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Purpose: The study aimed to identify an autophagy-related molecular subtype and char-
acterize a novel defined autophagy-immune related genes score (AI-score) signature and 
prognosis model in bladder cancer (BLCA) patients using public databases.
Methods: The transcriptome cohorts downloaded from TCGA and GEO database were 
carried out with genomic analysis and unsupervised methods to obtain autophagy-related 
molecular subtypes. The single-sample gene-set enrichment analysis (ssGSEA) was utilized 
to perform immune subtype clustering. We defined a novel autophagy subtype and evaluated 
the role in TME cell infiltration. Then, the principal-component analysis (PCA) was applied 
to construct an AI-score signature. Subsequently, two immunotherapeutic cohorts were used 
to evaluate the predictive value in immunotherapeutic benefits and immune response. Finally, 
univariate, Lasso and multivariate Cox regression algorithm were used to construct and 
evaluate an autophagy-immune-related genes prognosis model. Also, qRT-PCR and IHC was 
applied to validate the expression of the 6 genes in the model.
Results: Three distinct autophagy clusters and immune-related clusters were identified, and 
a novel autophagy-related molecular subtypes were defined. Furthermore, the roles in TME 
cell infiltration and clinical traits for the autophagy subtypes were characterized. Meanwhile, 
we constructed an AI-score signature and demonstrated it could predict genetic mutation, 
clinicopathological traits, prognosis, and TME stromal activity. We found that it could 
accurately predict the clinicopathological characteristics and immune response of individual 
BLCA patients and provide guidance for selecting immunotherapy. Ultimately, we con-
structed and verified an autophagy-immune-related prognostic model of BLCA patients 
and established a prognostic nomogram with a good prediction accuracy.
Conclusion: We constructed AI-score signatures and prognosis risk model to characterize their 
role in clinical features and TME immune cell infiltration. It revealed that the AI-score signature 
and prognosis model could be a valid predictive tool, which could accurately predict the prognosis 
of BLCA patients and contribute to choosing effective personalized immunotherapy strategies.
Keywords: bladder cancer, The Cancer Genome Atlas, Gene Expression Omnibus, tumor 
microenvironment, immunotherapy, mutation burden

Introduction
Urothelial bladder cancer (BLCA) was the ninth most common malignant tumor 
worldwide,1,2 with a large number of new cases and deaths among men,3 most of 
which would eventually progress to muscle-invasive bladder cancer (MIBC).4 
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Immunotherapy has become one of the essential treatment 
options for advanced BLCA.5 Despite systematic treat-
ment, including radical surgery, radiotherapy, chemother-
apy, and immunotherapy, the prognosis of MIBC remained 
unsatisfactory.6,7 It has been reported that molecular 
pathology classified MIBC into distinct subgroups, guid-
ing the selection of ACT, targeted therapy,8,9 or immune 
blockade therapy.10,11 However, the strategies to predict 
bladder cancer prognosis and aid clinical decision-making 
were lacking and unsatisfactory.12,13 Therefore, it was well 
worth exploring new prognostic and therapeutic targets for 
patients with BLCA.

Immunotherapy activated the body’s natural defense 
system, which identified and removed invading bacteria, 
viruses, and tumor cells, and has become an effective 
treatment for many types of tumors.14 The tumor micro-
environment (TME) was an essential cornerstone of tumor 
survival and progression.15,16 Intensive studies of the TME 
have revealed the critical role of tumor-infiltrating immune 
cells in tumorigenesis, recurrence, metastasis, and clinical 
response to immunotherapy.17,18 Immunotherapy, espe-
cially immune checkpoint blockade represented by anti- 
PD-L1, has shown favorable efficacy in some patients with 
BLCA.19 Meng et al20 developed a novel immunopheno-
type that could provide insight into immunotherapy for 
patients with BLCA. Kamoun et al21 used a consensus 
hierarchical clustering algorithm to classify BLCA into 
distinct molecular subtypes, including luminal-papillary, 
luminal-infiltrated, luminal, basal/squamous, and neuronal 
subtypes that could stratify response to different immune 
treatments. However, most molecular classifiers focused 
inadequately on the TME.

Autophagy was a fundamental cellular metabolic process 
in all eukaryotes, which had a crucial role in tumorigenesis, 
maintenance immune, and tumor progression.21,22 For 
example, Huang et al23 reported miR-93 regulated tumor-
igenicity and therapy response of glioblastoma via autop-
hagy. Lin et al24 reported that synergistic effects of TME and 
autophagy increased the sensitivity of radiation to BLCA. 
Recently, much literature reported the role of autophagy 
classification in different tumors. For instance, Cao et al25 

constructed an autophagy-associated signature for BLCA 
that exhibited prognostic value and contributed to facilitat-
ing personalized selection of immunotherapy and che-
motherapy. Zhu et al26 constructed an autophagy-related 
molecular subtype for colon cancer that could link to TME 
immune cell infiltration heterogeneity to guide personalized 
immunotherapy. Furthermore, Gerada et al27 explained the 

correlation between autophagy and the innate immune 
response on tumorigenesis and clarified the interaction 
between the pathways in TME.

The Cancer Genome Atlas (TCGA) was a public data-
base that included 33 different types of cancer.28 It provided 
genome sequencing and comprehensive multidimensional 
analysis aimed at developing an “atlas” of cancer genomic 
profiles, including genome sequence, expression, methyla-
tion, copy number variation, and clinicopathological data.29 

The Gene Expression Omnibus was an international public 
repository of high-throughput microarrays and next- 
generation sequence functional genomic datasets.30 It could 
be used to analyze gene expression, clinical, methylation, 
chromatin structure and genome-protein interactions, includ-
ing raw data, processed data and descriptive metadata.

Given the previous findings, we learned that autophagy 
and immunity played an essential role in the development, 
progression, and metastasis of BLCA. The TCGA and GEO 
database for BLCA has also been studied in some literature. 
However, the clinical value of autophagy-related genes 
(ARGs) clusters combined with the immune-related molecu-
lar clusters in BLCA were still uncommon. In this study, the 
patients with BLCA were divided into three immune clusters 
according to the ssGSEA method. A novel autophagy sub-
type was constructed and defined based on 43 prognosis- 
associated ARGs. Also, we explored the prognostic value of 
autophagy-related subtypes and investigated the correlation 
between autophagy and the tumor immune microenviron-
ment. Then, we developed an autophagy-immune score (AI- 
score) signature to evaluate the autophagy-related subtypes in 
individual patients with BLCA comprehensively. Besides, 
we characterized the predictive role of the AI-score signature 
in predicting immunotherapy benefit and immune response 
in patients with BLCA. Furthermore, we constructed an 
autophagy-immune related prognostic risk model and 
a nomogram to predict OS precisely.

