drug design.

Materials and Methods
Gaussian Accelerated Molecular 
Dynamics (GaMD)
GaMD is an unconstrained enhanced sampling technique 
that reduces the system energy barriers by adding 
a harmonic boost potential to the system potential energy 
terms.61 The added boost potential smooths the system 
potential energy surface and allows biomolecules to sam-
ple large conformational space. The method is briefly 
illustrated here. For a system with N atoms at positions 

r; r*1; � � � ; r*N

n o
, when the system potential V rð Þis lower 

than a threshold energy E, a boost potential is added as:

ΔV rð Þ ¼
1
2 k E � V rð Þð Þ

2
;V rð Þ<E

0;V rð Þ � E

�

(1) 

where k is the harmonic force constant. The two adjustable 
parameters E and k are automatically determined based on 
three enhanced sampling principles.61 The reference 
energy needs to be set in the following range:

Vmax � E � Vmin þ
1
k

(2) 

where Vmax and Vmin are the system minimum and max-
imum potential energies. To ensure that Eqn. (2) is valid, 
k has to satisfy: k � 1

Vmax� Vmin 
Let us define ;k0 �

1
Vmax� Vmin

, 
then 0<k0 � 1. The standard deviation of ΔV needs to be 
small enough (ie, narrow distribution) to ensure proper 
energetic reweighting:63 σΔV ¼ k E � Vavg

� �
σV � σ0 

where Vavg and σV are the average and standard deviation 

of the system potential energies, σΔV is the standard devia-
tion of ΔV with σ0 as a user-specified upper limit (eg, 10kB 

T) for proper reweighting. When E is set to the lower 
bound E=Vmax, k0 can be calculated as:

k0 ¼ min 1:0; k00
� �

¼ min 1:0;
σ0

σV
�
Vmax � Vmin

Vmax � Vavg

� �

(3) 

Alternatively, when the threshold energy E is set to its 
upper bound E ¼ Vmin þ

1
k , k0 is set to:

k0 ¼ k;
0 1 �

σ0

σV

� �
Vmax � Vmin

Vavg � Vmin
(4) 

if k0 is found to be between 0 and 1. Otherwise, k0 is 
calculated using Eqn. (3).

Like aMD, GaMD also provides options to add only 
the total potential boost, only dihedral potential boost, or 
the dual potential boost. The dual-boost GaMD 
(GaMD_Dual) simulation generally provides higher accel-
eration than the other two types of simulations for 
enhanced sampling.56 The simulation parameters comprise 
of the threshold energy values and the effective harmonic 
force constants for the total and dihedral potential boost, 
respectively.

Energetic Reweighting of GaMD for Free Energy 
Calculations
For energetic reweighting to calculate the potential of 
mean force (PMF), the probability distribution along 
a reaction coordinate is written as p� Að Þ. Given the boost 
potential ΔV rð Þ of each frame, p� Að Þ can be reweighted to 
recover the canonical ensemble distribution, p Að Þ, as:

p Aj
� �

¼ p� Aj
� � eβΔV rð Þ

j

∑M
i¼1 p� Aið ÞeβΔV rð Þi

; j ¼ 1; . . . ;M (5) 

where M is the number of bins, β ¼ kBT and eβΔV rð Þ
j is the 

ensemble-averaged Boltzmann factor of ΔV rð Þ for simula-
tion frames found in the jth bin. The ensemble-averaged 
reweighting factor can be approximated using cumulant 
expansion:

eβΔV rð Þ ¼ exp ∑1k¼1
βk

k!
Ck

� �

(6) 

where the first two cumulants are given by:

C1 ¼ hΔVi;

C2 ¼ ΔV2 � hΔVi2 ¼ σ2
v :

(7) 

The boost potential obtained from GaMD simulations 
usually follows near-Gaussian distribution.74 Cumulant 
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expansion to the second order thus provides a good 
approximation for computing the reweighting factor.61,63 

The reweighted free energy F Að Þ ¼ � kBT lnp Að Þ is calcu-
lated as:

F Að Þ ¼ F� Að Þ � ∑2
k¼1

βk

k!
Ck þ Fc (8) 

where F� Að Þ ¼ � kBT lnp� Að Þ is the modified free energy 
obtained from GaMD simulation and Fc is a constant. 
A free Python scripts toolkit “PyReweighting”63 is devel-
oped and distributed at http://miao.compbio.ku.edu/ 
PyReweighting/.

Ligand Gaussian Accelerated Molecular 
Dynamics (LiGaMD)
LiGaMD is developed based on GaMD61 and efficiently 
sample ligand binding and unbinding by selectively boost-
ing non-bonded interaction potential energy between the 
ligand-receptor and ligand/environment. A detailed 
description of the method has been provided in the pre-
vious LiGaMD report.82 A brief summary is provided 
below. Let us assume a system containing protein P with 
ligand L and a biological environment E. The system has 
N atoms with their coordinates r; r*1; � � � ; r*N

n o
and 

momenta p; p*1; � � � ; p
*

N

n o
. The system Hamiltonian can 

be expressed as:

H r; pð Þ ¼ K pð Þ þ V rð Þ (9) 

where K pð Þ and V rð Þ are the system kinetic and total 
potential energies, respectively. Now, the potential energy 
can be expressed as:

