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Purpose: Most previous genetic studies of sleep behaviors were conducted individually, 
without comprehensive consideration of the complexity of various sleep behaviors. Our aim 
is to identify the genetic architecture and potential biomarker of the sleep health score, which 
more powerfully represents overall sleep traits.
Patients and Methods: We conducted a genome-wide association study (GWAS) of sleep 
health score (overall assessment of sleep duration, snoring, insomnia, chronotype, and day-
time dozing) using 336,463 participants from the UK Biobank. Proteome-wide association 
study (PWAS) and transcriptome-wide association study (TWAS) were then performed to 
identify candidate genes at the protein and mRNA level, respectively. We finally used linkage 
disequilibrium score regression (LDSC) to estimate the genetic correlations between sleep 
health score and other functionally relevance traits.
Results: GWAS identified multiple variants near known candidate genes associated with sleep 
health score, such as MEIS1, FBXL13, MED20 and SMAD5. HDHD2 (PPWAS = 0.0146) and 
GFAP (PPWAS = 0.0236) were identified associated with sleep health score by PWAS. TWAS 
identified ORC4 (PTWAS = 0.0212) and ZNF732 (PTWAS = 0.0349) considering mRNA expression 
level. LDSC found significant genetic correlations of sleep health score with 3 sleep behaviors 
(including insomnia, snoring, dozing), 4 psychiatry disorders (major depressive disorder, atten-
tion deficit/hyperactivity disorder, schizophrenia, autism spectrum disorder), and 9 plasma 
protein (such as Stabilin-1, Stromelysin-2, Cytochrome c) (all LDSC PLDSC < 0.05).
Conclusion: Our results advance the comprehensive understanding of the aetiology and 
genetic architecture of the sleep health score, refine the understanding of the relationship of 
sleep health score with other traits and diseases, and may serve as potential targets for future 
mechanistic studies of sleep phenotype.
Keywords: sleep, sleep health score, genome-wide association study, genetics, complex- 
traits

Introduction
Sleep is a complex neurological and physiological state. It is defined as a natural and 
reversible state of reduced responsiveness to external stimuli and relative inactivity, 
accompanied by a loss of consciousness.1 Sleep disorders can be classified as seven 
major categories: insomnia disorders, sleep-related breathing disorders, central disorders 
of hypersomnolence, circadian rhythm sleep-wake disorders, sleep-related movement 
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disorders, parasomnias, and other sleep disorders.2 Emerging 
evidence suggested that sleep disorders were associated with 
various cardiovascular and neurodegenerative disorders.3 

Besides, several unhealthy sleep behaviors, such as short or 
long sleep, evening-type chronotype preference, insomnia, 
snoring, and daytime dozing were associated with increased 
risk of psychiatric disorders.4–6 For example, from the perspec-
tive of genetics, several sleep phenotypes such as insomnia, 
snoring, and daytime dozing shared genes with attention- 
deficit/hyperactivity disorder (ADHD);4 a Mendelian rando-
mization study conducted by Daghlas et al7 provided robust 
evidence of the protective association between earlier diurnal 
preference and major depressive disorder (MDD). From 
a neurobiological point of view, MDD is associated with 
exaggerated rapid eye movement (REM) sleep qualities, and 
activity in emotion-related regions increases significantly dur-
ing REM sleep.8,9

Individual differences in sleep time and quality are 
affected by multiple variables, such as sex, age, psycholo-
gical and physiological conditions, skin temperature and 
sweating during sleep, culture and environmental 
factors.10 Besides, genetic variation also constitutes an 
important factor to individual differences in sleep prefer-
ence. Twin and family studies estimated the heritability of 
sleep phenotypes: self-reported napping and daytime sleep 
duration were 65% and 61%,11 sleep duration and sleep 
quality were 46% and 44%,12 chronotype preference was 
37% for morningness-eveningness questionnaire (MEQ),13 

insomnia was 39%.14 Single nucleotide polymorphism 
(SNP)-based heritability estimated at 10% for self- 
reported snoring and at 11.9% for daytime napping.15,16 

This also was supported by a number of candidate gene 
studies as well as genome-wide association studies 
(GWAS).15–19 For example, a large-scale GWAS estimated 
from accelerometer data identified 47 genetic associations 
at P < 5 × 10−8 across seven traits representing sleep dura-
tion, quality and timing, suggesting a polygenic model of 
inheritance.17 The largest GWAS published to date of self- 
reported daytime napping identified 123 loci, and 
explained 1.1% of the variance in daytime napping.16 In 
addition, the circadian clock drives daily physiology, such 
as the sleep-wake cycle, by regulating transcription, pro-
tein abundance, and function. Insufficient sleep affects the 
human brain, liver and blood transcriptome and disrupts its 
circadian regulation.20,21 In brain tissue, almost 70% of 
transcripts have been reported to be changed in abundance 
during daily circadian cycles. Transcripts and proteins 
related to synaptic signaling accumulated preceded the 

active phase, whereas accumulations of messenger RNAs 
and protein associated with metabolism and translation 
have been reported before the resting phase.21 This was 
supported by previous transcriptome-wide association 
study (TWAS). A previous TWAS in up to 446,118 adults 
of European ancestry from the UK Biobank, identified 38 
genes for which sleep duration SNPs influenced gene 
expression in 11 tissues, including nine brain regions, 
pituitary, whole blood.22 Another TWAS in one or more 
of the 14 tissue identified 24 genes for which insomnia 
SNPs influenced gene expression.23