Methods
Sample Collection and Preparation for 
Patients with BLCA
As the flow chart of this work displayed in Figure 1, we 
screened the available public transcriptome data for BLCA 
from The Cancer Genome Atlas (TCGA) database (https:// 
portal.gdc.cancer.gov/) and Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) 
based on the inclusion criteria as follows: (1) survival 
time>30 days (2) complete clinical information including 
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age, sex, AJCC TNM stage, Grade (3) Complete expres-
sion information of transcriptome data. Those samples 
with incomplete survival and clinical information, includ-
ing no survival information and survival time, and 
unknown Grade and stages, were excluded. Ultimately, 
TCGA-BLCA and GSE13507 cohorts contained a total 
of 557 samples were included in the study. 
Transcriptome profiling data (Fragments Per Kilobase 
Million [FPKM] value) and corresponding clinical infor-
mation, as well as somatic mutation data (masked somatic 
mutation) of TCGA-BLCA dataset, were downloaded 
from the Genomic Data Commons (GDC). The FPKM 
values were then converted to transcripts per kilobase 
(TPM) values. Series matrix files of GSE13507 were 
downloaded from the GEO database. The two datasets 
were integrated as the training cohorts, and the 
“ComBat” algorithm was utilized to remove batch effects 
from non-biological technical biases using the “SVA” 
package. Somatic mutation data, downloaded from 
TCGA database and analyzed by the VarScan2 algorithm, 
were applied to calculate the tumor mutation burden 
(TMB). In addition, Copy Number Variation (CNV) data 
were obtained from the UCSC database (http://xena.ucsc. 
edu/) and pre-processed with the Perl program. Two 
BLCA cohorts (GSE31864 and GSE32894) were used as 
testing cohorts. The whole transcriptome expression 
matrix files and complete clinical information were also 
downloaded and annotated, then integrated and eliminated 
the batch effects using the “SVA” package.

Unsupervised Consensus Clustering for 
43 Prognosis-Associated ARGs to Identify 
Autophagy Clusters
A total of 232 ARGs were downloaded from the Human 
Autophagy Database (HADb) (http://autophagy.lu/clus 
tering/index.html).31,32 Subsequently, univariate Cox 
proportional hazards regression analysis was performed 
to identify prognosis-associated ARGs. Subsequently, 
unsupervised clustering algorithm was performed to 
identify different autophagy clusters based on these 
prognosis-associated ARGs using the 
ConsensuClusterPlus package.33 The optimal number 
of clusters was established based on 1000 times repeti-
tions and consensus-Score. Moreover, the training 
cohort was divided into several autophagy clusters 
with distinct biological functions.

The Single-Sample Gene Sets Enrichment 
Analysis (ssGSEA) for Samples with 
BLCA and Hierarchical Clustering 
Analysis to Identify Immune Clusters
The ssGSEA algorithm, which was based on 29 immune- 
related cells and types,34 was employed to systematically 
elaborate the immunological infiltration degrees of each 
sample with BLCA in the training cohort, including 
immune cell type, immune-related functions, and path-
ways using “GSVA, Limma, GSEABase” package. Next, 
unsupervised hierarchical clustering algorithm was per-
formed to divide the training cohorts into three clusters 
based on immunological infiltration degrees. In addition, 
based on the “sparcl” package, these three clusters were 
defined as immune-high infiltration subgroup, immune- 
mediate infiltration subgroup, and immune-low infiltration 
subgroup.

Gene Set Variation Analysis (GSVA) and 
Clinicopathological Expression Analysis 
for Autophagy Clusters
To explore the differences of biological functions and the 
expressions of clinicopathological characteristics between 
different autophagy clusters, the GSVA enrichment analy-
sis, a non-parametric and unsupervised algorithm com-
monly used to investigate variation in pathways and 
biological processes, was performed using “GSVA” 
R packages.34 The “c2.cp.kegg.v6.2.symbols” gene set, 
used to run the GSVA analysis, was obtained from the 
MSigDB database.35 The expression of clinicopathological 
features in different autophagy clusters was demonstrated 
using the “heatmap” R package.

Defined a Novel Autophagy-Related 
Molecular Subtype and Evaluated Tumor 
Microenvironment (TME) Cell Infiltration
To synthetically evaluate autophagy characteristics in 
BLCA, we redefined a novel autophagy-related molecular 
subtype based on expression levels of the prognosis- 
related autophagy gene set in different clusters. Highly 
expressed cluster B was defined as autophagy-high sub-
group; Mediate expressed cluster C was defined as autop-
hagy-mediate subgroup; Low expressed cluster A was 
defined as autophagy-low subgroup.

The anti-cancer immune response was a cancer- 
immune cycle that utilized RNA-seq or microarray data 

Cancer Management and Research 2022:14                                                                                     https://doi.org/10.2147/CMAR.S346240                                                                                                                                                                                                                       

DovePress                                                                                                                          
69

Dovepress                                                                                                                                                                Yu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://xena.ucsc.edu/
http://xena.ucsc.edu/
http://autophagy.lu/clustering/index.html
http://autophagy.lu/clustering/index.html
https://www.dovepress.com
https://www.dovepress.com


Figure 1 The overview of the work.
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to track, analyze and visualize the anti-cancer immune 
status and the proportion of tumor-infiltrating immune 
cells in each procedure.36 Then, the ssGSEA algorithm 
was applied to quantify the relative abundance of each 
immune-related cell and type in BLCA TME and tumor- 
immune cycle in distinct autophagy subgroups. The 
ESTIMATE (estimation of stromal and Immune cells in 
malignant Tumor tissues using Expression data) algorithm 
was employed to calculate immune scores and tumor pur-
ity for each sample in distinct autophagy subgroups.37

Identification of Differentially Expressed 
Genes (DEGs) Between Immune and 
Autophagy Subgroups, and Function 
Annotation
To identify differentially expressed autophagy-immune 
related genes, we divided samples in training cohorts into 
immune clusters and autophagy clusters based on different 
algorithms. Then, we utilized the Bayesian algorithm of 
the “limma” package to screen DEGs between different 
immune clusters and autophagy clusters. Finally, we over-
lapped the DEGs in these two subgroups using Venn plots 
as autophagy-immune related genes. The significance cri-
terion for screening DEGs were defined as adjusted 
P-value < 0.001. Subsequently, the functional annotation 
of the autophagy-immune associated genes was performed 
with the “clusterProfiler” package based on the cut-off 
value of FDR< 0.05.

Construction and Validation of an 
Autophagy-Immune Gene Signature and 
Generation of Autophagy-Immune Score 
(AI-Score)
To characterize and quantify in-depth the significance and 
correlation with the immunology of autophagy subgroups 
in individual tumors, we constructed an autophagy- 
immune gene signature to comprehensively assess the 
autophagy-related subtypes in individual patients with 
BLCA. Firstly, we applied univariate COX regression 
analysis to identify prognosis-associated autophagy- 
immune genes. Subsequently, unsupervised clustering 
algorithm was performed to define the number of gene 
clusters based on the prognostic-related autophagy- 
immune genes. Ultimately, principal component analysis 
(PCA) was utilized to construct autophagy-immune rele-
vant gene signature. As used in previous studies, principal 

components 1 and 2 were calculated for these prognostic 
genes employed for AI-score generation. The specific cal-
culation method was as follows:AI score ¼ ∑

n

i¼1
1þ PC2ð Þ

(where i was the expression of prognosis-related autop-
hagy-immune genes). In addition, to validate the reliability 
and stability of the AI-score signature, we validated the 
prognostic value of the AI-score and its correlation with 
immunological characteristics of TME in the testing 
cohorts.

