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Background: The hypoxia and immune status of the lung adenocarcinoma (LUAD) micro
environment appear to have combined impacts on prognosis. Therefore, deriving a prognostic 
signature by integrating hypoxia- and immune infiltrating cell-related genes (H&IICRGs) may 
add value over prognostic indices derived from genes driving either process alone.
Methods: Differentially expressed H&IICRGs (DE-H&IICRGs) were identified in The 
Cancer Genome Atlas transcriptomic data using limma, CIBERSORT, weighted gene co- 
expression network analysis, and intersection analysis. A stepwise Cox regression model was 
constructed to identify prognostic genes and to produce a gene signature based on DE- 
H&IICRGs. The potential biological functions associated with the gene signature were 
explored using functional enrichment analysis. The prognostic signature was externally 
validated in a separate cohort from the Gene Expression Omnibus database.
Results: Five prognostic genes associated with overall survival in LUAD were used in the DE- 
H&IICRG-based prognostic signature. Patients in the high-risk group had an inferior prognosis, 
which was validated in an independent external cohort, and had lower expression of most 
immune checkpoint genes. In multivariate analysis, only risk score and T stage were independent 
prognostic factors. Differentially expressed genes (DEGs) associated with the risk score were 
enriched for pathways related to cell cycle, hypoxia regulation, and immune response. TIDE 
analyses showed that low-risk LUAD patients might also respond better to immunotherapy.
Conclusion: This study establishes and validates a prognostic profile for LUAD patients 
that combines hypoxia and immune infiltrating cell-related genes. This signature may have 
clinical application both for prognostication and guiding individualized immunotherapy.
Keywords: lung adenocarcinoma, LUAD, hypoxia, immune status, prognosis, immunotherapy

Introduction
Lung cancer remains a leading cause of death and is divided into two main histological 
subtypes: small-cell lung carcinoma (SCLC; ~15% of all cases) and non-small-cell lung 
carcinoma (NSCLC; ~85% of all cases).1,2 Two-thirds of NSCLC patients are diagnosed 
with lung adenocarcinoma (LUAD), which is usually peripheral, arises from the bronchial 
mucosa epithelium, and is frequently aggressive and metastatic.3,4 The five-year overall 
survival rate for LUAD is 19%5 and only 5% in the 57% of patients presenting with 
metastatic disease at diagnosis.6 Accurate prognostication and effective treatment for 
LUAD patients are prerequisites for improving outcomes and reducing mortality, which 
remain a huge clinical challenge.7,8
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Hypoxia is characteristic of the tumor microenviron
ment (TME) in most solid tumors, including LUAD, and it 
is an established negative prognostic factor in cancer 
patients.9 Hypoxia contributes to decreased penetration of 
chemotherapeutics and intrinsic radiation resistance, dras
tically limiting treatment efficacy.10 Hypoxia rapidly trig
gers hypoxia-responsive gene expression programs in 
tumor cells, which in turn facilitate tumor survival and 
progression through their effects on cellular proliferation, 
apoptosis, angiogenesis, cell adhesion molecule expres
sion, and the secretion of matrix metalloproteinases.11 

Hypoxia-related genes (XPNPEP1, ANGPTL4, SLC2A1, 
and PFKP) have been shown to be associated with prog
nosis in LUAD patients, as has the infiltration of CD4+ 

memory T cells and M0 macrophages into the TME of 
LUADs.12 Indeed, there is significant crossover between 
these processes: hypoxia and hypoxia-responsive genes 
play important roles in several immune cell types (lym
phocytes, myeloid cells, neutrophils, and dendritic cells) 
and their corresponding immune functions.13 This is 
important, since the tumor immune microenvironment is 
another critical determinant of tumor progression and clin
ical outcomes.14 Cancer is therefore a highly complex 
disease involving multiple hypoxia-immune system inter
actions within the tumor and systemically,15 so targeting 
hypoxia in combination with immunotherapy could signif
icantly improve outcomes for LUAD patients.