A GWAS is commonly used to identify variants at 
genomic loci that are associated with complex traits. 
More recently, GWASs have made a major contribution 
to our understanding of the genetic architecture of sleep- 
related traits. Forty-two genome-wide significant loci for 
snoring were discovered in GWAS with an SNP-based 
heritability estimate of ~10% on the liability scale.15 In 
addition, 351 genomic risk loci associated with 
chronotype,18 123 loci associated with self-reported day-
time napping16 and 202 genomic loci associated with 
insomnia19 were also identified by GWAS. Notably, sleep 
behaviors are typically related and may affect each other. 
A cross-sectional study reported that participants who 
reporting napping or frequent snoring were less likely to 
have insomnia symptoms.24 Chronotype was also asso-
ciated with sleep duration as reported previously.25 

Previous studies used various questionnaires to assess 
sleep quality, for example, the Pittsburgh Sleep Quality 
Index (PSQI), which obtains information about: subjective 
sleep quality, sleep latency, sleep duration, habitual sleep 
efficiency, sleep disturbances, use of sleeping medication, 
and daytime dysfunction.26,27 However, the majority of 
previous genetic studies did not consider the complex 
nature of the overall sleep behaviors and focused on indi-
vidual trait. Here, we leverage data from the UK Biobank 
to identify the genetic architecture of the sleep health 
score, which is a combination of major sleep behaviors.

GWAS could identify genetic markers associated with 
sleep health score variation. In contrast, a proteome-wide 
association study (PWAS) is a new method for detecting 
gene-phenotype associations mediated by protein function 
alterations.28 Proteins are the final products of gene 
expression and the main functional components of cells, 
and thus are directly responsible for phenotype. PWAS 
could identify loci that confer sleep health score through 
their effects on brain protein and provide new insights into 
its mechanism. Contrary to GWAS, PWAS could reduce 

https://doi.org/10.2147/NSS.S326818                                                                                                                                                                                                                                  

DovePress                                                                                                                                                        

Nature and Science of Sleep 2022:14 2

Yao et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


burden of multiple testing correction and detect a signal 
that is too weak and spread to appear in GWAS, which is 
crucial in the case of rare variants.28 TWAS is another 
method to identify gene-trait associations at the level of 
gene expression by integrating GWAS and gene expres-
sion datasets.29 These two methods could prioritize the 
most likely variants/genes causally affecting the phenotype 
more accurately.28,29

In this work, we leveraged the UK Biobank dataset to 
define the genetic architecture of the sleep health score. To 
gain insight into how these loci contribute to sleep health 
score mechanism, we integrated sleep health score GWAS 
results with human brain proteomes to perform a PWAS, 
and with expression data from brain to perform a TWAS, 
respectively. To better reveal the underlying connections 
across sleep-related human complex traits, we also 
employed linkage disequilibrium score regression 
(LDSC) to estimate genetic correlations between sleep 
health score and a variety of traits and diseases for 
which published large-scale genome-wide summary statis-
tics were available. Previous studies on sleep health score 
assessed the relationship between sleep health score and 
the risk of cardiovascular disease30 or type 2 diabetes.31,32 

Our findings are a step forward in identifying the genetic 
factors that contribute to sleep health score and add novel 
insights into the association of sleep health score with 
diseases.

Materials and Methods
Ethical Approval
The UK Biobank study has ethical approval derived from 
Northwest Multi-Center Research Ethics Committee 
(reference 11/NW/0382). All participants provided written 
informed consent to participate. Information about ethics 
oversight can be found at https://www.ukbiobank.ac.uk/ 
ethics/.