V rð Þ ¼ VP;b rPð Þ þ VL;b rLð Þ þ VE;b rEð Þ

þ VPP;nb rPð Þ þ VLL;nb rLð Þ þ VEE;nb rEð Þ
(10) 

where VP;b, VL;b and represent the bonded potential ener-
gies in protein P, ligand L and environment E, respectively. 
VPP;nb, VLL;nb and VEE;nb are the self non-bonded potential 
energies in protein P, ligand L and environment E, respec-
tively. VPL;nb, VPE;nb and VLE;nb represent the non-bonded 
interaction energies between P-L, P-E and L-E, respec-
tively. As we know, in the classical molecular mechanics 
force fields,87–90 the non-bonded potential energies are 
usually calculated as:

Vnb ¼ Velec þ VvdW (11) 

Where Velec and VvdW represent the system electrostatic 
and van der Waals potential energies. Let us assume, 
while the ligand binds to the receptor, it 

mainly involves the non-bonded interaction energies, 
VL;nb rð Þ ¼ VLL;nb rLð Þ þ VPL;nb rPLð Þ þ VLE;nb rLEð Þ. In 
accordance with the previous GaMD algorithm, we 
will add boost potential to the essential ligand non- 
bonded potential energy in the LiGaMD method:

ΔVL;nb rð Þ ¼
1
2 kL;nb EL;nb � VL;nb rð Þ

� �2
;VL;nb rð Þ < EL;nb

0;VL;nb rð Þ � EL;nb

�

(12) 

where kL,nb represents the harmonic constant and EL,nb 

represents the threshold energy for applying boost poten-
tial. These parameters can be based on three enhanced 
sampling principles as described in GaMD.61

Next, one can add multiple ligand molecules in the 
solvent to facilitate ligand binding to proteins in MD 
simulations.14,70 This is based on the fact that the ligand- 
binding rate constant kon is inversely proportional to the 
ligand concentration. The higher the ligand concentration, 
the faster the ligand binds, provided that the ligand concen-
tration is still within its solubility limit. In addition to selec-
tively boosting the bound ligand, another boost potential 
could thus be applied on the unbound ligand molecules, 
protein and solvent to facilitate both ligand dissociation 
and rebinding. The second boost potential is calculated 
using the total system potential energy other than the non- 
bonded potential energy of the bound ligand in Eqn. (10) as:

VD rð Þ ¼ V rð Þ � VL;nb rð Þ
¼ VP;b rPð Þ þ VL;b rLð Þ þ VE;b rEð Þ

þ VPP;nb rPð Þ þ VEE;nb rEð Þ þ VPE;nb rPEð Þ

(13) 

ΔVD rð Þ ¼
1
2 kD ED � VD rð Þð Þ

2
;VD rð Þ < ED

0;VD rð Þ � ED

�

(14) 

where ED and kD are the corresponding threshold energy 
for applying the second boost potential and the harmonic 
constant, respectively. This leads to dual-boost LiGaMD 
(LiGaMD_Dual) with the total boost poten-
tial ΔV rð Þ ¼ ΔVL;nb rð Þ þ ΔVD rð Þ.

Peptide Gaussian Accelerated Molecular 
Dynamics (Pep-GaMD)
Peptides often undergo large conformational changes dur-
ing binding to target proteins, being distinct from small- 
molecule ligand binding or protein–protein interactions 
(PPIs). Another algorithm called peptide GaMD or “Pep- 
GaMD” has been developed to enhance sampling of pep-
tide binding.83 In Pep-GaMD, we consider a system of 
peptide L binding to a protein P in a biological 
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environment E. We decompose the potential energy into 
similar terms as in Eqn. (10). Presumably, peptide binding 
mainly involves in both the bonded and non-bonded inter-
action energies of the peptide since peptides often undergo 
large conformational changes during binding to the target 
proteins. Thus, the essential peptide potential energy is 
VL rð Þ ¼ VLL;b rLð Þ þ VLL;nb rLð Þ þ VPL;nb rPLð Þ þ VLE;nb rLEð Þ:

In Pep-GaMD, we add boost potential selectively to the 
essential peptide potential energy according to the GaMD 
algorithm:

ΔVL rð Þ ¼
1
2 kL EL � VL rð Þð Þ

2
;VL rð Þ < EL

0;VL rð Þ � EL;

�

(15) 

where EL is the threshold energy for applying boost poten-
tial and kL is the harmonic constant. The Pep-GaMD 
simulation parameters are derived similarly as in GaMD.

A second boost is added to the interaction between the 
protein and the environment/solvent to accelerate the pep-
tide binding, along with the selective boost added to the 
peptide. This boost represents the total system potential 
energy without the essential peptide potential energy 
included:

ΔVD rð Þ ¼
1
2 kD ED � VD rð Þð Þ

2
;VD rð Þ < ED

0;VD rð Þ � ED

�

(16) 

Where VD represents the total system potential energy 
without the essential peptide potential energy included, 
ED represents the second boost potential threshold energy 
and kD represents the harmonic constant. Hence, this con-
tributes to the dual-boost Pep-GaMD as the total boost 
potential ΔV rð Þ ¼ ΔVL rð Þ þ ΔVD rð Þ.