Collection of Immunotherapeutic 
Cohorts and Evaluation of the Predictive 
Value of AI-Score in Immunotherapeutic 
Benefits and Immune Response
To further evaluate the predictive value of AI-score in 
immunotherapeutic benefits and immune response, we 
collected two immunotherapeutic cohorts, including com-
plete clinical information and transcriptomic data. The 
GSE78220 cohort that conducted a clinical trial of an anti- 
PD-1 antibody for metastatic melanoma was downloaded 
from the GEO database. After excluding those samples 
containing incomplete clinical information and duplicates, 
27 samples were included to validate immunotherapy 
efficacy further. Likewise, another immunotherapy cohort 
of BLCA (IMvigor210) that conducted a clinical trial of 
an anti-PD-L1 antibody for BLCA was obtained from 
http://research-pub.gene.com/IMvigor210CoreBiologies/. 
Under the Creative Commons 3.0 License, a total of 348 
BLCA patients were enrolled. The data were also normal-
ized and transformed into TPM format. The prognostic 
value of AI-score and its immune response for distinct 
immune checkpoint genes was displayed and used to 
estimate the relationship between clinical benefits and 
immune.

Construction a of a Prognostic Model 
Based on Autophagy-Immune Associated 
Differential Genes
The prognostic model was constructed according to the 
previously described protocol.38 In short, the univariate 
Cox regression analysis was applied to identify prog-
nosis-related autophagy-immune associated differential 
genes. Then, Lasso and multivariate Cox regression ana-
lysis were performed determine independent prognostic 
factors.
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Cell Lines, Clinical Samples, RNA 
Extraction, Quantitative Real-Time 
Polymerase Chain Reaction (qRT-PCR) 
and Immunohistochemistry (IHC)
The human BLCA cell lines (UMUC3, T24, EJ) and 
human bladder cell (SV-HUC-1) were originally pur-
chased from the cell bank of Shanghai Institute of Life 
Sciences, Chinese Academy of Sciences. RPMI 1640 med-
ium and F12k medium, supplemented with 10% fetal 
bovine serum (FBS), penicillin (25 U/mL) and streptomy-
cin (25 mg/mL), was applied to culture BLCA cell lines 
and human bladder cell at 37°C in a humidified 5% CO2 
environment, respectively. Besides, a total of 22 fresh 
samples from patients undergoing laparoscopic radical 
cystectomy for BLCA were collected from 2019 to 2020 
in Southeast University Zhongda hospital, including tumor 
tissue and matched adjacent normal kidney tissue and 
stored at-80◦C. The research followed the criteria stated 
in the Declaration of Helsinki (revised 2013) and was 
authorized by the Medical Ethics Committee of the 
Southeast University Zhongda hospital. All patients gave 
informed consent. Total RNA was isolated from cells and 
clinical tissues using Total RNA Kit I (50) (OMEGA 
Biotech, China) according to the manufacturer’s instruc-
tions. Then, reverse transcription was performed using the 
HiScript II Q RT SuperMix (R223-01) reagent kit 
(vazyme, Nanjing, China). CT values were measured by 
qRT-PCR using the SYBR Green PCR kit (Vazyme, 
Nanjing, China). 2-ΔΔCT calculation method was used to 
calculate the relative expression levels of the target 
genes.39 The primer sequences used in the present study 
are listed in Table S1. According to the previously 
described method,40 the clinical specimens were fixed in 
4% paraformaldehyde, dehydrated in ethanol solution and 
embedded in paraffin. Subsequently, the sections were 
incubated with the primary antibody overnight at 4°C 
and then with biotinylated goat anti-rabbit antibody IgG 
for 20 minutes at room temperature. We recorded images 
with microscopic photography (Leica Microsystems, 
Germany).

Statistical Analysis
The R software (version 4.0.2) and GraphPad prism 7 
were applied for statistical analysis. The Perl programming 
language (Version 5.30.2) was utilized for data processing. 
The Kaplan–Meier survival curve analysis with Log rank 
test was performed to analyze the survival outcomes. 

Univariate Cox regression analyses were used to access 
prognostic significance. The value p < 0.05 was considered 
statistically significant for all the two-sided statistical 
P values.

Results
Expression and Genetic Mutation 
Analysis of Prognostic-Associated ARGs 
in Patients with BLCA in TCGA Dataset
We performed PCA analysis on the training cohort con-
sisting of TCGA-BLCA and GSE13507 datasets for show-
ing the distribution of the integrated data. The results 
revealed that the two cohorts were coherent groups by 
reducing the dimensionality (Figure S1A). A total of 195 
ARGs were extracted from the training cohorts. 
Subsequently, we performed Univariate Cox proportional 
hazards regression analysis of the expression of the ARGs 
in the training set. We found that the expression of 43 
ARGs was significantly linked with the prognosis of 
BLCA patients (p< 0.05). Besides, we discovered that 
APOL1, CAPN10, IFNG, KLHL24, PRKCD, WDR45 
were favorable factors with HR<1, whereas the other 37 
genes were risk factors for HR>1 (Figure S1B).

Meanwhile, we investigated mutations in the 43 prog-
nostic-associated ARGs in TCGA-BLCA dataset. Firstly, 
we performed CNV analysis. The result revealed wide-
spread CNV alterations in 43 prognostic-associated 
ARGs, and most of them were concentrated in copy num-
ber amplification, while a few had extensive CNV dele-
tions, such as ATIC, ATG9A, PRKCD, CAPN10 (Figure 
S1C). Chromosomal localization of CNV alteration in 
TCGA-BLCA dataset was also presented in Figure S1D. 
Furthermore, genetic mutations in ARGs were observed in 
123 of 412 BLCA samples, with a frequency of 29.85%. 
Furthermore, the results indicated that the prognostic- 
associated ARGs with the highest mutation frequency 
was EIF4G1, followed by HSPA8, NPC1, NRG1, ARNT, 
EIF2AK2, HSP90AB1, PRKCO. While ATIC, BIPC5 did 
not show any mutation in TCGA-BLCA samples 
(Figure S1E).

To further determine whether gene mutations affect the 
expression of ARGs in BLCA, we investigated the expres-
sion levels of ARGs in normal and tumor tissues in 
TCGA-BLCA patients. The result revealed significant dif-
ferences in the expression levels of prognosis-associated 
ARGs with high mutation frequency in BLCA samples 
compared to normal samples (Figure S1F). It suggested 
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that abnormal expression of ARGs was associated with 
gene mutations, which affected the development and pro-
gression of BLCA.