UK Biobank and Definition of the Sleep 
Health Score
The genetic and phenotypic data of this study were 
obtained from the UK Biobank under application 46,478 
(http://www.ukbiobank.ac.uk/about-biobank-uk/). UK 
Biobank is a large-scale cohort study on half a million 
participants aged 40–69 years recruited in 2006–2010.33 

Information on participants’ health-related aspects was 
collected through touchscreen questionnaires, brief verbal 
interviews and a range of physical measurements. Blood 

samples were collected for genotyping. Genotyping, qual-
ity control (QC) and imputation were conducted by the 
UK Biobank and were described previously.33

In the present study, we included 336,463 unrelated 
participants (185,165 females, 56.98 ± 7.93 years) with 
complete genotypes, self-reported sleep behaviors and 
covariate data from the UK Biobank. Five self-reported 
sleep behaviors (sleep duration, chronotype, snoring, day-
time dozing and insomnia) were used to generate a sleep 
health score according to the previous study.30 Sleep dura-
tion was defined using the following question, “About how 
many hours sleep do you get in every 24 h? (include 
naps)”. Then, we categorized the sleep duration as short 
sleep (<7 h/day), normal (7–8 h/day), and long (≥9 h/day) 
consistent with previous studies.30 The participants with 
normal sleep were recoded as code 0 and with short or 
long sleep were recoded as code 1. Chronotype preference 
was defined based on the question,

Do you consider yourself to be (1) definitely a ‘morning’ 
person, (2) more a ‘morning’ than ‘evening’ person, (3) 
more an ‘evening’ person than a ‘morning’ person, (4) 
definitely an ‘evening’ person. 

We recoded the participants who responded (1) and (2) as 
code 0 and who responded (3) and (4) as code 1. Insomnia 
symptom was assessed using the question “Do you have 
trouble falling asleep at night or do you wake up in the 
middle of the night?”, participants with answer (1) never/ 
rarely were recoded as code 0 and participants with answer 
(2) sometimes and (3) usually were recoded as code 1. 
Snoring was obtained using the question “Does your part-
ner or a close relative or friend complain about your 
snoring?” with responses of (1) yes and (2) no, participants 
with the answer (2) were recoded as 0. Daytime dozing 
was obtained by asking “How likely are you to doze off or 
fall asleep during the daytime when you don’t mean to? 
(eg, when working, reading or diving)”, the responders 
with the answer (0) never/rarely and (1) sometimes were 
recoded as code 0, and the answer (2) often and (3) all the 
time were recoded as code 1.

For each sleep behavior, participants with code 0 were 
defined as low risk factor and received a score of 1. The 
sleep health score was obtained from the sum scores of the 
five sleep behaviors (ranges from 0 to 5), with the higher 
scores representing the healthier overall sleep traits. 
Overall sleep traits were defined as “healthy overall sleep 
traits” (sleep health score >3), “intermediate overall sleep 
traits” (1 health score <3) and “poor overall sleep traits” 
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(sleep health score ≤1) according to the sleep health score. 
The sleep health score in our study has been validated by 
the previous studies in the UK Biobank.30

Genome-Wide Association Study for 
Sleep Health Score in UK Biobank
GWAS analyses were performed in a maximal set of 
unrelated self-reported White participants in the UK 
Biobank using the PLINK2.0 software.34 We used KING 
software (http://people.virginia.edu/?wc9c/KING/) to gen-
erate unrelated subjects. Kinship coefficients had been 
calculated using the genetic data for each pair of partici-
pants in the cohort. Duplicate and related individuals were 
removed. Subjects who had a self-reported sex inconsis-
tent with the genetic gender, who were genotyped but not 
imputed or who withdrew their consents were also 
removed. GWAS was performed using a generalize linear 
regression model under an additive genetic model, using 
the sleep health score as the dependent variable, using 
gender, age, first ten principal components of the genome 
as covariates. Call rates < 0.90, Hardy–Weinberg equili-
brium exact test P values < 0.001, or minor allele frequen-
cies (MAFs) < 0.01 were excluded for quality control 
filters. We applied a nominal genome-wide statistical sig-
nificance threshold level of p < 5×10−8. Manhattan plots 
were generated by the “CMplot” R script (https://github. 
com/YinLiLin/R-CMplot).

Proteome-Wide Association Study
We integrated sleep health score GWAS results with reference 
human brain proteomes to perform a PWAS of sleep health 
score using the Functional Summary-based Imputation 
(FUSION) (https://gusevlab.org/projects/fusion/) pipeline.35 

PWAS is used to identify loci that confer sleep health score 
through their effects on brain protein.28 Human brain pro-
teomes were generated from the dorsolateral prefrontal cortex 
(dPFC) of 152 participants of European descent recruited by 
Banner Sun Health Research Institute.36 Proteomic profiling 
was performed using isobaric tandem mass tag (TMT) peptide 
labeling and liquid chromatography coupled to mass spectro-
metry. For proteome quality control, proteins with missing 
values in more than 50% were excluded, outlier samples 
were identified and removed through iterative principal com-
ponent analysis. Regression was used to remove the effects of 
proteomic sequencing batch, age, sex, postmortem interval 
and final clinical diagnosis of cognitive status from the con-
firmation proteomic profiles before estimating the protein 

weights. After quality control, the proteomic profiles included 
8168 proteins, of which 1139 were heritable and their protein 
weights were included in the PWAS. Individuals from Banner 
were genotyped using an Affymetrix Precision Medicine 
Array. After quality control, 152 individuals with proteomic 
and genetic data were included. More information on proteo-
mic profiling, proteome quality control, genotyping was 
described in detail previously.37

