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Purpose: Appropriate gentamicin dosing in continuous renal replacement therapy (CRRT) 
patients remains undefined. This study aimed to develop a population pharmacokinetic (PK) 
model of gentamicin in CRRT patients and to infer the optimal dosing regimen for gentamicin.
Methods: Fourteen CRRT patients dosed with gentamicin were included to establish 
a population PK model to characterize the variabilities and influential covariates of genta-
micin. The pharmacokinetic/pharmacodynamic (PK/PD) target attainment and risk of toxi-
city for different combinations of gentamicin regimens (3–7 mg/kg q24h) and CRRT effluent 
doses (30–50 mL/h/kg) were evaluated by Monte Carlo simulation. The probability of target 
attainment (PTA) was determined for the PK/PD indices of the ratio of drug peak concentra-
tion/minimum inhibitory concentration (Cmax/MIC > 10) and the ratio of area under the drug 
concentration–time curve/MIC over 24 h (AUC0-24h/MIC > 100), and the risk of toxicity was 
estimated by drug trough concentration thresholds (1 and 2 mg/L).
Results: A one-compartment model adequately described the PK characteristics of genta-
micin. Covariates including body weight, age, gender, and CRRT modality did not influence 
the PK parameters of gentamicin based on our dataset. All studied gentamicin regimens 
failed to achieve satisfactory PTAs for pathogens with an MIC ≥2 mg/L. A good balance of 
PK/PD target attainment and risk of toxicity (>2 mg/L) was achieved under 7 mg/kg 
gentamicin q24h and 40 mL/kg/h CRRT dose for an MIC ≤1 mg/L. CRRT dose intensity 
had a significant impact on the target attainment of AUC0-24h/MIC >100 and risk of toxicity.
Conclusion: A combination of 7 mg/kg gentamicin q24h and 40 mL/kg/h CRRT dose might 
be considered as a starting treatment option for CRRT patients, and drug monitoring is 
required to manage toxicity.
Keywords: gentamicin, CRRT, population pharmacokinetics, critically ill

Introduction
Sepsis is the most common cause of patient admission to an intensive care unit 
(ICU), and the morbidity and mortality of sepsis patients are consistently high.1,2 

Early and rational antimicrobial treatment is a key for the successful treatment of 
sepsis patients,3–5 and daily evaluation of the administered antibiotics in this 
critically ill patient population is recommended to ensure efficacy, reduce adverse 
drug reactions and minimize pathogen resistance.6,7

Gentamicin, a member of aminoglycosides, is widely used in the treatment of 
severe infections caused by gram-negative bacteria in sepsis patients.8 Gentamicin is 
mainly eliminated by renal excretion through glomerular filtration.9 In healthy 
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subjects, the clearance of gentamicin is about 80 mL/min, 
and the apparent volume of distribution is 0.25 L/kg, result-
ing in an elimination half-life of 2–3 h.9–11 As 
a concentration-dependent bacterial killing drug, the tradi-
tionally used pharmacokinetic/pharmacodynamic (PK/PD) 
index of gentamicin is the ratio of drug peak concentration/ 
minimum inhibitory concentration (Cmax/MIC > 10),12,13 

while recent data has suggested that the ratio of area under 
the drug concentration-time curve/MIC over 24 
h (AUC0-24h/MIC > 100) is the preferred PK/PD index.14 

The main concern of gentamicin usage is toxicities, such as 
nephrotoxicity and ototoxicity.15 The predictor for the risk 
of toxicity of gentamicin is drug trough concentration 
(Cmin), and the concentration threshold for a safe treatment 
is Cmin < 1–2 mg/L.12,13,16–18