Unsupervised Clustering Analysis to 
Identify Autophagy Clusters in Patients 
with BLCA
Unsupervised clustering analysis was utilized to divide 
BLCA patients in the training cohorts into distinct autophagy 
clusters based on the expression levels of 43 prognostic- 
associated ARGs. And eventually, three autophagy clusters 
were identified, including cluster-A, with 99 samples; clus-
ter-B, with 183 samples; cluster-C, with 275 samples, 
respectively (Figure S2A–F). PCA analysis was performed 
and showed significant distinction differences between these 
three clusters (Figure S3A). Prognostic analysis revealed that 
the three autophagy clusters had remarkably different survi-
val probabilities, with cluster-B having the worst overall 
survival probability, followed by cluster-C (Figure S3B). 
To obtain the clinical value of the autophagy clusters, we 
integrated the relevant clinical features, including age, gen-
der, TNM stage. As depicted in Figure S3C, the heatmap 
showed associations between the expression profiles of the 
43 prognostic-associated ARGs and clinicopathological fea-
tures in the three autophagy clusters. Next, we implemented 
GSVA enrichment analysis to exploit further the biological 
behaviors of the three distinct autophagy clusters. As shown 
in Figure S3D–F, autophagy cluster-A was mainly enriched 
in metabolism-related pathways, including retinol metabo-
lism, drug metabolism cytochrome p450, linoleic acid meta-
bolism, and alpha-linolenic acid metabolism. Autophagic 
cluster-B exhibited enrichment pathways associated with 
cellular and tumor signaling pathways, such as renal cell 
carcinoma, prostate cancer, cytosolic DNA sensing pathway, 
prion disease, NOD-like receptor signaling pathway. In con-
trast, Autophagic cluster-C was markedly enriched in infec-
tion and endocytosis process as well as metabolism. 
According to the above analysis, these three autophagy 
clusters based on autophagy genes could distinguish differ-
ent biological behaviors of BLCA samples well.

The ssGSEA Method Identified Three 
Immune Subtypes for Patients with BLCA
Meanwhile, to systematically assess the immunological 
characteristics of BLCA, the ssGSEA method and hier-
archical clustering algorithm were applied for the BLCA 
patients in the training cohorts to assign into three immune 

subgroups based on 29 immune gene sets: Immunity_H 
(high) subgroup (n=114), Immunity_M(mediate) subgroup 
(n=217) and Immunity_L(Low) subgroup (n=226) (Figure 
S4). Subsequently, we comprehensively characterized 
these immune subgroups. Prognostic analysis showed no 
statistically significant difference between the three immu-
nophenotypes in overall survival (Figure 2A). The 
ESTIMATE algorithm was used to further calculate the 
immune and stromal score to investigate the TME infiltra-
tion in the three immune clusters. As is shown in 
Figure 2B, the heatmap showed associations between the 
expression profiles of 29 immune-associated infiltration 
cells and TME characteristics in the three immune sub-
groups. We found that Stromal Score, Immune Score, and 
ESTIMATE Score were higher in the Immunity_H sub-
group than in the other two subgroups, but the Tumor 
Purity was the opposite (Figure 2C and D). In addition, 
we investigated the differential expression of immune 
checkpoint genes (PD-L1, PD-1, CTLA4) in the three 
immune subgroups. The result revealed that the expression 
level of PD-L1, PD-1, and CTLA4 were gradually higher 
in immune-low, -mediate, -high subgroup (p<0.05) 
(Figure 2E–G). Clearly, these results demonstrated that 
immune clusters could well represent the biological char-
acteristics of BLCA.

Defined a Novel Autophagy-Related 
Subtype and Characterized Its Role in 
TME Immune Cell Infiltration and Clinical 
Trait
Although the consensus-clustering algorithm classified 
BLCA patients into three autophagy clusters based on 
the expression of prognosis-associated ARGs, the clusters 
failed to represent the level of ARGs expression specifi-
cally. To investigate the biological behaviors of autophagy 
clusters in-depth, we redefined the three autophagy clus-
ters as novel subtypes with reference to the characteristics 
of immunophenotyping of BLCA samples. Autophagy 
cluster-B subgroup, with high expression levels of 
ARGs, was defined as autophagy-high subtype; 
Autophagy cluster-C subgroup, with middle expression 
levels of ARGs, was defined as autophagy-middle subtype; 
Autophagy cluster-A subgroup, with low expression of 
ARGs, was defined as autophagy-low subtype.

Then, we further characterized the roles in TME cell 
infiltration and clinical traits for the autophagy subtypes in 
the training cohorts. We comprehensively examined the 
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fraction of 23 tumor immune infiltrating cells in distinct 
autophagy subtypes using the ssGSEA method. We found 
that the infiltration level of most immune infiltrating cells 

increased gradually in the autophagy-low, -medium and - 
high subtypes, such as activated B cell, activated CD4 
T cell, activated CD8 T cell, Natural killer cell. 

Figure 2 Hierarchical clustering of bladder cancer patients uncovered three immunophenotypes based on ssGSEA analysis. (A) The Kaplan–Meier survival curves of the 
three immunophenotypes (High, Mediate, Low) showed there were statistically insignificant differences among these three immune subtypes. (B) The heatmap showed the 
enrichment levels of 29 immune-associated infiltration cells in the three immune subtypes and immune infiltration characteristics obtained by ESTAMATE algorithm 
(including Stromal-Score, Immune-Score, Estimate-Score and Tumor-Purity). (C and D) The violin plot displayed the differences in Immune Score and Tumor Purity among 
the three immune clusters. (E–G) The boxplot showed the differential expression levels of immune checkpoint gene, including PD-L1 (E), PD-1 (F), CTLA4 (G) in the three 
immune subgroups, which showed that the expression of immune checkpoint genes in immune-High subgroup was significantly higher than the other subgroups. ***p < 
0.001.
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Nevertheless, the abundance of some of the tumor immune 
infiltration cells was gradually decreasing, including CD56 
dim natural killer cell, Eosinophil and Monocyte 
(Figure 3A). In addition, the activities of the anti-cancer 
immune cycle had similar results in the three autophagy 
subtypes. As expected, the abundance of most antitumor 
immune cells was gradually increasing in the autophagy- 
low, -medium and-high subtypes, such as release of cancer 
cell antigens, priming and activation, Macrophage recruit-
ing, while the activities of Th2 cell recruiting and Treg cell 
recruiting were no significant difference among the three 
autophagy subtypes (Figure 3B). Subsequently, the 
ESTIMATE algorithm was performed for exploring the 
TME characteristics in the three autophagy subtypes. The 
result revealed that Immune Score was higher in the autop-
hagy-high subgroup than in the other two autophagy sub-
types, while the Tumor Purity presented the opposite result 
(P<0.001) (Figure 3C and D). Finally, the differential 
expression of immune checkpoint genes (PD-L1, PD-1, 
CTLA4) in the three autophagy subtypes were investigated. 
We observed that the expression level of PD-L1, PD-1 and 
CTLA4 was gradually higher in autophagy-low, -mediate, - 
high subtype (p<0.05), which were comparable to the 
expression levels in the immune subtypes (Figure 3E–G). 
To summarize, these results suggested that autophagy sub-
types also could well represent the biological characteristics 
of BLCA.