Transcriptome-Wide Association Study
TWAS is a method to identify gene-trait associations at the 
level of gene expression by integrating GWAS and gene 
expression datasets.29 In our study, TWAS of sleep health 
score was performed by the FUSION tool (https://gusev 
lab.org/projects/fusion/) through integrating sleep health 
score GWAS results with precomputed gene expression 
reference weights of brain (the dorsolateral prefrontal cor-
tex) tissue obtained from TWAS/FUSION website.35 

TWAS is capable to identify significant cis genetic corre-
lations between imputed gene expression and sleep health 
score, aiding identification of additional susceptibility loci. 
Bayesian sparse linear mixed model (BSLMM) was used 
to compute the SNP-expression weights in the 1-Mb cis 
loci of the gene for a given gene.38 The association testing 
statistics between predicted gene expression and target 
diseases was calculated as ZTWAS=w’Z/(w’Lw)1/238. 
Z denotes the scores of sleep health score, w denotes the 
weights, and L denotes the SNP-correlation (LD) matrix. 
We set P value <0.05 for statistical significance.

Genetic Correlations with Other Traits 
and Diseases
We further used LDSC (https://github.com/bulik/ldsc) to 
estimate the genetic correlation between sleep health score 
and other traits, by comparing sleep health score GWAS 
results with GWAS summary statistics of other traits. 
LDSC is used to estimate heritability and genetic correlation 
from GWAS summary statistics.39 For the correlation of 
sleep health score and other specific sleep behaviors, we 
obtained published GWAS summary statistics for insomnia 
(N = 386,533 individuals), snoring (N = 359,916), dozing (N 
= 386,548) and napping (N = 386,577) in the UK biobank.19 

Jansen et al19 identified 202 loci implicating 956 genes 
associated with insomnia, and reported GWASs of other 
sleep-related traits in the UK biobank. Unhealthy sleep 
behaviors have coincided with a strong increase in risk 
factors for psychiatric disorders.4,5,19 Genetic correlation 
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was also estimated between sleep health score and 5 psy-
chiatry disorders: bipolar disorder (BD) (20,352 cases and 
31,358 controls),40 major depressive disorder (MDD) 
(135,458 cases and 344,901 controls),41 attention deficit/ 
hyperactivity disorder (ADHD) (19,099 cases and 34,194 
controls),42 schizophrenia (11,260 cases and 24,542 
controls),43 autism spectrum disorder (ASD) (18,382 cases 
and 27,969 controls).44 We also obtained summary statistics 
for the genetic correlation calculation for the plasma protein 
(2994 plasma proteins in 3301 individuals of European 
descent).45 These previous GWAS studies of psychiatry dis-
orders and plasma protein identified multiple loci and pro-
vided GWA summary statistics at the PGC website (https:// 
www.med.unc.edu/pgc/results-and-downloads) or (http:// 
www.phpc.cam.ac.uk/ceu/proteins/). As recommended, LD 
scores from European ancestry individuals from 1000G 
were calculated for SNPs in the HapMap 3 SNP set and 
used to calculate genetic correlation.

Results
Genome-Wide Association Analysis
Table 1 shows the baseline characteristics of the study 
participants according to sleep health score. A total of 
336,463 unrelated participants (185,165 females, 56.98 ± 
7.93 years) with complete genotype, self-reported sleep 
behaviors and covariate data from the UK Biobank were 
available for study. We identified 32 genome-wide signifi-
cant (P < 5 × 10−8) variants near known candidate genes to 
be associated with sleep health score in our GWAS, after 
adjusted for gender, age and first ten principal components 
of the genome (Figure 1, Supplementary Table 1). For 
example, the most significant SNP was rs113851554 (P = 
3.39 × 10−14) near MEIS1 on chromosome 2, several other 
significant associations were with variants close to FBXL13 
(rs375365692, P = 1.80 × 10−10), MED20 (rs2274578, P = 
6.95 × 10−10) and SMAD5 (rs35711851, P = 9.69 × 10−9).

Many of the previous studies conducted GWASs of 
individual sleep behaviors.15,16,18,19 We compare our results 

with the three previous individual GWAS studies on sleep 
traits, including 446,118,22 386,53319 and 237,62723 indivi-
duals from the UK Biobank. Supplementary Table 2 presents 
candidate genes that are associated with sleep health score or 
associated with individual sleep behaviors including sleep 
duration, chronotype (morningness), snoring, daytime doz-
ing and insomnia. We observed 2 genes (RPL10P19 and 
AC022784.1) that determined both the sleep health score and 
sleep duration, 9 genes (such as FBXL13 and DDI2) that 
determined both the sleep health score and chronotype 
(morningness), ROBO2 gene that determined both the 
sleep health score and snoring, 3 genes (MEIS1, PSMC3 
and SMAD5) that determined both the sleep health score and 
insomnia, but no genes that determined both the sleep health 
score and daytime dozing. In addition, we observed 18 novel 
genes that associated with sleep health score, such as 
MED20, SMAD5. Our results extend the previous genetic 
studies on individual sleep behaviors by jointly evaluating 
multiple sleep behaviors.