Critical illness like the sepsis and septic shock is 
accompanied by vasodilatation and increased vascular per-
meability, leading to capillary leak syndrome.6 The capil-
lary leak is a driving force for the fluid shift from the 
intravascular space to the interstitial compartment, result-
ing in edema formation. This phenomenon often increased 
the volume of distribution for hydrophilic drugs, such as 
the aminoglycosides.19 Increased volume of distribution 
could lower the drug concentrations and consequently 
impact the PK/PD target attainment for concentration- 
dependent antibiotics.9 Another common damage of sepsis 
is acute kidney injury (AKI),20 and this could significantly 
decreased the drug’s renal clearance. For AKI patients, the 
continuous renal replacement therapy (CRRT) is often 
delivered for blood purification. The main modalities of 
CRRT include continuous venovenous hemofiltration 
(CVVH), continuous venovenous hemodialysis 
(CVVHD), and continuous venovenous hemodiafiltration 
(CVVHDF).21 As a small-molecular-weight solute 
removal technique, CRRT removes both of the endogen-
ous toxins and exogenous antibiotics, and this brings 
extracorporeal drug clearance and leads to decreased 
drug concentrations.18,22 Therefore, in critically ill patients 
with CRRT, the combined effects of critical illness and 
CRRT could make the PK of antibiotics quite complicated, 
leading to a challengeable antibiotic dosing. Our previous 
work has studied the dosing of gram-positive antibiotics in 
CRRT patients,23 while the dosing of gram-negative anti-
biotics like gentamicin in this patient population deserves 
attention as well.

To date, the PK data of gentamicin in CRRT patients are 
limited, and the available dosing recommendations are 
under debate. Chuk et al reported the PK of 5–7 mg/kg 

q24h aminoglycosides in 9 critically ill patients with 
a mean CVVH dose of 30 mL/kg/h, but only one patient 
dosed with gentamicin was included.15 Petejova et al inves-
tigated the PK of 2.4–3.3 mg/kg q24h gentamicin in 7 septic 
AKI patients under a mean CVVH dose of 45 mL/kg/h, and 
only three patients achieved the Cmax/MIC target after the 
first dose in this condition.11 D’Arcy et al studied the PK of 
5 mg/kg q24h gentamicin in 7 septic AKI patients under 
a mean CVVHDF dose of 42.1 mL/kg/h, and they recom-
mended a loading dose of 5–7 mg/kg gentamicin in this 
patient population.24 In these aforementioned studies, only 
the traditional compartmental or non-compartmental analy-
sis was performed, and the more preferred AUC/MIC index 
is not evaluated during the PD analysis. Hence, the avail-
able PK/PD analysis failed to provide reliable dosing regi-
men of gentamicin in this patient population.

The aims of this study are to establish a population PK 
model of gentamicin in CRRT patients and to explore the 
optimal dosing regimens of gentamicin in this patient 
population.

Materials and Methods
Study Data
A search of the literature data was made through the 
PubMed (until 14 May, 2021) using the search terms: (gen-
tamicin[Title/Abstract]) AND (renal replacement therapy 
[Title/Abstract] OR continuous venovenous hemofiltration 
[Title/Abstract] OR continuous venovenous hemodialysis 
[Title/Abstract] OR continuous venovenous hemodiafiltra-
tion[Title/Abstract] OR CVVH[Title/Abstract] OR 
CVVHD[Title/Abstract] OR CVVHDF[Title/Abstract]) 
AND (english[Filter]). A total of 25 publications were 
found, and four of them were identified as the gentamicin 
PK studies in CRRT patients.11,15,24,25 The PK studies with 
individual concentration data, complete gentamicin dosing 
information (eg, drug dose and infusion duration), specific 
CRRT settings (eg, CRRT effluent dose), and sampling 
schemes were selected for further analysis. Applying these 
criteria, one gentamicin CVVH study and one gentamicin 
CVVHDF study were included.11,24 In these two studies, 
there were 14 patients and 151 gentamicin concentration 
measurements. The gentamicin dose ranges from 2.4 to 
5 mg/kg with a fixed infusion time of 30 min, and the 
CRRT effluent dose is between 36.6 and 67.7 mL/h/kg. 
An overview of the characteristics of the included patients 
is presented in Table 1, and the scatter plot of plasma 
concentration-time after dose (TAD) is shown in Figure 1.
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Calculation of CRRT Clearance and 
Exploratory Data Analysis
The total clearance (CLtotal) of gentamicin in patients 
under CRRT consists of endogenous clearance (CLbody) 
and extracorporeal clearance (CLCRRT) (as shown in equa-
tion 1). The CRRT clearance provides information about 
the relative contribution of CRRT clearance to the total 
clearance. The clearance capacity of CRRT is indicated by 
the CRRT effluent dose, which is equal to the body 
weight-based effluent flow rate (QE, usually expressed in 
the unit of mL/h/kg). The calculation of CLCRRT (L/h) of 
a drug depends on the specific CRRT modality, and the 
formulas of CLCRRT for CVVH and CVVHDF modes are 
summarized in equations 2–8.11,23