Construction and Validation of an 
Autophagy-Immune Gene Signature and 
Generation of AI-Score, and Functional 
Enrichment Analysis
To investigate in-depth the significance and their correla-
tion with the immunity of autophagic subtypes in indivi-
dual tumors, we constructed an autophagy-immune gene 
signature and calculated the AI-score to assess individual 
BLCAs patients quantitatively. We identified 2626 autop-
hagy subtypes-related differentially expressed genes 
(DEGs) and 1031 immune clusters-related DEGs. By 
overlapping, a total of 501 autophagy-immune genes 
was identified (Figure 4A). Then, using the 
“clusterProfile” package, Gene Ontology (GO) enrich-
ment analysis was performed to summarize the molecular 
functions (MF), cellular components (CC), and biological 
processes (BP) associated with autophagy-immune DEGs. 
As shown in Figure S5A, we found that the top 5 GO 

terms for BP were T cell activation, regulation of cell 
adhesion, positive regulation of cytokine production, leu-
kocyte cell adhesion and positive regulation of cell acti-
vation; the top 5 GO terms for CC were external side of 
plasma membrane, secretory granule membrane, endocy-
tic vesicle, endocytic vesicle membrane and specific gran-
ule; The top 5 GO terms for MF were amide binding, 
peptide binding, cytokine receptor binding, immune 
receptor activity and cytokine activity. We also observed 
that the top 5 signaling pathways based on Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis 
were cytokine-cytokine receptor interaction, tuberculosis, 
phagosome, Epstein-Barr virus infection and chemokine 
signaling pathway (Figure S5B). These demonstrated that 
autophagy-immune gene signature played an essential role 
in TME of BLCA.

Subsequently, Univariate COX regression analysis for 
these 501 autophagy-immune related genes was utilized to 
obtain 133 prognosis-related genes. Then, unsupervised 
clustering analysis was applied to classify patients into 
three genomic subtypes base on the 133 prognosis- 
related DEGs and was named as gene cluster A-C, respec-
tively (Figure S2G–L). Moreover, we found that the three 
gene clusters had significantly different overall survival, 
with patients in gene cluster-C (139 patients) having the 
poorest overall survival probability, followed by gene 
cluster-B (231 patients) (Figure 4B). Therefore, we further 
evaluated the gene clusters comprehensively. Firstly, the 
differential expression of 43 prognosis-related ARGs in 
gene clusters is presented in Figure 4C. We found that 
most prognosis genes were significantly different in gene 
clusters (p<0.05). In addition, it was found that the expres-
sion of immune checkpoint genes was particularly signifi-
cant in gene cluster-B, which was consistent with the 
expression results in the autophagy subgroup 
(Figure 4D–F).

To quantitatively evaluate the role of autophagy- 
immune gene signature in TME in individual BLCA 
patients, the PCA method was applied to calculate the 
scoring system, named AI-score. Surprisingly, we 
uncovered a significant difference in the distribution of 
AI-score among autophagy subtypes rather than gene 
clusters (Figure 4G and H). Therefore, we decided to 
characterize further the role of AI-score in TME cell 
infiltration and clinicopathological features in autop-
hagy-related subtypes.
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Characterization of AI-Score in 
Autophagy-Related Subtypes and Tumor 
Somatic Mutation
The BLCA patients in the training cohorts were divided into 
high AI-score subgroups and low AI-score subgroups based on 
the optional cut-off value obtained by the “survminer” package 
in R software. Then, the role of AI-score in TME cell infiltra-
tion was evaluated in training set and validated 

comprehensively in testing set. Firstly, the fraction of 23 
tumor immune infiltrating cells in distinct AI-score subgroups 
was examined, and the result demonstrated that the infiltration 
level of most immune infiltrating cells was higher in the low 
AI-score subgroup than in the high subgroup (p<0.001) 
(Figure 5A). Besides, the Kaplan–Meier survival curves 
showed that the prognostic value of the low AI-score subgroup 
was linked to poorer survival outcomes (Figure 5B). A similar 

Figure 3 Differences in tumor microenvironment (TME) infiltration cell characteristics between autophagy clusters. (A)The boxplot showed the fraction of tumor immune 
infiltrating cells in the autophagy clusters. (B) The activities of anti-cancer immune response among the three autophagy clusters. (C and D) The violin plot displayed 
Immune Score and Tumor Purity among the three immune clusters were analyzed and visualized. (E–G) The violin plot showed the differential expressions of immune 
checkpoint gene, including PD-L1 (E), PD-1 (F), CTLA4 (G) in the three autophagy clusters, which showed that the expression of immune checkpoint genes in autophagy- 
High subgroup was significantly higher than the autophagy-Mediate and -low subgroups. *P<0.05, ***p < 0.001. 
Abbreviation: ns, not significant.
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yield was observed in the validation cohort (Figure 5C and D). 
Moreover, a significant negative correlation existed between 
the AI-score and the majority of the immune infiltrating cells 

(Figure 5E). Sankey diagram was also used to present the 
correlation among autophagy subtypes, gene clusters, AI- 
score and survival outcomes, which showed the attribute 

Figure 4 Construction and evaluation of differential expression of autophagy immune gene signatures. (A) The Venn diagrams showed 535 autophagy-immune related 
differentially expressed genes (DEGs) were overlapped from autophagy-related DEGs and immune-related DEGs. (B) The autophagy-immune related genes were utilized to 
construct gene cluster and then the K-M survival curves of the gene cluster were performed, which showed there were statistically significant differences among these three 
gene subtypes. (C) The boxplot was performed to visualize the expression levels of 43 prognostic-related gene among different gene clusters in merger dataset. (*p < 0.05; 
**p < 0.01; ***p < 0.001) (D–F) The violin plot showed the differential expressions of immune checkpoint gene, including PD-L1 (D), PD-1 (E), CTLA4 (F) in the three gene 
clusters, which showed that the expression of immune checkpoint genes in gene cluster B subgroup was significantly higher than the other subgroups. (G) Comparison of 
Autophagy-Immune (AI) score across gene clusters showed no significant differences between the three clusters. (H) Comparison of AI score across autophagy clusters 
showed autophagy-High cluster with the lowest AI score.

Cancer Management and Research 2022:14                                                                                     https://doi.org/10.2147/CMAR.S346240                                                                                                                                                                                                                       

DovePress                                                                                                                          
77

Dovepress                                                                                                                                                                Yu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 5 Construction and validation of autophagy-immune score (AI-score) for bladder cancer patients. (A and B) The boxplot showed the fraction of tumor immune 
infiltrating cells in high- and low AI-score subgroup in the autophagy clusters in training set (A) and testing set (B). (C and D) Kaplan–Meier survival curves showed that the 
Low AI-score subgroup had worse overall survival (OS) than the high AI-score subgroup in training set (C) and testing set (D). (E) Spearman analysis showed the correlation 
between AI-score and tumor immune infiltrating cells. Red represented positive correlation and blue represented negative correlation. (F) Sankey diagram showed the 
relationship among autophagy clusters, gene cluster, AI-score and survival status (Alive or Dead). (G) The proportion of bladder cancer patients with survival status in high 
and low AI-score subgroup. (H) The boxplot showed remarkable differences in AI-score across survival status. ***p < 0.001. 
Abbreviation: ns, no statistically significant.
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changes of individual patients with BLCA (Figure 5F). In 
addition, we observed a remarkable difference in the percent 
weight of survival status in BLCA patients in the high and low 
AI-score subgroups (Figure 5G and H).