Although the prognostic value of immune- genes and 
hypoxia-associated genes has been widely studied in LUAD, 
their combined prognostic value has yet to be evaluated.16–18 

Therefore, based on differential gene expression analysis, 
weighted gene co-expression network analysis (WGCNA), 
and Cox regression analyses, we constructed an integrated 
hypoxia- and immune-related prognostic signature for 
LUAD, validated its effectiveness and generalizability, and 
analyzed the expression of immune checkpoint molecules 
and predictive value for immunotherapy. In doing so, we 
provide new insights into LUAD pathobiology, prognostic 
biomarkers, and stratification strategies for immunotherapy.

Materials and Methods
Data Sources
LUAD-related data were obtained from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases. TCGA LUAD transcriptomic data con
tained 59 normal samples and 513 tumor samples, while 
the GSE68465 dataset consisted of 19 normal samples and 

443 tumor samples. 200 hypoxia-related genes were 
obtained using the HALLMARK HYPOXIA standard 
from the MSigDB database (Supplementary Table 1).

Identification of DEGs
The limma package in R software was used for differential 
gene analysis. The screening criteria for identifying differ
entially-expressed genes (DEGs) between normal and tumor 
samples (normal vs tumor) in the TCGA database were |log2 

-fold change (FD)| > 1 and modified P (adj. P) < 0.05. When 
identifying DEGs between low- and high-risk groups (low- 
risk vs high-risk), genes with |log2-FD| > 1.2 and P < 0.05 
were considered risk-associated DEGs. Using Venn diagram 
(intersection) analysis, genes that were both LUAD- 
associated DEGs and hypoxia-related genes (HRGs) were 
regarded as DE-HRGs in subsequent analyses.

Estimating the Fraction of Immune Cell 
Types
The CIBERSORT algorithm was applied to quantify the 
proportions of 22 immune cell types in each sample. 
CIBERSORT uses Monte Carlo sampling to derive 
a P-value for the inverse convolution of every sample, 
and only samples with a P-value < 0.05 were deemed to 
be accurate immune cell fractions inferred by 
CIBERSORT, ie, only patients with CIBERSORT 
P-values < 0.05 were deemed suitable for further 
analysis.19 Accordingly, 498 cases (normal:tumor = 
56:442) satisfied the above criteria and were included in 
follow-up analyses. The sum of the 22 immune cell scores 
in each sample was 1.20 Of note, as gamma/delta T cells 
were not detected in any sample, they were excluded, 
leaving 21 immune cell types in further analyses.

Co-Expression Network Construction
The gene expression profiles of 498 samples from the 
TCGA database were extracted using the R package 
WGCNA to establish a co-expression network in differ
ent immune cells. Based on sample cluster analysis, two 
outlier samples were identified (Supplementary 
Figure 1A), so follow-up analyses were performed on 
the remaining 496 cases. A heatmap of the sample trait 
distribution is shown in Supplementary Figure 1B. The 
optimal soft threshold was determined to be infinitely 
close to the scale-free network. We also segmented the 
module using the dynamic cut-tree algorithm with the 
minModuleSize parameter set to 100. Correlations 
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between modules and traits were calculated, and modules 
significantly correlated with each trait were selected as 
hub modules, with the genes in this module regarded as 
hub genes (IICRGs) in further analyses.

Construction, Evaluation, and Validation 
of the Prognostic Gene Signature
Genes identified as both DE-HRGs and IICRGs were first 
obtained by intersection analysis, and their expression 
changes in normal and tumor samples were verified in 
the GSE68465 dataset. Genes that satisfied the condition 
of |log2 FD| > 1 and adj. P < 0.05 were regarded as DE- 
H&IICRGs in prognostic gene screening.