CLtotal¼ CLbodyþCLCRRT (1) 

CVVH mode

CLCRRT CVVHð Þ¼CLCRRT preð ÞþCLCRRT postð Þ (2) 

CLCRRT preð Þ ¼ Qf � Sc � Qb= Qb þ Qrep
� �h i

=1000

(3) 

CLCRRT postð Þ ¼ Qf � Sc=1000 (4) 

CVVHDF mode:

CLCRRT CVVHDFð Þ ¼ CLCRRT preð Þ þ CLCRRT postð Þ

(5) 

CLCRRT preð Þ ¼ Sd � QE � Qb= Qb þ Qrep
� �h i

=1000

(6) 

CLCRRT postð Þ ¼ Sd � QE=1000 (7) 

QE ¼ Qf þ Qd (8) 

Where CLCRRT (pre) is the clearance from CRRT using the 
pre-filter hemodilution, and ClCRRT (post) is the clearance 
from CRRT using the post-filter hemodilution. Qb is the 
blood flow rate, and Qrep is the replacement fluid rate. Qf is 
the ultrafiltration rate (mL/h), and Qd is the dialysate flow 
rate (mL/h). Sc is the sieving coefficient for CVVH mode, 
and Sd is saturation coefficient for CVVHDF mode.

A non-compartmental model-based exploratory analy-
sis was performed to evaluate the contribution of residual 
CLbody to the CLtotal (CLratio=1-CLCRRT/CLtotal). As shown 
in Table 1, the CLratio for four of the patients is less than 
0.05, indicating a near-zero contribution of the CLbody. 
Therefore, the CLtotal in these four patients was assumed 
to be equal to CLCRRT in the following the population PK 
model development.

Population PK Model Development
The concentration-versus-time data of gentamicin were 
analyzed by a non-linear mixed-effects modeling approach 
using the NONMEM® software (version 7.3, Icon 
Development Solutions, Ellicott City, MD, USA). The 
PK parameters were estimated using the first-order condi-
tional estimation with the interaction (FOCEI) method. 

Table 1 Demographics and Clinical Characteristics of the Study Patients Receiving Continuous Renal Replacement Therapy (CRRT)

Study Patient 

ID

Sex Age Weight 

(kg)

Apache 

II Score

Type of 

CRRT

Blood 

Flow 

(mL/min)

CRRT 

Dose 

(mL/kg/h)

Saturation 

Coefficient

CRRT 

Clearance 

(L/h)

Dosing Regimen CLratio  

(CLbody 

/CLtotal)