PWAS of Sleep Health Score Identified 2 
Loci at the Protein Level
To identify genes that affect sleep health score through their 
effects on brain protein abundance, we integrated sleep 
health score GWAS results with human brain proteomes to 
perform a PWAS. The PWAS identified 2 genes whose cis- 
regulated brain protein levels were associated with sleep 
health score at empirical permutation p-value < 0.05, includ-
ing HDHD2 (Chr: 18, ZPWAS = 2.633, PPWAS = 0.0146) and 
GFAP (Chr: 17, ZPWAS = −3.26, PPWAS = 0.0236).

TWAS of Sleep Health Score Identified 2 
Loci at the mRNA Level
To further explore genes that were associated with sleep 
health score at the transcriptional level, we integrated sleep 
health score GWAS results with precomputed gene expres-
sion reference weights of brain (the dorsolateral prefrontal 

Table 1 Baseline Characteristics of the Study Participants

Sleep Health Score

n 0 1 2 3 4 5

Number of participants 336,463 929 16,112 71,304 129,022 97,115 21,981

Age: mean (SD), year 56.98 (7.93) 56.81 (7.69) 56.96 (7.76) 57.20 (7.75) 57.22 (7.84) 56.85 (8.06) 55.43 (8.47)

Females, n (%) 185,165 (55.03) 440 (47.36) 7989 (49.58) 37,247 (52.24) 71,587 (55.48) 56,122 (57.79) 11,780 (53.59)
Male, n (%) 151,298 (44.97) 489 (52.64) 8123 (50.42) 34,057 (47.76) 57,435 (44.52) 40,993 (42.21) 10,201 (46.41)

Abbreviation: SD, standard deviation.
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cortex) tissue to perform a TWAS. The TWAS also identified 
2 genes whose genetically regulated mRNA expression 
levels were associated with sleep health score at empirical 
permutation p-value < 0.05, including ORC4 (Chr: 2, ZTWAS 

= −2.11, PTWAS = 0.0212) and ZNF732 (Chr: 4, ZTWAS = 
2.0659, PTWAS = 0.0349). By comparing the TWAS results 
on sleep health score with previously published TWAS 
results on sleep duration22 and insomnia,23 we found that 
none of the sleep duration and insomnia genes previously 
identified by TWAS were replicable in our sleep health score 
TWAS results. We considered 2 genes as novel for which 
sleep health score SNPs influenced gene expression in brain 
tissue.

Genetic Correlations with Other Traits
LDSC regression observed several genetic correlation signals 
between sleep health score and other traits with P values < 
0.05 (Figure 2). For specific sleep behaviors, we observed 
significant negative genetic correlations with insomnia 
(rg = −0.5679, SE = 0.0331, P = 4.58 × 10−66), snoring (rg = 
−0.3356, SE = 0.0312, P = 6.60 × 10−27) and dozing (rg = 
−0.2986, SE = 0.0714, P = 2.91 × 10−5). We also determined 

genetic correlations with 5 psychiatry disorders and found 
significant negative genetic correlations with MDD 
(rg = −0.3664, SE = 0.0427, P = 9.02 × 10−18), ADHD (rg = 
−0.2506, SE = 0.05, P = 5.33 × 10−7), schizophrenia (rg = 
−0.1315, SE = 0.0361, P = 0.0003) and ASD (rg = −0.1716, 
SE = 0.0557, P = 0.0021). Further, we determined genetic 
correlations with plasma protein and found significant correla-
tions with 9 plasma protein, such as Stabilin-1 (rg = −0.3177, 
SE = 0.1284, P = 0.0134), Stromelysin-2 (rg = −0.3803, SE = 
0.1727, P = 0.0276) and Cytochrome c (rg = −0.227, SE = 
0.1112, P = 0.0413). See Table 2 for details.

Discussion
In this large comprehensive genetic analysis in the UK 
biobank cohort, we examined the genetic architecture of 
the sleep health score, which could reflect a more com-
prehensive sleep phenotype through taking into account 
the combined impact of five sleep behaviors on health. 
A total of 336,463 unrelated participants from the UK 
Biobank were available and we found that 32 genetic loci 
were associated with the sleep health score in GWAS, 
such as MEIS1, FBXL13, SMAD5 and MED20. 