The TCGA-LUAD and GSE68465 datasets served as 
the training and validation sets, respectively. Initially, the 
DE-H&IICRGs associated with overall survival (OS) were 
identified in the training set using univariate Cox regres
sion analysis (P < 0.05). Subsequently, optimal prognostic 
genes were identified using a multivariate Cox regression 
model incorporating the step function. Risk scores for each 
sample in each dataset were calculated based on regression 
coefficients for prognostic genes and their expression 
using the following formula:

risk score ¼ h0 tð Þ�exp β1X1þβ2X2 . . .þβnXnð Þ

where h0 (t) represents the baseline risk function; 
X represents the gene; and β refers to the regression 
parameters. Cases were classified into high- and low-risk 
groups based on the median risk scores in each dataset. 
Risk scores and grouping information for patients in the 
training and validation sets are presented in 
Supplementary Tables 2 and 3, respectively. Kaplan- 
Meier (K-M) curves were used to compare differences in 
OS between the two groups. The prognostic capability of 
the gene signature was assessed using receiver operating 
characteristic (ROC) curves, with a similar exploration 
performed in the validation set.

Construction of a Nomogram Based on 
Independent Prognostic Factors
Univariate and multivariate Cox explorations were per
formed using seven clinicopathological parameters (age, 
gender, T phase, N phase, M phase, phase, and smoking 
history) and risk score. Variables with a P < 0.05 were 
regarded as independent prognostic factors in multivariate 
Cox analysis. A nomogram was then developed in the rms 
R package based on the identified independent prognostic 

factors predicting survival outcomes of LUAD patients at 
1, 3, and 5 years. Evaluation of the predictive precision of 
the nomogram was performed by calibration curve 
analysis.

Functional Enrichment Exploration
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses were per
formed on risk score-associated DEGs using the 
ClusterProfiler package. GO analyses included three cate
gories: biological process (BP), cellular composition (CC), 
and molecular function (MF), and KEGG was used to 
reveal the pathways involved by these genes. A P < 0.05 
was considered a significant term or pathway.

Estimation of Responses to Immune 
Checkpoint Inhibitors (ICIs)
The Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm, designed by Liu et al, was used to predict 
responses to ICI therapy (anti-PD-1 and CTLA-4 
therapies).21 ICI responses were assessed using the TIDE 
algorithm in the high and low risk groups, and outcomes 
were measured using the TIDE score. According to the 
default settings, patients with a TIDE score < 0 were 
defined as responders (positive sensitivity to immunother
apy), while patients with a TIDE score > 0 were defined as 
non-responders (negative sensitivity to immunotherapy). 
Moreover, Pearson correlation analysis was performed to 
explore correlations between the constructed prognostic 
signature (risk scores) and TIDE scores.

Statistical Analysis
Heatmaps, box plots, and ROC curves were plotted with the 
pheatmap, ggplot2, and survivalROC packages in R, respec
tively. K-M survival differences between groups were 
assessed by the Log rank test. Distributions of risk scores 
across different clinicopathological features were compared 
using the Wilcoxon or Kruskal–Wallis approaches. All sta
tistical analyses were performed in R. Unless otherwise 
stated, a P-value < 0.05 was deemed statistically significant.

Results
Identification of DE-HRGs in LUAD
We evaluated 1729 DEGs in 59 normal and 513 LUAD 
samples extracted from the TCGA database, and 999 were 
upregulated and 730 downregulated in LUAD tissues 
(Figure 1A; Supplementary Table 4). The expression 
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patterns of the top 100 (top 50 upregulated and top 50 
downregulated) DEGs between the two groups are shown 
in the heatmap in Figure 1B. To obtain DE-HRGs asso
ciated with LUAD, we intersected the DEGs and 200 
HRGs obtained from the MSigDB database, yielding 44 
differentially expressed HRGs (Figures 1C; 24 upregulated 
in LUAD and 20 downregulated; Supplementary Table 5).