Petejova 

et al 

(n=7)11

1 Male 79 80 42 CVVH 200 45 0.75 2.7 3 mg/kg q24h 0.017

2 Male 68 94 28 CVVH 200 45 0.82 3.5 2.5 mg/kg q24h 0.140

3 Female 71 72 30 CVVH 200 45 0.87 2.8 3.3 mg/kg q24h 0.492

4 Female 69 90 36 CVVH 200 45 0.76 3.1 2.7 mg/kg q24h 0.190

5 Male 42 90 25 CVVH 200 45 0.78 3.2 2.7 mg/kg q24h 0.303

6 Male 69 90 40 CVVH 200 45 0.76 3.1 2.7 mg/kg q24h 0.017

7 Male 51 102 25 CVVH 200 45 0.77a 3.5 2.4 mg/kg q24h 0.526

D’Arcy 

et al 

(n=7)24

8 Male 34 48 29 CVVHDF 200 67.7 0.77a 2.5 5 mg/kg q24h 0.287

9 Female 68 68 27 CVVHDF 200 41.3 0.77a 2.2 5 mg/kg q24h 0.303

10 Male 50 64 31 CVVHDF 200 47.0 0.77a 2.3 5 mg/kg q24h 0.185

11 Male 57 72 30 CVVHDF 200 38.6 0.77a 2.1 5 mg/kg q24h 0.272

12 Female 69 56 28 CVVHDF 200 42.1 0.77a 1.8 5 mg/kg q24h 0.466

13 Male 74 56 24 CVVHDF 200 36.6 0.77a 1.6 5 mg/kg q24h 0.022

14 Female 77 64 26 CVVHDF 200 47.2 0.77a 2.3 5 mg/kg q24h 0.042

Median – 68.5 72 28.5 – 200 45 0.77 2.6 – 0.231

Note: aThe Sd (0.77) is the median value of the observed values from Petejova et al study.
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The models were executed by the Perl-speaks-NONMEM 
program (PsN, version 5.0.0, Uppsala University, Uppsala, 
Sweden) with the Pirana software (version 2.9.9, Pirana 
Software & Consulting BV) as an interface. The R® soft-
ware (version 4.0.3, R Foundation for Statistical 
Computing, Vienna, Austria) was used for the plotting 
and simulation.

The one-compartment and two-compartment models 
were examined as the candidate structural model. The 
clearance (CL) is modeled as a sum of CLbody and 
CLCRRT. The endogenous drug clearance was estimated, 
and the extracorporeal clearance was determined as afore-
mentioned. The inter-individual variability (IIV) on the 
typical population parameter estimates was modeled 
using a log-normal distribution with a mean of zero and 
a variance of ω2. For instance, the individual CL for CRRT 
patients was expressed as CLbody*EXP (ETA (1)) + 
CLCRRT. For the residual model, which represents the 
unexplained variability, we explored the additive error 
model, the proportional error model and the combined 
(additive + proportional) error model. Model comparison 
was guided by the objective function value (OFV) and 
goodness of fit (GOF) plots (including the observed con-
centrations versus individual predicted concentration, the 
observed concentrations versus population predicted con-
centration, the conditional weighted residuals (CWRES) 
versus population predicted concentration, and the condi-
tional weighted residuals versus time after dose). After 

determining the base model, the covariates screening was 
performed. The statistical criterion for addition of 
a covariate parameter is a drop of OFV by at least 3.84 
units (p < 0.05).

For the final model, the bootstrap approach was 
employed to ascertain the PK parameters uncertainty, and 
the prediction-corrected visual predictive check (pcVPC) 
was performed to assess the predictive performance of the 
model.26 The bootstrap procedure was based on the para-
meter estimation of different re-sampled dataset (1000 
times) executed by the PsN toolkit, and the resulting 
parameters (eg, the median and confidence intervals of 
the PK parameters) were compared with those estimated 
from the original dataset. The pcVPC was based on the 
predicted concentration–time profiles of 1000 virtual data-
sets simulated from the final fixed parameters and var-
iances estimates, and the observed and predicted 
concentrations were binned across time.

Simulation-Based Treatment Optimization
Using the final model, the efficacy and toxicity of gentami-
cin in CRRT patients under different gentamicin regimens 
and CRRT effluent doses were evaluated by the Monte Carlo 
simulation approach. A total of 15 treatment options were 
proposed based on the combinations of gentamicin regimens 
(3, 4, 5, 6, and 7 mg/kg q24h with an infusion period of 30 
min) and CRRT effluent doses (30, 40, and 50 mL/kg/h). For 
each simulation, 10,000 virtual critically ill patients were 