Figure 1 Circular Manhattan plot of sleep health score genome-wide association study. The P values are from the sleep health score GWAS results of 336,463 participants 
from the UK biobank. The line that cross the circle represents the –log10 p value for each genetic variant. The red line on the Manhattan plot represents the genome-wide 
significance threshold (P < 5×10−8). The colors of the circle represent chromosome density. The plot was generated by the “CMplot” R script (https://github.com/YinLiLin/ 
R-CMplot). The significant genomic loci available in Supplementary Table 1.
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Furthermore, we performed a PWAS to identify genes 
associated with sleep health score at the protein level 
and identified two (HDHD2 and GFAP) genes. We also 
performed a TWAS and identified two (ORC4 and 
ZNF732) genes that were associated with sleep health 
score at the mRNA level. Lastly, through LDSC regres-
sion study, we demonstrated the shared biology of sleep 
health score with three sleep behaviors (insomnia, snor-
ing and dozing), four psychiatry disorders (MDD, 
ADHD, schizophrenia and ASD), and nine plasma pro-
tein (such as Stabilin-1, Stromelysin-2 and 
Cytochrome c).

The strongest association found in GWAS was 
rs113851554 near MEIS1 gene. MEIS1 belongs to the 
homeobox and is a member of three-amino-acid loop 
extension homeodomain transcription factors. The MEIS1 
GWAS signal has previously been identified to be 

associated with insomnia complaints.46 Genetic variants 
at MEIS1 locus were also found to be associated with 
restless legs syndrome (RLS), which is a common sleep- 
related disorder characterized by an uncontrollable urge to 
move and sometimes painful sensations in the legs.47 RLS 
could lead to sleep-onset or sleep-maintenance insomnia, 
and occasionally excessive daytime sleepiness.48 

Researchers suggested the hypothesis that MEIS1 may 
exhibit pleiotropy for insomnia and RLS.46

We found that rs375365692 in the FBXL13 was also 
one of the most strongly associated variant with sleep 
health score. FBXL13 encodes a protein in the F-box 
protein family with leucine-rich repeats and is well 
known to be associated with the regulation of circadian 
rhythm.49 FBXL13 is near the PER2, which plays an 
important role in setting the speed of the molecular 
clock.50 Mutations of FBXL13 are associated with 

Figure 2 Sleep health score genetic correlations with other traits. Genome-wide genetic correlations between sleep health score and published summary statistics for other 
sleep behaviors, psychiatry disorders and plasma protein. Data presented are genetic correlation (rg) from LDSC analysis. −1*log10(P) represents -log10 (p-value). The 
P value from high to low is show as the color of the circle from green to red. Full results are described in Table 2.
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lengthened circadian periods in mice.51 Other variants 
identified in GWAS associated with sleep health score 
were near to genes such as SMAD5, MED20. GWAS 
recently has shown that SMAD5 is associated with insom-
nia symptoms.23 SMAD is known to transduce the action 
of TGF-β superfamily proteins, which play key roles in 
brain homeostasis, memory formation and neuronal 
plasticity.52 Mice with reduced expression of SMAD1 and 
SMAD5 in neural progenitors present with microcephaly 
and an increased production of early-born cortical 
neurons.53 MED20 encodes a component of the mediator 
complex, and is a coactivator involved in the regulated 
transcription of nearly all RNA polymerase II-dependent 
genes. Mediator complex is critical for normal neuronal 
function. Mutation in this gene has been associated with 
a novel infantile-onset neurodegenerative movement dis-
order characterized with infantile-onset spasticity and 
childhood-onset dystonia, progressive basal ganglia degen-
eration, and brain atrophy.54

In addition, we compared the results of sleep health 
score GWAS of our study with the three previous 

individual GWAS studies on sleep traits, including 
446,118,22 386,53319 and 237,62723 individuals from the 
UK Biobank. Some of the genes showing significant asso-
ciations in previous studies of individual sleep traits were 
also identified in our study (Supplementary Table 2). For 
example, MEIS1 and SMAD5 were reported to be asso-
ciated with insomnia,23 FBXL13 was identified to be 
related to chronotype, ROBO2 was identified to be related 
to chronotype and snoring. Although some of the genes 
previously identified by the GWAS on individual sleep 
traits were not identified here, such as BAX8, BANK1 of 
sleep duration,22 RGS16, RNASEL of chronotype,19 

DLEU7 of snoring,19 AC095050.1 of dozing,19 HEXIM2/ 
LOC339192, CCDC68/TCF4 of insomnia,23 more novel 
sleep-related genes were identified by using the overall 
measure of sleep health. Sleep behaviors are correlated, 
the human body usually regulates sleep in a holistic way. 
Sleep behaviors may interact with each other in 
a compensatory fashion. The available genetic findings 
are partially limited due to not considering the complex 
nature of the overall sleep behaviors and focusing on 

Table 2 Sleep Health Score Genetic Correlations with Other Traits (P < 0.05)