Tumor mutational burden (TMB) played an irreplace-
able role in tumorigenesis and progression.41 We, there-
fore, further characterized the role of TMB in AI-score. 

The patients with BLCA in TCGA dataset were divided 
into high- and low-TMB subgroups based on the median 
value of TMB. The Kaplan–Meier survival analysis 
revealed that the high-TMB subgroup had a better survi-
val probability than the low-TMB subgroup (Figure 6A). 
Also, we found that AI-score could more accurately 
predict the survival probability of BLCA patients in 

Figure 6 Characteristics of autophagy-immune score (AI-score) in autophagy subtypes and tumor somatic mutation. (A) Kaplan–Meier curves showed that high tumor 
mutation burden (H-TMB) subgroup had better survival probability than Low-TMB (L-TMB) subgroup in the training set. (B) Survival analysis of H-TMB (137 cases) and 
L-TMB (255 cases) subgroup stratified by high and low AI-score using Kaplan–Meier curves (P < 0.001, Log rank test). (C and D) Waterfall charts of tumor somatic 
mutations were established with high AI scores (C) and low AI scores (D). Each column indicates an individual sample. (E and F) Kaplan–Meier survival curves showed the 
survival outcomes of high- and low-AI-score in bladder cancer patients stratified by AJCC T stage (T2-4 vs Ta-1), respectively. (G and H) Gene set enrichment analysis 
(GSEA) showed the top 5 KEGG signaling pathways in high AI-score bladder cancer patients (G) and low AI-score bladder cancer patients (H).
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high- and low-TMB subgroups (Figure 6B). Therefore, 
we further evaluated the distribution differences of 
somatic mutations in the AI-score signature. The top 20 
somatic mutation genes with the highest genetic altera-
tion frequency in TCGA-BLCA cohorts were further 
analyzed, and we observed significant differences in 
TMB and mutation types between the high and low AI- 
score subgroups. The most common mutation gene was 
TP53, followed by TTN, and the most common mutation 
type was missense_mutation (Figure 6C and D). 
However, we observed no significant correlation between 
TMB and AI-score across autophagy subgroups and no 
significant difference in the distribution of TMB between 
high and low AI-score subgroups (Figure S6A and B). 
Subsequently, we explored the roles of AI-score signa-
ture in clinicopathological traits for predicting the over-
all survival in patients with BLCA in training cohorts. 
The result showed that the prognosis of patients with 
MIBC was higher in the high AI-score subgroup than in 
the low AI-score subgroup, whereas there was no sig-
nificant difference in NMIBC (Figure 6E and F). 
Meanwhile, GSEA revealed significant differences in 
the essential biological processes and pathways linked 
to molecular heterogeneity between the high- and low 
AI-score subgroups of the training cohorts, suggesting 
that it could help predict prognosis accurately. The top 5 
are displayed in Figure 6G and H. These results con-
firmed that the AI-score could be used as a valid pre-
dictive tool for exploring potential mechanisms in TMB 
and TME in BLCA.

The Role of AI-Score Based on 
Autophagy-Related Subtypes in Predicting 
Immunotherapeutic Benefits and Immune 
Response
We further explored the predictive role of AI-score in 
predicting immunotherapy benefit and immune response 
in BLCA patients. Firstly, we obtained some immunother-
apy data from https://tcia.at and compared the clinical 
benefit of immunotherapy targeting CTLA4 and/or PD-1 
in high- or low AI-score subgroups. We found remarkable 
differences in the clinical benefit of targeting PD-1 and/or 
CTLA4 in immunotherapy in high- and low AI-score sub-
groups. Except for patients presenting positive for both 
targeting PD-1 and CTLA4 who showed significant clin-
ical benefit in the high AI-score subgroup, other patients 

showed more benefit in the low AI-score subgroup than in 
the high AI-score subgroup (Figure 7A–D).

In addition, we also investigated the predictive value of 
the AI-score signature in the immune response to the anti- 
PD-1/PD-L1 based on two immunotherapy cohorts. In the 
anti-PD-1 immunotherapy cohort (GSE78220), patients 
with high AI-score presented higher immune response 
than those with low AI-score (67% vs 14%, Figure 7E). 
Furthermore, we found a significantly prolonged survival 
probability in the high AI-score subgroup compared to the 
low AI-score subgroup (Figure 7H). Likewise, we 
observed the same result in the IMvigor210 cohort (an 
anti-PD-L1 immunotherapy cohort) (Figure 7I and L). 
However, immune responses to anti-PD-1/L1 immunother-
apy in BLCA patients with distinct AI-score were not 
identical in the two cohorts. We found significant differ-
ences in AI-score among immune responses only in the 
IMvigor210 cohort (Figure 7F, G, J and K). Thus, these 
results confirmed the predictive role of AI-score in immu-
notherapy benefit and immune response for patients with 
BLCA.

Construction and Evaluation of an 
Autophagy-Immune Related Gene 
Prognostic Model
Univariate, Lasso, multivariate Cox proportional hazards 
regression analysis were performed on the expression of 
501 autophagy-immune associated differential genes to 
construct a prognostic prediction model in TCGA-BLCA 
training set (Figure 1, Table 1). As shown in Figure 8A, 
it generated a prognostic prediction model that contained 
6 autophagy-immune related genes and coefficient of 
each. The ROC curve and its AUC value demonstrated 
that the prognosis risk-related model had promising pre-
dictive ability for overall survival (OS) in the training set 
(Figure 8B). Moreover, Kaplan–Meier curves showed 
that the OS of BLCA patients with low-risk subgroup 
were significantly better than those with high-risk sub-
group in training set (p<0.001) (Figure 8C). The same 
results could be observed in validation group (Figure 8D 
and E). Besides, we constructed a prognosis-associated 
nomogram based on risk score and prognosis-associated 
clinicopathological parameters including age, gender, 
stage, grade, AJCC T, N, and M, to predict 1-, 3-, and 
5-year OS of BLCA patients. ROC curves and calibra-
tion curves of the nomogram displayed the concordance 
between predicted and observed 1-, 3- and 5-year OS 
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(Figure 8H–J). In addition, The DCA curve and multi-
variate ROC curve were performed, and showed that the 
predictive accuracy risk score and nomogram were 
higher than other clinicopathological features including 
age, gender, grade, stage (Figure 8F and G). Also, uni-
variate and multivariate Cox regression analysis con-
firmed that risk score, age, stage were independent 
prognostic factors (p<0.01) (Table 2).