Figure 1 Scatter plot of gentamicin concentrations for the included 14 critically ill CRRT patients with different gentamicin dosing regimens.
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selected from the MIMIC-III database,27 which is publicly 
available and comprises de-identified health-related data 
associated with over 40,000 patients who stayed in critical 
care units of the Beth Israel Deaconess Medical Center 
between 2001 and 2012. The body weight of patients was 
restricted to the range of 48–102 kg, which is the observed 
limit in our included patients. The Sd value was fixed to the 
observed median value of 0.77. We collected the gentamicin 
plasma concentration–time data after the first dose and at the 
steady state (after the fifth dosing), and PK profiles from the 
first dose to the steady state were plotted to present the 
accumulation. The peak concentration was defined as 30 
min after the infusion was complete.

The Cmax/MIC > 10 and AUC0-24h/MIC > 100 were 
investigated as surrogate markers for gentamicin’s efficacy. 
The probability of target attainment (PTA) against pathogens 
with different MICs (1 and 2 mg/L) was calculated to assess 
the potential efficacy.13,28,29 Toxicity targets (Cmin > 1 or 
2 mg/L) were also evaluated, and the proportion of simulated 
patients with Cmin >1 or 2 mg/L after the first dose and at 
steady state was calculated to determine the risk of toxicity.

Results
Patients
Fourteen CRRT patients consisting of nine males and five 
females were included (Table 1). The median value of 
weight and age of the included patients were 72 kg and 
68.5 years, respectively. The CRRT dose of Petejova et al11 

study was 45 mL/kg/h, and the median CRRT dose of 
D’Arcy et al24 was 42.1 mL/kg/h.

Population PK
The one compartment model was adequate for the PK 
dataset, and a change to the two-compartment model 
does not significantly improve the model fit. The unex-
plained residual variability was well described by 
a combined (additive + proportional) error model, and 
the additive and proportional errors were 0.156 mg/L and 
8.0%. In the following covariate screening, none of the 
clinical variables was statistically significant (p < 0.05) for 
the PK parameters based on the univariate analysis.

The PK parameters and associated uncertainties of the 
final model are summarized in Table 2. The bootstrap 
results demonstrated that the estimated PK parameters 
were robust. The GOF plots (Figure 2) showed an overall 
good fit of the model to the observed data, although there 
was slight bias in the plot of CWRES versus time after 

dose. The pcVPC plot (Figure S1) demonstrated 
a reasonable agreement between the simulated and 
observed gentamicin concentrations, which shows that 
the final PK model is acceptable.

Simulation-Based Efficiency and Toxicity 
Evaluation
At steady state, the simulation results of patients given 
different gentamicin dosing regimens (3–7 mg/kg q24h) 
under CRRT doses of 30, 40, and 50 mL/kg/h are pre-
sented in Tables 3–5, and the simulation results of the 
first day are shown in Tables S1–S3. The simulated 
results demonstrated that the PTAs of Cmax/MIC >10 
for gentamicin regimens (6 and 7 mg/kg q24h), regard-
less of the CRRT dose, achieved desirable target attain-
ment rate (>90%) both at the first day and at steady 
state for pathogens with MIC ≤ 1 mg/L. The gentamicin 
regimen of 5 mg/kg q24h achieved near or greater than 
90% PTAs at steady state for pathogens with an MIC of 
1 mg/L, but the PTAs were less than 80% (between 
75.6% and 78.4%) at the first day. For pathogens with 
an MIC of 2 mg/L, the fractions of patients attaining the 
Cmax/MIC >10 target were unacceptably low (<52%) for 
all the studied gentamicin dose regimens. When looking 
at the PTAs of AUC0-24h/MIC, only the gentamicin regi-
men of 7 mg/kg q24h under CRRT dose of 30–40 mL/ 
kg/h achieved a good attainment rate (near or greater 
than 90%) at the first day and at steady state for an MIC 
≤ 1 mg/L.