Phenotype Trait rg se z p Reference

Specific sleep 
behaviors

Insomnia −0.5679 0.0331 −17.1683 4.58 × 10−66 Philip R Jansen 2019 (PMID: 
30804565)19Snoring −0.3356 0.0312 −10.7401 6.60 × 10−27

Dozing −0.2986 0.0714 −4.1806 2.91 × 10−5

Psychiatry 

disorders

MDD −0.3664 0.0427 −8.5858 9.02 × 10−18 Naomi R Wray 2018 (PMID: 

29700475)41

ADHD −0.2506 0.05 −5.0141 5.33 × 10−7 Ditte Demontis 2019 (PMID: 

30478444)42

Schizophrenia −0.1315 0.0361 −3.6449 0.0003 Antonio F Pardiñas 2018 

(PMID: 29483656)43

ASD −0.1716 0.0557 −3.0792 0.0021 Jakob Grove 2019 (PMID: 
30804558)44

Plasma protein Transmembrane protein 132C 0.3075 0.1193 2.5785 0.0099 Benjamin B Sun 2018 (PMID: 
29875488)45Stabilin-1 −0.3177 0.1284 −2.474 0.0134

Immunoglobulin lambda-like polypeptide 

1

0.2502 0.1107 2.2609 0.0238

Stromelysin-2 −0.3803 0.1727 −2.2024 0.0276

Protein eva-1 homolog C 0.1916 0.0884 2.1669 0.0302

Cytochrome c −0.227 0.1112 −2.0402 0.0413
Low affinity immunoglobulin gamma Fc 

region receptor III-B

0.322 0.159 2.0254 0.0428

Pulmonary surfactant-associated protein 
C

0.2312 0.1144 2.0212 0.0433

Urotensin-2 receptor −0.2354 0.1173 −2.0063 0.0448

Abbreviations: MDD, major depressive disorder; ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; PMID, PubMed ID; se, Standard Error 
value.
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limited sleep traits. Thus, our results extend the previous 
genetic studies on individual sleep behaviors by jointly 
evaluating multiple sleep behaviors. However, we dichot-
omized five sleep factors to create a combination for 
a sleep health measure for simplicity, which might lead 
to the loss of sleep information.

PWAS identified two genes (HDHD2 and GFAP) at the 
brain protein level, which may play an important role in 
the mechanism of sleep health score. HDHD2 encodes 
a novel protein found in proteomics analysis of hippocam-
pus from chronic restraint stress (CRS) mouse model. 
HDHD2 was significantly changed in the hippocampus 
of animals exposed to CRS.55 Search according to NCBI 
conserved domain database (CDD) (https://www.ncbi.nlm. 
nih.gov/cdd), HDHD2 belongs to the HAD-like hydrolase 
superfamily structurally and is found to be similar to 
phospholysine phosphohistidine inorganic pyrophosphate 
phosphatase (LHPP), which is known to associated with 
depression.56 Sleep abnormalities are one of the critical 
symptoms of depression.57 However, its function is not 
completely understood. GFAP gene encodes one of the 
major intermediate filament proteins of mature astrocytes, 
which are important during regeneration, synaptic plasti-
city and reactive gliosis.58 Astrocytes can also modulate 
the process of sleep homeostasis through the release of 
adenosine and pro-inflammatory cytokines, and by clear-
ing toxic substances through the glymphatic system.59 

Patients with chronic insomnia disorder exhibited 
increased GFAP serum levels, which could indicate some 
degree of astrocyte damage.60 Mice with chronic sleep 
deprivation showed low-grade neuroinflammation, anxio-
genic response and recognition memory impairment, 
accompanied by enhanced expression of GFAP in brain 
regions.61 Consistent with these evidences, expression 
level of GFAP was negatively correlated with sleep health 
score in our PWAS results. We also identified genes to be 
associated with sleep health score at the mRNA level. 
ORC4 gene encodes a protein essential for the initiation 
of the DNA replication in eukaryotic cells. Mutations in 
ORC4 are linked to Meier-Gorlin syndrome, which is 
frequently associated with short stature and 
microcephaly,62 suggesting that this gene may play an 
important role in normal brain development.

We also compared the TWAS results on sleep health 
score with previously published TWAS results on sleep 
duration22 and insomnia.23 Previous TWAS studies identi-
fied 38 genes for which sleep duration SNPs influenced 
gene expression in 11 tissues,22 and 24 genes for which 

insomnia SNPs influenced gene expression in one or more 
of the 14 tissues.23 However, none of the sleep duration 
and insomnia genes previously identified by TWAS were 
replicable in our sleep health score TWAS results. We 
identified 2 novel genes for which sleep health score 
SNPs influenced gene expression in brain tissue. 
Considering PWAS, we reported the first PWAS research 
of sleep traits to date.