Applications
Mechanism of Drug Binding to 
Chemokine Receptor
Chemokine receptors are key GPCRs with involvement in 
many biological functions including immune cell 
response, growth and development of bodily structure 
like cardiac tissues and central nervous system, and sev-
eral cancers.91,92 In particular, CXCR4 facilitates the entry 
of HIV into host immune cells.93–95 Plerixafor (PLX) was 
discovered as the first selective small-molecule inhibitor of 
CXCR4 (Mozobil®, AMD3100), however, is suggested to 
have multiple binding modes to CXCR4.96–98 Here, 
GaMD simulations were performed to study the pathway 
and binding mechanism of the PLX drug to the CXCR4 
receptor.71

The X-ray structure of CXCR4 (PDB: 3ODU) with the 
highest resolution (2.5 Å) was used to build the simulation 
system. The conformation of PLX with positively charged 
N1, N3, N4 and N7 of the bicyclam rings at physiological 
pH was also added to the system. GaMD simulations were 
performed for ligand in both unbound and bound state 
with ten ligand molecules >15 Å away from CXCR4 
(Figure 1A), and with the lowest energy bound conforma-
tion of PLX obtained from rigid-body docking using 
Autodock.99 GaMD_Dual_NB boost scheme was used in 
which system nonbonded and dihedral energy terms were 
boosted. GaMD_Dual_NB was applied to five independent 
800–1000 ns GaMD production runs to capture PLX drug 
binding to CXCR4 from an unbound state.

The PLX bound simulations showed stable binding 
of PLX in the CXCR4 orthosteric site. The simulations 
were used for hierarchical agglomerative clustering to 
obtain five clusters; the top-ranked cluster was selected 
as a reference, termed the “bound state”. Spontaneous 
binding of PLX was captured to the orthosteric site of 
the receptor during one of the five replicas. Complete 
binding of PLX was observed at ~480 ns with minimum 
RMSD of 2.76 Å relative to the X-ray structure of 
CXCR4 (PDB: 3ODU). The positively charged PLX 
formed stable salt bridge interactions with residues 
Asp972.63, Asp2626.58 and Glu2887.39 occupying both 
major and minor sub-pockets of the receptor 
(Figure 1B). Other simulations revealed important 
drug–receptor interactions significant in the recognition 
and binding of PLX to the CXCR4 receptor.

Free energy profiles of PLX binding to the CXCR4 
receptor were calculated using the PLX RMSD and the 
distance between the PLX and the receptor as reaction 
coordinates of all five GaMD_Dual_NB simulations 
combined. The 2D PMF profile helped identify four 
low-energy conformational states of PLX including 
“Bound (B)”, “Intermediate 1 (I1)”, “Intermediate 2 
(I2)” and “Unbound (U)”. In the I1 and I2 state, 
polar residues in the ECL2-TM5-TM6 region of the 
CXCR4, namely, D187ECL2, D1935.32 and D2626.58 

formed favourable interactions with the nitrogen 
atoms of PLX which are positively charged 
(Figure 1C and D). A single novel intermediate drug 
binding site was identified in the CXCR4 as the two 
intermediate states shared the common key residues 
including D187ECL2, D1935.32 and D2626.58 because 
the symmetric ligand flips its conformation at the 
same site of the receptor in the ECL2-TM5-TM6. 
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GaMD simulations also identified PLX drug binding 
pathway to the CXCR4. Starting from diffusion in the 
solvent, PLX binds to an intermediate site between 
ECL2-TM5-TM6 and then the final orthosteric site. 
This study reveals a novel allosteric site that is 
expected to facilitate drug design of CXCR4.

Mechanism of Ligand Recognition by 
Human ACE2 Receptor
Human ACE2 receptor has been of critical importance in 
biology and medicine. It is highly expressed in different 
organ epithelial cells such as heart, kidney, pancreas and 
lungs. Human ACE2 receptor is an excellent therapeutic 

Figure 1 (A) Computational representation of the CXCR4 receptor (green ribbons) with 10 PLX drug molecules (magenta spheres) placed away in the solvent used in the 
simulation. The receptor was placed in a POPC lipid bilayer (sticks) and solvated in 0.15 M NaCl aqueous solution. (B) GaMD predicted binding pose of PLX (magenta sticks) 
at the orthosteric site of CXCR4 (green ribbons) with their interacting residues labeled and highlighted in green ball and sticks. Antagonist IT1t (yellow) and docking 
conformation of PLX (orange) are shown for reference. The seven transmembrane helices I–VII and three extracellular loops (ECL) 1–3 are labeled in the CXCR4 receptor; 
(C) Intermediate I1 state with interacting residues highlighted in green sticks, including D187ECL2 and D2626.58 that formed ionic interactions with PLX atoms N4 and N3, 
respectively; (D) Intermediate I2 state with interacting residues highlighted in green sticks, including D187ECL2, D1935.32 and D2626.58 that formed salt bridges with positively 
charged N7, N4 and N1 of PLX, respectively.

https://doi.org/10.2147/AABC.S247950                                                                                                                                                                                                                               

DovePress                                                                                                      

Advances and Applications in Bioinformatics and Chemistry 2022:15 6

Pawnikar et al                                                                                                                                                        Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


target to severe acute respiratory syndrome coronavirus 
(SARS-Cov) as it serves as receptor for both SARS-CoV 
and SARS-CoV-2. It is critically important to study drug 
binding mechanism to this receptor, which remains elusive 
till today, for the development of effective treatment 
against SARS-CoV-2.