Table 2 Parameter Estimates of the Final Population 
Pharmacokinetic Model and the Results of the Bootstrap

Parameter Final PK Model Bootstrap Results

Estimate (RSE%) 
[Shrinkage%]

Median 95% CI

Fixed effects

CLbody (L/h) 1.20 (20.3) 1.29 0.89–1.93

Vd (L) 27.60 (5.8) 27.13 24.13–30.77

Inter-individual 

variability (CV%)

CLbody 69.3 (35.6) [17.8] 59.1 26.8–86.6

Vd 22.1 (37.0) [0.1] 20.2 14.2–28.8

Residual variability

Additive error (mg/L) 0.156 (30.6) [7.5] 0.158 0.051–0.270

Proportional error (%) 8.0 (50.8) [7.5] 7.6 3.2–11.5

Notes: CV (%) is calculated according to: CV %ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ω2ð Þ � 1

p
� 100%; ω2 : 

the variance in the log-domain. 
Abbreviations: RSE, relative standard error; CI, confidence interval; CLbody, 
endogenous clearance; Vd, volume of distribution;
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Regarding the risk of toxicity, when the Cmin <1 mg/L 
safety threshold was applied, the percent patients attaining the 
non-toxicity target were relatively low for the gentamicin 
regimens of 6–7 mg/kg q24h (CRRT dose between 30 and 
50 mL/kg/h) at the first day and the steady state (31.4–86.8%), 
and the gentamicin regimen of 5 mg/kg q24h could only 
achieve a low risk of toxicity (<8%) at a CRRT dose of 
50 mL/kg/h. In terms of the Cmin <2 mg/L safety threshold, 
good safety could be achieved for all gentamicin regimens 
under CRRT dose of 40–50 mL/kg/h. While at a CRRT dose 

of 30 mL/kg/h, only gentamicin regimens of 3–4 mg/kg q24h 
could achieve the low risk of toxicity (1.7–9.7%). Overall, 
drug accumulation for the dosing interval of 24 h was not 
apparent, as indicated by the simulated PK profiles in Figure 
S2 for 7 mg/kg gentamicin under a CRRT dose of 40 mL/kg/h.

Discussion
The PK data to guide appropriate gentamicin dosing in 
CRRT patient population are limited. Previous studies 
mainly focused on the summary PK characteristics of 

Figure 2 Goodness-of-fit plots of the final gentamicin population pharmacokinetic model. Top left panel: observed concentrations versus individual predictions of gentamicin 
in plasma. Top right panel: observed concentrations versus population predictions of gentamicin in plasma. Bottom left panel: conditional weighted residuals (CWRES) versus 
population predicted gentamicin concentrations. Bottom right panel: CWRES versus Time after dose.
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gentamicin in CRRT patients using the two-stage compart-
mental or non-compartmental approach. The PK/PD target 
attainment of gentamicin in CRRT patients was not 
reported, and the impact of CRRT on the gentamicin’s 
PK and PD attainment was unclear. In this study, we 
used a population modeling and simulation approach to 
characterize the PK of gentamicin and to inform its opti-
mal dosing regimens in CRRT patients.

One- and two-compartment models were both reported 
for gentamicin,11,12,30 and our dataset was adequately 
described by the one-compartment model. The use of 
a one-compartment model for this dataset can also be 
visually evident from the gentamicin concentration–time 
profiles (Figure 1). A concern of using different compart-
ment models is that the peak concentration may be esti-
mated differently by one- and two-compartment models 

and may therefore have an impact on the target attainment 
of Cmax/MIC >10. Aminoglycoside antibiotics are known 
with short distribution phase, and the distribution is 
expected to be complete by 30 minutes after the end of 
infusion.31 As a common practice for aminoglycosides, the 
Cmax is usually defined as the concentration point 30 min 
after the end of infusion for the calculation of Cmax/MIC 
index. Therefore, the use of one-compartment model is 
acceptable for the PK analysis and simulations of the 
PK/PD target attainment.