Negative genetic correlations between sleep health 
score and a variety of sleep behaviors (insomnia, snoring 
and dozing) were identified, in which the highest genetic 
correlation with sleep health score is insomnia. We also 
found negative genetic correlation evidences between 
sleep health score and four psychiatry disorders (MDD, 
ADHD, schizophrenia and ASD), which were consistent 
with previous studied.63,64 Depression is the most closely 
genetic related to sleep health score among the four psy-
chiatry disorders. Most depressed patients suffer from 
sleep abnormalities.57 A cohort study suggested that 
reduced quantity of sleep increases risk for major depres-
sion, which in turn increases risk for decreased sleep.64 

There is a strong bidirectional relationship between sleep 
alterations and depression. Abnormal sleep also accompa-
nies many other psychiatric disorders, such as ADHD. 
ADHD and sleep problems may interact each other and 
possible involvement of comorbidity.63

We also observed genetic correlation evidence with 
nine plasma protein. For example, Stabilin-1, 
Stromelysin-2 and Cytochrome c showed negative correla-
tions with sleep health score in this study. Cytochrome 
c oxidase (COX) is necessary for aerobic ATP production 
by maintaining the proton gradient across the inner mito-
chondrial membrane. Consistent with our results, higher 
levels of COX have previously been identified in long- 
term deprivation relative to sleep.65 Stromelysin-2 is 
a member of the peptidase M10 family of matrix metallo-
proteinases (MMPs). MMPs could degrade amyloid pre-
cursor protein leading to aggregation of amyloid β.66 Sleep 
disorders are frequent in Alzheimer’s disease (AD). And 
previous evidence showed that sleep disturbance might 
increase the risk of AD by increasing β-amyloid 
burden.67 Stabilin-1 may function in initiation of inflam-
mation and receptor scavenging as one of the naturally 
occurring antibodies targeting receptors of the innate 
immune system, with links to AD.68 Our results might 
provide new opportunities to the understanding of highly 
related sleeping behaviors, as well as its relationship with 
psychiatric disorders and other traits.
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To our knowledge, we reported the first genetic inves-
tigation of overall sleep health score to date. The overall 
sleep health score we used integrated several sleep beha-
viors (sleep duration, chronotype, snoring, daytime dozing 
and insomnia), and could more powerfully represents 
overall sleep traits according to the previous study.30 

Sleep health score provides a positive frame of reference 
for sleep, and is also of value in promoting epidemiologi-
cal findings easier to be interpreted and translated into 
practice. The overall measure of sleep health in genetic 
studies may find novel information than directly assessing 
individual traits. Our results estimated with LDSC sug-
gested significant negative genetic correlations between 
sleep health score and sleep behaviors (insomnia, snoring 
and dozing), which could also provide support for the 
representativeness of the sleep health score. In addition, 
this study examined mRNA and protein levels associated 
with sleep health score through PWAS and TWAS.

However, some limitations must be acknowledged. 
First, our analysis was limited to European ancestries 
only to avoid population stratification confounding, it 
should be careful to apply our results to other ethnic 
groups. Second, analyses used self-reported sleep data 
from the UK biobank, misclassification of exposures 
was inevitable Third, we dichotomized five sleep fac-
tors to create a combination for a sleep health measure 
for simplicity, which might lead to the loss of nuance 
of sleep information and the loss of study power. Forth, 
UK Biobank is a high quality data resource that allows 
the use of data on self-reported sleep behavior with 
a large population size. The comprehensive dataset also 
allows adjustment for a wide range of confounders 
including gender, age and the first ten principal com-
ponents of the genome. However, the study is also 
subject to limitations. Our baseline sleep behavioral 
variables were assessed through a self-report method, 
thus there remains the possibility of residual confound-
ing due to recall and social desirability biases. Fifth, 
the objective of this study is to explore the genetic 
architecture of the overall sleep health score, further 
functional studies are still needed to confirm our find-
ing. Sixth, we were unable to identify any other pub-
licly available cohorts with sufficiently large numbers 
to allow an adequately powered second group for repli-
cation analysis. Confirmation in other independent 
study samples will be of great interest to replicate our 
findings.

Conclusion
To conclude, genetic variations in 32 loci are related to 
sleep health score. Some of the genes showing significant 
associations with sleep health score were also identified 
in previous studies of individual sleep behaviors. We 
identified genes that contribute to sleep health score at 
the protein level and the mRNA level by PWAS and 
TWAS. We identified 2 potentially causal genes 
(HDHD2 and GFAP) that act via modulating their brain 
protein abundances, in which the GFAP gene plays a role 
at the mature astrocytes. We further found evidence of 
genetic correlation between sleep health score and other 
sleep behaviors, psychiatric traits and plasma protein. 
Our results advance the understanding of the aetiology 
and genetic architecture of the sleep health score, refine 
the understanding of the relationship of sleep health score 
with sleep behaviors and other traits, and may serve as 
potential targets for future mechanistic studies of sleep 
phenotype.
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