In order to study the molecular and structural basic of 
ligand binding to the human ACE2, LiGaMD simula-
tions were performed using the X-ray structure of the 
inhibitor MLN-4760-bound ACE2 as model (PDB: 
1R4L).84 The AMBER ff19SB force field and GAFF-2 
were used to model the protein and ligand, respectively. 
In addition to the MLN-4760 in the X-ray structure, 9 
MLN-4760 molecules were added to the solvent to build 
the initial simulation systems. 64 ns LiGaMD equilibra-
tion followed by ten independent 700-2000 ns LiGaMD 
productions were performed. Dissociation of MLN-4760 
from the ACE2 active site was captured during LiGaMD 
equilibration. Protein conformational change was 
observed upon ligand dissociation where the receptor 
subdomain I transited from “Closed” to “Open” state. 
Ligand binding and unbinding to the ACE2 active site 
was captured in three of the ten LiGaMD simulations 
(“Sim1”, “Sim2” and “Sim3”) with minimum ligand 
RMSD relative to the X-ray structure of ~0.99 Å 
(Figure 2A). Large-scale conformational changes of the 
ACE2 were sampled in LiGaMD. In addition, LiGaMD 
identified four low-energy conformations of the ACE2 
receptor, viz. “Open”, “Partially Open”, “Closed”, and 
“Fully Closed”. The “Fully Closed” conformation was 
newly discovered through LiGaMD simulations, 
whereas, the three “Open”, “Partially Open” and 
“Closed” conformations were highly consistent with the 
experimentally resolved structures.

Particularly, in Sim2, within ~100 ns, one MLN-4760 
initially interacted to the receptor interface between the α5 
and 310 H4 helices. In ~100–160 ns, the ligand further 
entered the ACE2 active site through the cavity between 
the subdomain I and II, bound to the active site up to ~500 
ns and then dissociated (Figure 2B). Ligand dissociation 
pathway was completely different than that of the ligand 
binding (Figure 2C and D). When the ligand dissociated, 
the conformation of receptor subdomain I was changed 
from “Closed” to “Open” through opening between the 
receptor helices α2 and α4.

Using the ligand RMSD relative to the X-ray structure 
and interdomain distance as reaction coordinates, free 
energy landscape was calculated by combining all 

LiGaMD simulation trajectories. The free energy land-
scape identified nine low-energy conformations of the 
receptor-ligand complex, namely, “Bound (B)”, 
“Intermediate-1 (I-1)”, “Intermediate-2 (I-2)”, 
“Intermediate-3 (I-3)”, “Intermediate (I-4)”, “Unbound-1 
(U-1)”, “Unbound-2 (U-2)”, “Unbound-3 (U-3)” and 
“Unbound-4 (U-4)” (Figure 2E). Ligand bound at the 
active site with minimum ligand RMSD of 0.99 Å was 
termed as the “Bound” conformation, in which the recep-
tor interdomain distance was ~12-14 Å (Figure 2A). In the 
I-1 state, ligand interacted with residues in the α5 helix, 
α11 helix, α14 helix, α18 helix and 310H4 helix loop in the 
two protein subdomains. The ligand RMSD and interdo-
main distance in the I-1 state were ~9.8 Å and ~18–22 Å, 
respectively. The receptor adopted a “Partially-open” con-
formation in this state. In the I-2 state, ligand interacted 
with receptor subdomain II involving the α17 helix, α18 
helix, and α19 helix. The ligand RMSD and interdomain 
distance was located at (~25.6 Å, ~5-7 Å). In the I-3 state, 
ligand interactions were observed with the α2 helix and α4 
helix in the protein subdomain I and II, respectively, in 
which the ligand RMSD and interdomain distance was 
located at (~30.4 Å, ~13-20 Å). In the I-4 state, ligand 
interacted with the protein subdomain II involving the α8 
helix, α14 helix, and 310H4 with ligand RMSD and the 
interdomain distance located at (~31.7 Å, ~25-26 Å). In 
the unbound states U-1, U-2, U-3 and U-4 exhibited inter-
domain distances of ~5-7, ~10-12, ~20-21, and ~25 Å, 
respectively, at ligand RMSD ~80 Å.

LiGaMD has successfully captured the dissociation and 
rebinding pathways of MLN-4760 to the human ACE2 
receptor. With detailed analysis of the receptor and protein 
conformations, LiGaMD simulations suggested that the 
binding of MLN-4760 to human ACE2 mainly followed 
the conformational selection mechanism as the ligand 
binding shifted the receptor conformation to the “Closed” 
state. These simulation findings provide important insights 
for design and development of drugs for therapeutic treat-
ment of COVID-19 and other diseases associated with the 
ACE2 receptor.