The PK of gentamicin in septic critically ill patients 
with CRRT is quite complicated. On one side, the patho-
physiological changes such as capillary leak and renal 
dysfunction could lead to increased volume of distribution 
and decreased renal clearance.32 On the other side, the 
prescribed CRRT could provide increased gentamicin 

Table 3 The Probability of Target Attainment (PTA) of PK/PD Indices and Non-Toxicity Targets for Patients with Different Gentamicin 
Dose Regimens Under a CRRT Dose of 30 mL/kg/h at the Steady State

Dose AUC/MIC > 100 
(MIC = 1 mg/L)

AUC/MIC > 100 
(MIC = 2 mg/L)

Cmax/MIC > 10 
(MIC = 1 mg/L)

Cmax/MIC > 10 
(MIC = 2 mg/L)

Cmin < 1 mg/L Cmin < 2 mg/L

3 mg/kg q24h 9.85% 0 26.2% 0.03% 71.1% 98.3%

4 mg/kg q24h 53.1% 0 72.4% 0.88% 55.3% 90.3%
5 mg/kg q24h 78.5% 0.08% 93.5% 7.70% 44.3% 80.8%

6 mg/kg q24h 89.5% 9.85% 98.9% 26.2% 37.2% 71.1%

7 mg/kg q24h 94.9% 32.1% 99.8% 51.7% 31.4% 62.3%

Table 4 The Probability of Target Attainment (PTA) of PK/PD Indices and Non-Toxicity Targets for Patients with Different Gentamicin 
Dose Regimens Under a CRRT Dose of 40 mL/kg/h at the Steady State

Dose AUC/MIC > 100 
(MIC = 1 mg/L)

AUC/MIC > 100 
(MIC = 2 mg/L)

Cmax/MIC > 10 
(MIC = 1 mg/L)

Cmax/MIC > 10 
(MIC = 2 mg/L)

Cmin < 1 mg/L Cmin < 2 mg/L

3 mg/kg q24h 0 0 21.6% 0.02% 92.6% 99.9%
4 mg/kg q24h 19.9% 0 65.6% 0.7% 81.9% 99.5%

5 mg/kg q24h 60.7% 0 90.4% 6.07% 71.6% 97.2%

6 mg/kg q24h 81.9% 0 98.2% 21.6% 61.9% 92.6%
7 mg/kg q24h 91.1% 1.96% 99.7% 44.3% 54.3% 87.5%

Table 5 The Probability of Target Attainment (PTA) of PK/PD Indices and Non-Toxicity Targets for Patients with Different Gentamicin 
Dose Regimens Under a CRRT Dose of 50 mL/kg/h at the Steady State

Dose AUC/MIC > 100 
(MIC = 1 mg/L)

AUC/MIC > 100 
(MIC = 2 mg/L)

Cmax/MIC > 10 
(MIC = 1 mg/L)

AUC/MIC > 10 
(MIC = 2 mg/L)

Cmin < 1 mg/L Cmin <2 mg/L

3 mg/kg q24h 0 0 19.2% 0.04% 99.3% 100%
4 mg/kg q24h 0.02% 0 61.0% 0.61% 95.8% 99.9%

5 mg/kg q24h 30.4% 0 87.9% 5.37% 90.3% 99.8%

6 mg/kg q24h 67.4% 0 97.4% 19.2% 84.0% 99.3%
7 mg/kg q24h 84.8% 0 99.6% 40.1% 78.0% 98.1%
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clearance, and titration of CRRT dose is generally empiric. 
Our study showed that the volume of distribution of gen-
tamicin in critically ill CRRT patients is 0.39 L/kg, which 
is 56% higher than that of healthy subjects (0.25 L/kg).9 

Our finding of increased volume of distribution in CRRT 
critically ill patients was in good agreement with previous 
PK study of gentamicin in non-CRRT critically ill patients 
(volume of distribution: 0.41 L/kg).33 The increase of 
volume of distribution could lead to a decrease of Cmax. 
This indicates that a higher loading dose of gentamicin 
may be needed to achieve the target of Cmax/MIC >10. The 
residual endogenous clearance of gentamicin in CRRT 
patients in our study is only 20 mL/min, which is far less 
than that in normal people (80 mL/min) and also in non- 
CRRT critically ill patients (57–75 mL/min).9,33,34 This is 
likely due to the severe renal function damage nature of 
the included patients, as they are all AKI and septic shock 
patients. The prescribed CRRT recovered part of the clear-
ance capacity for gentamicin, leading to a typical total 
clearance of 63.3 mL/min. Nevertheless, the total clear-
ance of gentamicin in our CRRT patients was still lower 
than that of healthy subjects.