To validate the robustness of the prognosis model in- 
depth, we performed qRT-PCR and IHC assays to verify 

the relative expression levels of 6 autophagy-immune 
related genes in the prognosis risk signature. Relative 
expression levels of the 6 autophagy-immune-related 
genes in the prognosis model in 22 paired BLCA tissues 
and matched adjacent normal bladder tissues were exam-
ined by qRT-PCR. The results indicated that the expression 
level of SLFN11, GUK1, CCNL2 AND BTN3A3 were 
significantly increased in BLCA tissues compared with 
matched adjacent normal bladder tissues, whereas 
PAPSS2 was downregulated in BLCA tissues, while 

Figure 7 The role of AI-score based on autophagy clusters in predicting immunotherapeutic benefits and immune response. (A–D) Comparison of the clinical benefit of 
targeting CTLA4(-) + PD-1(-) (A), CTLA4(-) + PD-1(+) (B), CTLA4(+) + PD-1(-) (C), CTLA4(+) + PD-1(+) (D) on immunotherapy in high or low AI-score subgroups. (E) 
The percent weight of clinical response (CR/PR and PD) to anti-PD-1 immunotherapy in high or low AI-score subgroups in the GSE78220 cohort. (F) Distribution of AI- 
score in different anti-PD-1 clinical response status (CR/PR/PD) to immunotherapy in the GSE78220 cohort. (G) The boxplot illustrated no significant difference in AI-score 
among different anti-PD-1 clinical response groups in the GSE78220 cohort. (H) Kaplan–Meier curves showed high AI-score subgroup had better survival probability than 
low AI-score subgroup in GSE78220 cohort (Log rank test, p = 0.009). (I) The percent weight of clinical response (CR/PR and SD/PD) to anti-PD-L1 immunotherapy in high 
or low AI-score subgroups in the IMvigor210 cohort. (J) Distribution of AI-score in different anti-PD-L1 clinical response status (CR/PR/SD/PD) to immunotherapy in the 
IMvigor210 cohort. (K) The boxplot illustrated significant differences in AI-score among different anti-PD-L1 clinical response groups in the IMvigor210 cohort. (L) Kaplan– 
Meier curves showed high AI-score subgroup had better survival probability than low AI-score subgroup in IMvigor210 cohort (Log rank test, p = 0.044). 
Abbreviations: CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; ns, no statistically significant.
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JAK2 was not significantly different (Figure 9A). Similar 
results were also confirmed in the TCGA and GTEx data-
base (Figure S7A). Moreover, these 6 genes were found to 
be associated with OS (Figure S7B). Furthermore, the 
same results were detected in BLCA cell lines compared 
to normal bladder cell (Figure 9B). In addition, IHC assays 
also robustly demonstrated the expression levels of the 6 
genes in tumor tissue compared with matched adjacent 
normal bladder tissues (Figure 9C). Overall, these findings 
provide further validation of the stability and reliability of 
the autophagy-immune related genes prognosis model.

Discussions
Urothelial bladder cancer was the second most common 
malignant tumor in the urinary system worldwide.2 

Approximately 25% of patients are diagnosed with 
MIBC or metastatic bladder cancer (MBC) with an unfa-
vorable prognosis.1,42 Previous clinical studies have con-
firmed the effectiveness of immunotherapy in inhibiting 
tumor growth, prolonging survival, and improving quality 
of life in MIBC.43,44 Also, TME played an imperative role 

in BLCA.15,43 Therefore, it was urgent to understand better 
the molecular mechanisms of infiltrating immune cells in 
the TME, which could improve the efficacy of immune 
checkpoint inhibitors in patients with BLCA. In this study, 
we classified the BLCA patients into autophagy clusters 
and immune clusters, then defined a novel autophagy sub-
type. In addition, we constructed an AI-score signature 
that was validated as a reliable and stable predictive tool 
for exploring potential mechanisms in TMB and TME as 
well as for predicting immunotherapy benefit and immune 
response in BLCA patients. Firstly, we screened and inte-
grated transcriptome data obtained from TCGA and/or 
GEO databases and named the training and testing cohorts. 
Expression and genetic mutation analysis confirmed that 
the abnormal expression of 43 prognosis-associated ARGs 
was associated with gene mutations, which affected the 
development and progression of BLCA. Then, we classi-
fied the training cohort into three immune clusters based 
on the expression levels of 29 immune gene sets. We 
found that the three immune clusters had distinct 
ESTIMATE Score and association with immune 

Table 1 Comparison of Clinical Characteristics of BLCA* Patients in Training Set, Testing Set and Overall Set

Variates Type Overall-Set Testing-Set Train-Set P-value

Age ≤65 157(40.36%) 76(39.18%) 81(41.54%) 0.7101

>65 232(59.64%) 118(60.82%) 114(58.46%)

Gender Female 102(26.22%) 45(23.2%) 57(29.23%) 0.2158
Male 287(73.78%) 149(76.8%) 138(70.77%)

Grade High 371(95.37%) 184(94.85%) 187(95.9%) 0.8006

Low 18(4.63%) 10(5.15%) 8(4.1%)
Stage Stage I 2(0.51%) 1(0.52%) 1(0.51%) 0.8805

Stage II 122(31.36%) 63(32.47%) 59(30.26%)

Stage III 136(34.96%) 64(32.99%) 72(36.92%)
Stage IV 129(33.16%) 66(34.02%) 63(32.31%)

T T0 1(0.26%) 0(0%) 1(0.51%) 0.8321

T1 3(0.77%) 1(0.52%) 2(1.03%)
T2 112(28.79%) 54(27.84%) 58(29.74%)

T3 188(48.33%) 93(47.94%) 95(48.72%)

T4 56(14.4%) 29(14.95%) 27(13.85%)
Unknown 29(7.46%) 17(8.76%) 12(6.15%)

M M0 185(47.56%) 92(47.42%) 93(47.69%) 1
M1 10(2.57%) 5(2.58%) 5(2.56%)

Unknown 194(49.87%) 97(50%) 97(49.74%)

N N0 225(57.84%) 111(57.22%) 114(58.46%) 0.7055
N1 43(11.05%) 22(11.34%) 21(10.77%)

N2 74(19.02%) 36(18.56%) 38(19.49%)

N3 7(1.8%) 5(2.58%) 2(1.03%)
Unknown 40(10.28%) 20(10.31%) 20(10.26%)

Abbreviation: *BLCA, bladder cancer.

https://doi.org/10.2147/CMAR.S346240                                                                                                                                                                                                                               

DovePress                                                                                                                                              

Cancer Management and Research 2022:14 82

Yu et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=346240.docx
https://www.dovepress.com/get_supplementary_file.php?f=346240.docx
https://www.dovepress.com
https://www.dovepress.com


checkpoint genes, while exhibiting the TME characteris-
tics of BLCA. Similarly, we identified three autophagy- 
related clusters for patients with BLCA based on the 
expression levels of prognosis-associated ARGs. We 
observed that autophagy clusters were correlated with 
clinicopathological features and linked to different signal-
ing pathways, demonstrating different biological behaviors 

of BLCA samples. Subsequently, we defined a novel 
autophagy subtype, named autophagy-high subtype, autop-
hagy-mediate subtype and autophagy-low subtype. We 
found that the autophagy subtype also could accurately 
characterize the role of prognosis and TME immune cell 
infiltration and proved to be significantly linked to the 
immune checkpoint genes. Finally, to quantitatively assess 