In case of SARS-CoV-2 infection, RBD of the viral 
spike protein attaches to the top region of subdomain 
I in the ACE2 receptor, which is distant from the recep-
tor peptidase active site. Thus, the MLN-4760 inhibitor 
does not compete directly with the RBD of SARS-CoV 
-2. However, there have been evidences of allosteric 
modulation in the ACE2 receptor, which could be uti-
lized for antiviral drug design. Hernandez Prada et al100 
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Figure 2 (A) “Bound” state conformation of the ACE2 receptor and MLN-4760 inhibitor (green) in comparison to the X-ray conformation (Orange, PDB: 1R4L) (B) RMSD 
of MLN-4760 ligands relative to the bound X-ray conformation (PDB: 1R4L) calculated from “Sim 2” LiGaMD simulations. (C) Rotated views of ligand binding pathway with 
MLN-4760 central ring (lines) colored in a blue-white-red (BWR) color scale along simulation time. (D) Rotated views of ligand dissociation pathway with MLN-4760 central 
ring (lines) colored in a blue-white-red (BWR) color scale along simulation time. (E) Free energy profile of the ligand RMSD and interdomain distance highlighting nine low- 
energy conformational states: one Bound (B), four Intermediate (I-1, I-2, I-3, I-4), and four Unbound (U-1, U-2, U-3, U-4). Adapted with permission from Bhattarai A, 
Pawnikar S, Miao Y. Mechanism of ligand recognition by human ACE2 receptor. J Phys Chem Lett. 12:4814-4822. Copyright 2021 American Chemical Society.84
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identified two small-molecule compounds from in silico 
screening that bound to the hinge region of ACE2 and 
could activate the receptor ~2 fold in an in vitro ACE2 
activity assay, with EC50 values of approximately 
20 μM. Huentelman et al101 also discovered a novel 
ACE2 inhibitor from virtual screening, which bound 
the receptor active site but also allosterically blocked 
SARS-CoV spike protein-mediated receptor attachment. 
Here, we have characterized the mechanism of ligand 
binding/dissociation and further highlighted the dynamic 
nature of the ACE2 receptor in terms of the large-scale 
movement of subdomain I upon ligand binding. 
LiGaMD simulations also showed that MLN-4760 
could form hydrophobic interactions with the RBD 
binding site in subdomain I of the receptor in the closed 
state. This information could be helpful in designing 
drugs that could block RBD binding to the receptor. 
Furthermore, since the human ACE2 receptor shows 
conformational selection for ligand binding as revealed 
from the LiGaMD simulations, virtual screening using 
ensemble docking102–104 with receptor structural ensem-
bles generated from the LiGaMD simulations will be 
a promising approach to designing potent drug mole-
cules of the ACE2 receptor against coronavirus 
infection.

Mechanism of RNA Binding to M2-1 
Protein
As one of non-segmented negative-sense (NNS) RNA 
viruses, human respiratory syncytial virus (HRSV) 
including rabies and Ebola virus could cause severe 
lower track respiratory diseases.105–108 The function of 
RNA-dependent RNA polymerase (RdRP) is regulated 
by a zinc-binding transcription terminator, M2-1 protein, 
in HRSV. Thus, M2-1 protein is an important therapeu-
tic target for drug design. The structure of a short posi-
tive-sense gene-end RNA (SH7) binding to the HRSV 
M2-1 was resolved, suggesting multiple M2-1 residues 
were interacted with the RNA.85 Five independent 300 
ns dual-boost GaMD simulations were performed to 
investigate the binding mechanism between RNA and 
the M2-1 protein.85 The initial simulation model was 
prepared by placing the seven-nucleotide SH7 RNA 
(AGUUAAU) at a distance >20 Å from the M2-1 pro-
tein (PDB: 6PZQ). Spontaneous binding of the SH7 
RNA to the M2-1 protein was captured. Structural clus-
tering of the SH7 RNA was performed to obtain the top 

five clusters using a hierarchical agglomerative algo-
rithm. The first and second top-ranked cluster showed 
RNA binding to the ZBD and the CD of M2-1, respec-
tively. In the ZBD of M2-1, protein residue R4 formed 
polar contact with the nucleotide U-4 of SH7 RNA 
(Figure 3B and D). In the CD of M2-1, protein residue 
K92 formed ionic interaction with the phosphodiester 
backbone of U-4 RNA nucleotide (Figure 3A and C), 
being consistent with the crystal structure that a direct 
interaction of K92 and the phosphodiester backbone of 
RNA1ʹ was observed.

Free energy profiles were calculated from GaMD simu-
lations by using the polar interactions and the radius of 
gyration (Rg) of the SH7 RNA as reaction coordinates. 
With the RNA molecule being very small, the end-to-end 
distance can also be used to characterize the molecular 
conformational changes although it often undergoes high 
fluctuations. Here, using Rg as a reaction coordinate to 
calculate free energy profiles allowed us to capture differ-
ent conformational states of the system. For SH7 binding 
to the CD of M2-1 protein, the distance between M2-1 
residue K92 and RNA base U4 was ~3 Å in the free 
energy minimum (Figure 3E); While for RNA binding to 
the ZBD of M2-1, free energy minimum was located at 
M2-1 residue R4 and RNA base U4 distance ~5 Å 
(Figure 3F).

In agreement with the experimental results, GaMD 
simulations revealed that binding of RNA to the CD or 
ZBD of the M2-1 protein are independent events. 
Together, the results provided important insights into the 
recognition mechanism between RNA and HRSV M2-1 
protein, which can be valuable for effective drug design 
and development for its related diseases.

Mechanism of RNA Binding to a Musashi 
RNA-Binding Proteins
The Musashi 1 (MSI1) protein serves as a therapeutic drug 
target for treating several cancers such as colorectal, ovarian, 
bladder and myeloid leukemia. It is known to bind and 
suppresses translation of the 3ʹ-UTR of Numb mRNA,109 

however, the molecular mechanism of this interaction 
remains elusive which is important for effective drug design.

We performed all-atom GaMD simulations to study the 
binding mechanism between Numb RNA and MSI1.86 For 
system setup, the Numb RNA was placed ~30 Å away 
from the MSI1. The AMBER force fields were used with 
ff14SBonlysc for protein, RNA.LJbb110–112 for RNA and 
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TIP3P model for water molecules. Spontaneous binding of 
Numb RNA to the MSI1 protein was successfully captured 
in 6 out of the 19 independent 1200 ns of GaMD 

simulations. In Sim1, RNA binding was observed at 
~100 ns where the RMSD of RNA relative to the NMR 
structure reduced to ~2.50 Å (Figure 4A). In Sim2, RNA 