For PK/PD attainment evaluation of gentamicin, the 
choice of PK/PD index may play an important role for evalua-
tion of dosing regimens. Cmax/MIC > 10 was reported to be 
desirable for predicting efficacy in several studies,9,12,13,33 but 
recently the National Antimicrobial Susceptibility Testing 
Committee for the United States (USCAST) recommended 
using AUC/MIC rather than Cmax/MIC as the PK/PD index for 
aminoglycosides.14 In this study, both the Cmax/MIC >10 and 
AUC0-24h/MIC >100 based target attainment were investi-
gated, and we found that the optimal gentamicin regimen in 
critically ill CRRT patients differs upon the PK/PD index 
selected. For example, the optimal regimen of gentamicin in 
CRRT patients could be a combination of 6–7 mg/kg q24h 
gentamicin and 40–50 mL/kg/h CRRT dose for an MIC at 
1 mg/L based on the PK/PD target of Cmax/MIC >10. 
However, the optimal regimen would be 7 mg/kg q24h genta-
micin and 40 mL/kg/h CRRT dose when the target of 
AUC0-24h/MIC >100 was used. These findings highlighted 
that dosing recommendation should be caution with the PK/ 
PD index. The decreased clearance and increased volume of 
distribution of gentamicin could prolong the elimination half- 
life of the drug, which may lead to drug accumulation and 
consequently the toxicities. Delivery of the CRRT in an appro-
priate dose could increase the drug clearance and reduce the 
risk of toxicity. In the case of a Cmin <2 mg/L safety threshold, 
a CRRT dose of 40 mL/kg/h could achieve a good balance 

between the PK/PD target attainment (both of Cmax/MIC >10 
and AUC/MIC >100) and risk of toxicity. If a Cmin <1 mg/L 
safety threshold was applied, none of the investigated treat-
ment options was successful for simultaneously providing 
a desirable efficacy and a low risk of toxicity. When this safety 
threshold is used in the institutions, an extension of the genta-
micin dosing interval (eg, 36 or 48 h) combined with drug 
concentration monitoring is necessary to reduce the risk of 
toxicity.

Our study has some limitations to acknowledge. First, 
the sample size of this study is relatively small due to the 
paucity of available PK data. This prohibited the finding of 
the influential covariates of gentamicin and may also lead 
to biased parameter estimates. Second, a classification of 
the CRRT patients based on the residual renal function 
was not made in our study due to the lack of daily urine 
volume or serum creatinine data. This information could 
inform a more accurate treatment regimens of gentamicin 
in CRRT patients with different residual renal function. 
Third, our simulations only considered the CRRT dose 
range of 30 to 50 mL/kg/h, and lower CRRT doses (eg, 
20 to 25 mL/kg/h) were not evaluated. The 20 to 25 mL/ 
kg/h CRRT dose is the recommended option for AKI 
patients by the KDIGO clinical practice guideline.20 The 
use of lower CRRT dose is expected to produce desirable 
PK/PD target attainment, but the associated risk of toxicity 
would be high for our studied CRRT patient population, as 
indicated by the simulated results under the CRRT dose of 
30 mL/kg/h.

Conclusion
In conclusion, we developed a population PK model for 
gentamicin in critically ill CRRT patients. Model-based 
simulations predicted that a combination of 7 mg/kg q24h 
gentamicin and 40 mL/kg/h CRRT dose might be an optimal 
treatment option for patients with a pathogen MIC ≤1 mg/L, 
and drug monitoring is required to manage toxicity.
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