Figure 8 Construction and evaluation of an autophagy-immune-related genes prognosis model. (A) The least absolute shrinkage and selection operator (LASSO) Cox 
regression analysis was applied to calculate Lasso coefficient values and vertical dashed lines at the best log (lambda) value in the training set. Lasso coefficient profiles of the 
prognosis-related genes were demonstrated. (B) Receiver operating characteristic (ROC) curves for the prognosis signature and their AUC value were represented 1-, 3-, 
and 5-year predictions in training set. (C) Kaplan–Meier survival curves displayed that the high-risk subgroup had worse overall survival (OS) than the low-risk subgroup in 
training set (p<0.001). (D and E) ROC curves and Kaplan–Meier survival curves were used to validate the prognosis signature in overall set, testing set and GSE13507 
dataset. (F and G) The DCA curve and multivariate ROC curve were performed to evaluate predictive accuracy of risk score and nomogram. The results showed that the 
predictive accuracy risk score and nomogram were higher than other clinicopathological features including age, gender, grade, stage. (H) Prognosis-related nomogram was 
constructed based on risk score in the model and prognosis-associated clinicopathological parameters including age, gender, stage, grade, AJCC T, N, and M, to predict 1-, 3-, 
and 5-year OS of BLCA patients. (I and J) ROC curves and calibration curves of the nomogram displayed the concordance between predicted and observed 1-, 3- and 5-year 
OS.
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the significance of autophagy subtypes and their correla-
tion with immunity, we constructed an autophagy-immune 
gene signature, calculated the AI-score, and then charac-
terized the predictive value in genetic mutation and 
immune response. Collectively, our results indicated that 
the autophagy subtypes and AI-score were robust and 
stable predictive tools.

It was reported that autophagy-related prognostic sig-
nature could predict the prognosis of BLCA patients 
well,45 and autophagy-related molecular clusters also 
could characterize the clinical trait and TME immune 
cell infiltration in some tumors, such as colon cancer.26 

Moreover, Jiang et al44 reported that immune-infiltrating 
subtypes could predict prognosis and immunotherapeutic 
response in patients with MIBC. However, whether autop-
hagy-related molecular subtypes combined with immunity 
could more accurately characterize the clinical features 
and immune response in BLCA remained unclear. In the 
current study, we identified a novel autophagy subtype and 
constructed an AI-score signature and confirmed that our 
model had robust and reliable predictive reliability, which 
showed it could be a useful predictive tool.

Notably, immunotherapy was a beneficial adjuvant 
treatment for MIBC.46 The present study has shown that 
AI-score models could accurately predict the effect of 
immunotherapy and provide guidance for the selection of 
different immunotherapeutic agents. Also, it could be uti-
lized to identify the TME infiltration and clinical trait 
further. We found that the infiltration level of most 
immune infiltrating cells was gradually increased in the 
autophagy-low, -medium and -high subtypes, some of 
which had been confirmed. Cen et al47 found that autop-
hagy enhanced Mesenchymal stem cells-mediated CD4+T 
cell migration and differentiation via CXCL8 and TGF-β1 
signal pathway. Mariathasan et al48 divided the solid 
tumors into three distinct immunological phenotypes, 

including immune inflamed, immune excluded and 
immune desert. According to the present finding, the 
three autophagy types revealed different TME immune 
infiltration characterization. The autophagy-high subtype, 
characterized by high immune infiltration in TME and 
high immune anti-cancer activity as well as high 
ESTIMATE score and high expression of immune check-
point genes, corresponded to immune-inflamed phenotype. 
The autophagy-low subtype, characterized by the suppres-
sion of immunity and low immune anti-cancer activity as 
well as low ESTIMATE score and low expression of 
immune checkpoint genes, corresponded to the immune- 
desert phenotype. The others corresponded to the immune 
excluded phenotype. This result confirmed autophagy sub-
type could characterize the biological characteristics of 
BLCA.

Besides, we characterized the effect of TMB in AI- 
score signature. Our data showed a significant difference 
in the survival probability of TMB in the high and low AI- 
score subgroups. The high AI-score subgroup combined 
with the high-TMB group had the most favorable prog-
nosis. Besides, somatic mutation frequency was inconsis-
tent between high and low AI-score subgroups. Therefore, 
we inferred that AI-score and TMB representing different 
aspects of tumor immunobiology could predict clinical 
response to immunotherapy in BLCA patients.

Previous literature reported that immunotherapy- 
related prognostic models and molecular subtypes are 
practical prognostic markers and therapeutic targets for 
BLCA patients.44,49 PD-L1 played an important role in 
the regulation of BLCA. Recent studies found that 
WDR5 activates PD-L1 expression through H3K4me3 
modification, and OICR-9429 targets WDR5 to inhibit 
immune evasion by blocking PD-L1.50 In this study, we 
evaluated the predictive value of AI-score in predicting 
immunotherapy benefit and immune response in anti-PD 

Table 2 Univariate and Multivariate Cox Regression Showed Age, Stage, Risk Score Were Independent Prognostic Factors (P<0.05)

Variates Univariate Cox Regression Multivariate Cox Regression

HR HR.95L HR.95H P-value* HR HR.95L HR.95H P-value*

Age 1.032358 1.016225 1.048748 7.41E-05 1.022798 1.006873 1.038974 0.00487

Gender 0.844481 0.607516 1.173876 0.314447
Grade 2.7944 0.690991 11.30069 0.149451

Stage 1.761683 1.449383 2.141276 1.29E-08 1.561342 1.278479 1.906788 1.25E-05

Risk Score 1.760658 1.507816 2.055898 8.56E-13 1.565841 1.328637 1.845392 8.78E-08

Note: *Indicated a statistically significant difference.
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Figure 9 (A)Relative expression levels of the 6 autophagy-immune-related genes in the prognosis model in 22 paired BLCA and matched adjacent normal bladder tissues 
were examined by qRT-PCR. (B) Relative expression levels of 6 autophagy-immune-related genes in the prognosis model in normal bladder cell (SV-HUC-1) and bladder 
cancer cells (UMUC3, T24, EJ). (C) Representative images of immunohistochemistry of 6 autophagy-immune-related genes in BLCA tissues compared to adjacent normal 
bladder tissues. *p < 0.05; **p < 0.01; ***p < 0.001. 
Abbreviation: ns, not significant.
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-1/PD-L1 immunotherapy cohorts. We observed signifi-
cant differences in the clinical benefit of immunotherapies 
targeting PD-1 and/or CTLA4 in the high and low AI- 
score subgroup. The AI-score signature could precisely 
reflect immune therapeutic efficacy of immune checkpoint 
blockade. Hence, the above results demonstrated that the 
values of AI-score in predicting immunotherapeutic out-
comes were confirmed.

In conclusion, we identified three autophagic clusters 
and three immune subgroups in BLCA patients by unsu-
pervised consensus clustering and further characterized 
their biological behavior. Then, we defined a novel autop-
hagy subtype and confirmed their role in clinical features 
and TME immune cell infiltration. Finally, we con-
structed an AI-score signature to quantitatively assess 
clinicopathological features such as TNM-stage, immu-
notherapy efficacy and immune response against PD-1/ 
PD-L1 in individual BLCA patients. In addition, AI-score 
signature and prognosis model could be a valid predictive 
tool which could accurately predict the prognosis of 
BLCA patients and guide effective clinical practice, 
which could be validated by TCGA internal validation 
set, GEO external validation set and clinical samples. In 
short, this work provided novel insights into the role of 
autophagy and immunity in improving clinical responses 
and facilitating personalized immunotherapy options for 
BLCA patients.
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