Figure 3 (A and B) RNA (orange) bound to the Core domain (CD) and RNA (red) bound to the Zn-binding domain (ZBD) of the M2-1 protein (blue ribbons) with highlighted M2- 
1 interacting residues (magenta sticks) (C) Combined time course distance plots of CD M2-1 residue K92:NZ and RNA base U-4:P (D) Combined time course distance plots of 
ZBD M2-1 residue R4 and RNA base U-4:P (E) Free energy profiles with radius of gyration (Rg) of RNA and the distance between M2-1 residue K92 and RNA base U4 revealed 
low-energy Unbound and Bound states of the RNA on M2-1 CD surface (F) Free energy profiles with Rg of RNA and the distance between protein residue R4 and RNA base U4 
revealed low-energy Unbound and Bound states of the RNA on M2-1 ZBD. Reprinted from Structure, 28(9), Gao Y, Cao D, Pawnikar S, et al. Structure of the Human Respiratory 
Syncytial Virus M2-1 Protein in Complex with a Short Positive-Sense Gene-End RNA. 979-990. e974. Copyright © 2020 Elsevier Ltd., with permission from Elsevier.85
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binding was observed at ~1010–1130 ns followed by RNA 
dissociation into the bulk solvent (Figure 4A). The RNA 
bound to MSI1 after ~800 ns in Sim3, Sim4 and Sim5 
(Figure 4A). In Sim6, spontaneous binding of RNA 
wasobserved after ~1000 ns (Figure 4A).

Free energy profiles were calculated by using reaction 
coordinates including backbone RMSD of RNA core rela-
tive to its NMR bound conformation, radius of gyration 
(Rg) and the number of native contacts (Ncontact). Five 
low-energy minima were characterized - “Bound”, 
“Intermediate I1”, “Intermediate I2”, “Intermediate I3” 
and “Unbound”. These states were identified at the back-
bone RMSD of the RNA core and Ncontacts being (2.0 Å, 
1500), (5.2 Å, 480), (9.5 Å, 200), (25.0 Å, 10) and (40 
Å, 0), respectively (Figure 4B). The “Unbound”, 
“Intermediate I1”, “Intermediate I2” and “Intermediate 
I3” states were identified at the backbone RMSD of the 
RNA core and Rg of Numb being (40.0 Å, 6.2 Å), (5.0 Å, 
7.2 Å), (6.9 Å, 6.2 Å), respectively (Figure 4C). From the 
GaMD simulations, the Rg of the Numb RNA in the 

“Bound” state was observed to have a wider range as 
compared to the “Unbound” and “Intermediate” conforma-
tions (Figure 4B and C) which suggested an induced fit 
mechanism of Numb RNA binding to MSI1. The I1 state 
showed interactions of Numb RNA with the β2-β3 loop 
and C terminus of MSI1 (Figure 4D). Three hydrogen 
bonds were formed between MS1 C terminus residue 
Arg99 and the RNA nucleotide A106 (Figure 4D). The 
I2 state showed flipping of the MS1 residue Arg61 side-
chain towards the solvent leading to the formation of 
hydrogen bond and salt-bridge interactions with the phos-
phate oxygen of the sidechain and backbone of RNA 
nucleotide A106, respectively (Figure 4E). The I3 state 
showed large conformational changes in the MS1 
C terminus where hydrogen bond and salt bridge interac-
tions were observed between the C terminus residue Arg99 
and the sidechain and backbone of RNA nucleotide A106, 
respectively (Figure 4F). These important understandings 
of the RNA binding mechanism to MSI1 provided by 

Figure 4 GaMD simulation of Numb RNA-MSI1 protein interaction. (A) Time courses plots of backbone RMSD of core RNA (central three nucleotides GUA of the Numb 
RNA) relative to the NMR structure (PDB: 2RS2); (B) Free energy profiles of the backbone RMSD of core RNA relative to the NMR structure and number of native 
contacts between MSI1 and Numb RNA; (C) Free energy profiles of Rg of the Numb RNA and backbone RMSD of core RNA relative to the NMR structure; (D–F) Low- 
energy intermediate conformational states I1 (D), I2 (E) and I3 (F) as identified from the free energy profile of the Numb RNA-MSI1 simulation system. Reprinted from 
Wang J, Lan L, Wu X, Xu L, Miao Y. Mechanism of RNA recognition by a Musashi RNA-binding protein. Curr Res Struct Biol. 2022.4:10-20. Creative Commons license and 
disclaimer available from: http://creativecommons.org/licenses/by/4.0/legalcode.86
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GaMD simulations can aid rational structure-based drug 
design against MSI1 and other related diseases.

Ligand Binding Thermodynamics and 
Kinetics Characterized by LiGaMD
LiGaMD simulations performed on model systems such as 
host-guest and protein-ligand enabled ligand binding ther-
modynamics and kinetics calculations through repetitive 
events of binding and dissociation observed of small- 
molecule ligands.82 Calculations were done using 
LiGaMD and LiGaMD_Dual schemes where a boost 
potential is applied to the non-bonded and bonded interac-
tions between the ligand-protein/environment, respec-
tively, along with GAFF and q4MD force field 
parameters used to simulate binding of aspirin and 1-buta-
nol (two guest molecules) to cyclodextrin (CD) (host). 
PMF profiles were calculated regarding the distance 
between the guest and host molecules using multiple inde-
pendent 300 ns LiGaMD simulations. For most of the 
systems, the bound state was located at the global energy 
minima. The PMF plot showed similar results as compared 
to 6500ns cMD simulations in terms of low energy states 
including “Bound”, “Intermediate” and “Unbound”. 
Further, to characterize the conformational changes in the 
host, PMF profiles were calculated using the radius of 
gyration (Rg) as the reaction coordinate. The apo system 
and bound guest 1-butanol biased the system to adopt 
“Compact” (lower Rg) low energy conformational state 
whereas aspirin bound system predominately adopted 
“Open” (higher Rg) state. LiGaMD PMF profiles showed 
that the q4MD force field preferred open conformation 
where the host predominantly adopted compact conforma-
tion using GAFF forcefield. Similarly, the binding free 
energies of the host-guest systems were calculated using 
LiGaMD 3D PMF profiles. The binding free energies 
calculated from hundreds of nanoseconds of LiGaMD 
simulations were in excellent agreement with that of the 
experiments and previous “converged” microsecond- 
timescale cMD simulations. In addition to cMD, 
LiGaMD simulations’ errors in these values were less 
than 1.0 kcal/mol. Moreover, LiGaMD simulations were 
also used to calculate the kinetic binding and dissociation 
constants. Reweighting of kinetics of the LiGaMD simula-
tions was done using the Transition state theory and 
Kramer’s rate theory. The kinetic binding rate calculated 
from the LiGaMD simulations decreased to some degree 
as compared to the previous cMD simulations while guest 

dissociation rates increased significantly in LiGaMD_Dual 
simulations.

Similarly, repetitive binding and dissociation of benzami-
dine inhibitor in trypsin were observed during microsecond 
LiGaMD simulations (Figure 5A, B and F). 2D reweighted 
PMF profile was plotted regarding the atom distances benza-
midine:C-Asp189:CG and Trp215:NE-Asp189:CG to charac-
terize conformational changes of protein during ligand 
binding/unbinding (Figure 5C). Five low-energy wells were 
characterized from the free energy profiles- Bound, 
Intermediate 1, Intermediate 2, Unbound 1, and Unbound 2. 
When the inhibitor was bound to the protein, benzamidine: 
C-Asp189:CG distance was ~4 Å whereas Trp215:NE- 
Asp189:CG distance was ~12.5 Å. Here, the inhibitor was 
bound to the Asp189 residue of the protein S1 pocket as seen 
in the X-ray crystal conformation. The Intermediate 1 showed 
inhibitor bound near Trp215 “gate” close to His57-Asp102- 
Ser214 catalytic whereas the Intermediate 2 showed ligand 
bound to the open S1* pocket (Figure 5D and E). 
Rearrangement of Trp215 loop and sidechain flipping of 
Trp215 residue facilitated the opening of S1* pocket in the 
Intermediate 2 state. Additionally, the ligand binding free 
energy of trypsin-benzamidine complex calculated from the 
3D PMF profile was −6.13 ± 0.35 kcal/mol which agreed 
excellently with the experimental value of −6.2 kcal/mol.111 

Similarly, with the recorded time periods of ligand binding and 
unbinding, the reweighted kon and koff values were calculated 
as 1.15 ± 0.79 × 107 M−1·s−1 and 3.53 ± 1.41 s−1, respectively. 
Similar protocol was applied, as in the host-guest binding, to 
calculate these values using Kramer’s rate theory. These data 
were comparable to the values calculated from experiments.111

Peptide Binding Thermodynamics and 
Kinetics Characterized by Pep-GaMD
Pep-GaMD simulations have allowed us to capture repeti-
tive binding and dissociation of highly flexible peptides,83 

and thus enabled peptide binding thermodynamics and 
kinetics calculations. In Pep-GaMD, potential energy of 
the peptide is selectivity boosted allowing it to sample 
higher flexibility during the simulation. In the dual boost 
scheme, the entire system potential energy is boosted. Three 
model peptide systems including “PAMPAR” (PDB: 1SSH), 
“PPPALPPKK” (PDB: 1CKA) and “PPPVPPRR” (PDB: 
1CKB) were used to capture the binding/dissociation to the 
SH3 domains.113,114 1 μs Pep-GaMD allowed us to capture 
repetitive binding and dissociation of the three model pep-
tides during three independent production runs. In the 1 μs 
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Figure 5 LiGaMD simulations of benzamidine binding/dissociation to trypsin. (A) Time course plot of distance between benzamidine amidine:C atom and trypsin Asp189:CG atom 
calculated from representative LiGaMD simulation. (B) Reweighted (LiGaMD_Dual) and non-reweighted (LiGaMD_Dual_Modified) PMF profiles regarding distance between 
benzamidine amidine:C atom and trypsin Asp189:CG atom. (C) Reweighted 2D PMF profile regarding benzamidine amidine:C – trypsin Asp189:CG and trypsin Trp215:NE – 
Asp189:CG atom distances. (D and E) Intermediate 1 (I1) and Intermediate 2 (I2) low energy conformational states identified from 2D PMF profiles. (F) Benzamidine (sticks) binding 
pathway to trypsin (ribbon) obtained from LiGaMD simulations. Catalytic triad (His57, Asp102 and Ser214), Asp189 and Trp215 residues important for trypsin–benzamidine interaction 
are shown in sticks. Reprinted with permission from Miao Y, Bhattarai A, Wang J. Ligand Gaussian accelerated molecular dynamics (LiGaMD): characterization of ligand binding 
thermodynamics and kinetics. J Chem Theory Comput. 2020;16(9):5526–5547. Copyright © 2020, American Chemical Society.82
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Pep-GaMD simulations, the 1SSH peptide bound 3–4 times 
and dissociated 3 times to the SH3 domains. The 1CKA 
peptide was observed having 3–5 binding events whereas 
2–5 dissociation events. Similarly, in the 1CKB simulation, 
the peptide bound 3–4 times to the receptor whereas it 
dissociated 2–3 times (Figure 6).

3D Pyreweighting scripts were used to calculate the 
peptide binding free energies. These values agreed well 
with the experimental findings. Pep-GaMD predicted the 
binding free energy value to be −7.72 ± 0.54 kcal/mol 
for the 1CKA peptide which agreed well with the 

experimental value of −7.84 kcal/mol.112 The 1CKB 
peptide had −6.84 ± 0.14 kcal/mol binding free energy 
which is close to −7.24 kcal/mol112 as calculated from 
the experiments. The differences of binding free ener-
gies between the simulation predictions and experiments 
were less than 1.0 kcal/mol. In addition, with efficient 
sampling of peptide binding/dissociation Pep-GaMD 
helped us to predict the peptide binding kinetics. For 
the 1CKA system, the kon and koff were calculated as 
4.06 ± 2.26×1010 M−1⋅s−1 and 1.45 ± 1.07×103 s−1, 
respectively. This was in excellent agreement with the 

Figure 6 Pep-GaMD simulations of binding/dissociation of three model peptides to the SH3 domains: (A–C) X-ray crystal structures of the SH3 domains (green cartoon) 
bound by three different peptides (magenta cartoon) including (A) “PAMPAR” (PDB: 1SSH), (B) “PPPALPPKK” (PDB: 1CKA) and (C) “PPPVPPRR” (PDB: 1CKB). Key 
interaction residues are highlighted in sticks. Time courses of (D) 1SSH, (E) 1CKA and (F) 1CKB peptide RMSDs relative to X-ray structures calculated from three 
independent Pep-GaMD simulations. (G–I) 1D PMF profiles regarding the peptide backbone RMSDs of the (G) 1SSH, (H) 1CKA and (I) 1CKB structures calculated from 
the Pep-GaMD simulations. Reprinted from Wang J, Miao Y. Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): enhanced sampling and free energy and kinetics 
calculations of peptide binding. J Chem Phys, 2020;153(15):154109, with the permission of AIP Publishing. © 2020 Author(s). Published under license by AIP Publishing.83
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experimental values115 of kexp
on = 1.5 × 109 M−1⋅s−1 and 

kexp
off = 8.9 × 103 s−1. Hence, the Pep-GaMD simulation 

has enabled us to study the mechanism of peptide bind-
ing/dissociation to proteins by accelerating the interac-
tions between them. This is a significant contribution to 
the field as it is difficult to attain correct sampling of 
biomolecules that involves long-range electrostatic inter-
actions and conformational selection.

Conclusions
GaMD presents to be an unconstrained enhanced sampling 
technique, which can sample the conformational space of 
biomolecules and their interactions without the need of pre-
defined CVs. Using cumulant expansion to the second order, 
GaMD can achieve accurate reweighting of the simulations 
because the added boost potential exhibits a Gaussian dis-
tribution. GaMD can be implemented to a broad range of 
biological systems. In particular, recent GaMD simulations 
have revealed important binding mechanisms of small- 
molecule ligands,71,84 peptides,116,117 proteins78 and nucleic 
acids85,86 to the target receptors. 300 ns of GaMD simula-
tions has successfully captured complete folding of chignolin 
(10 residues) into its native conformation61 with a minimum 
RMSD of 0.2 Å relative to the NMR native conformation 
(PDB: 1UAO). The reweighted free energy profiles calcu-
lated showed distinct low-energy conformational states of 
chignolin as “Folded”, “Intermediate” and “Unfolded”. With 
the same simulation time, however, aMD failed to distin-
guish between the unfolded and intermediate states.118 

GaMD has been further developed for more powerful tech-
niques of improved sampling such as LiGaMD82 and Pep- 
GaMD.83 Altogether, novel GaMD methods and advance-
ment in computer hardware will enable us to approach and 
simulate complex biomolecular interactions at atomic level.

Future Perspectives
GaMD has been a successful enhanced sampling method to 
characterize biomolecular interactions and binding processes. 
The novel selective GaMD algorithms including LiGaMD and 
Pep-GaMD can efficiently calculate the binding free energy of 
ligand/peptide and their kinetic rate constants by adding 
a selective boost to the essential ligand/peptide potential 
energy terms. Important mechanistic insights into drug binding 
to the ACE2 receptor have provided a significant perspective 
for rational drug development against the COVID-19 pan-
demic. RNA binding to the M2-1 and MSI1 model proteins 
depicted by GaMD simulations was in good agreement with 

the experimentally resolved structures. However, only very 
few binding events were captured in GaMD simulations of 
the CXCR4-drug (Figure 1) and protein-RNA (Figures 3 and 
4) systems and LiGaMD simulations of the ACE2-inhibitor 
system (Figure 2). The simulations did not sample enough 
binding and unbinding events (eg, at least 3–5 or more) in 
order to estimate the ligand/RNA binding free energies and 
kinetics for comparison with experimental data. Therefore, 
these simulations still suffered from insufficient sampling. 
Further method developments and advances in supercomput-
ing are still needed to obtain converged binding simulations 
and thus calculate accurate biomolecular binding thermody-
namics and kinetics. In addition to binding of the small- 
molecule ligands and flexible peptides/RNA, new platforms 
also need to be explored to study biomolecular interactions of 
larger complexes such as protein–protein interactions. The 
binding analysis using GaMD and further improved simulation 
methods shall provide significant contributions in rational 
computer-aided drug design.
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