Identification of Immune Infiltrating 
Cell-Related Genes by WGCNA
The estimated proportions of the 21 identified immune cell 
types in the TCGA LUAD cohort are shown in Figure 2A. 
Comparing 56 normal samples and 442 LUAD samples, 18 
immune cell types (naive B cells, memory B cells, plasma 
cells, activated CD4 memory T cells, resting CD4 memory 

T cells, follicular helper T cells, gamma-delta T cells, regula
tory T cells (Tregs), resting NK cells, monocytes, M1 macro
phages, M0 macrophages, M2 macrophages, activated 
dendritic cells, resting mast cells, resting dendritic cells, eosi
nophils, and neutrophils) showed significant distribution dif
ferences. The fractions of these 18 immune cell types were 
then selected as trait data for WGCNA. Intending to develop 
a scale-free network, we elected β = 9 (scale-free R2 = 0.98) as 
the soft threshold power (Figure 2B and C). Nine modules 
were derived through the construction of hierarchical cluster
ing trees with the dynamic cut-tree algorithm (Figure 2D). 
Within these nine modules, the MEblue module showed 
a robust and statistically significant correlation with the major
ity of differentially distributed immune cell types (Figure 2E), 
for instance positive correlations with monocytes (Cor = 0.41, 

Figure 1 44 DE-HRGs (including 24 upregulated and 20 downregulated genes) from TCGA-LUAD. (A) Volcano plot of 1729 DEGs in TCGA. Red, upregulated; blue, 
downregulated; gray, unaltered expression. (B) Clustered heatmap of the expression patterns for 1729 DEGs in the TCGA database. Red: upregulated; blue: downregulated. 
(C) Venn plot to identify the overlapping DEGs and HRGs. 
Abbreviations: DE-HRGs, differentially-expressed hypoxia-related genes; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; DEGs, differentially-expressed 
genes.
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P = 7e-22), eosinophils (Cor = 0.41, P = 5e-21), and resting 
NK cells (Cor = 0.4, P = 3e-20) and negative correlations with 
follicular helper T cells (Cor = −0.37, P = 1e-17), Tregs (Cor = 
−0.37, P = 2e-17), and plasma cells (Cor = −0.33, P = 3e-14). 
Thus, the MEblue module was deemed to be the hub module 
and, logically, the 2808 genes in this module were assumed to 
be hub genes (Supplementary Table 6), which we define here 
as IICRGs and include in subsequent analyses.

Derivation of a Prognostic Signature 
Based on H&IICRGs
Due to the prominent roles of both hypoxia and immunity in 
LUAD, 30 genes were identified in a Venn diagram as both 
DE-HRGs and IICRGs, which we call H&IICRGs 
(Figure 3A; Supplementary Table 7). A network graph of the 
interactions between these 30 H&IICRGs is shown in 

Figure 2 Identification of IRGs by CIBERSORT and WGCNA. (A) Violin plot of 21 immune cells present in normal and LUAD samples from TCGA. (B) Scale-free fit index 
analysis of the 1–20 soft threshold power (β). (C) Average connectivity of the 1–20 soft threshold power. (D) Genes are grouped into modules by hierarchical clustering, 
with different colors representing different modules. (E). Heatmap showing correlations of eigengene modules with 18 immune cells. 
Abbreviations: IRGs, immune-related genes; WGCNA, weighted gene co-expression network analysis; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas.
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Supplementary Figure 2. Twenty-five of the 30 H&IICRGs 
were abnormally expressed between normal and LUAD sam
ples in the GSE68465 dataset (Figure 3B), consistent with 
their expression in TCGA database samples and so denoted 
DE-H&IIRGs for deriving a prognostic gene signature. Based 
on the 30 H&IIRGs, univariate Cox regression analysis iden
tified 13 genes significantly associated with OS in TCGA- 
LUAD patients (P < 0.05; Supplemental Table 8). These genes 
were then incorporated into a stepwise multivariate Cox 
regression analysis and the regression coefficients calculated 
(see Table 1). Ultimately, FBP1, LDHA, MAFF, PDGFB, and 
GPC3 were characterized as the optimal variables for con
structing a prognostic gene signature (Figure 3C).

The DE-H&IICRG Prognostic Signature 
Exhibited Satisfactory Prognostic Validity
The risk scores for each LUAD sample were calculated in 
the training and validation sets and samples split into high 
and low risk according to the median score in each dataset. 
K-M survival curves demonstrated that, in both the train
ing and validation sets, the low-risk patients had a better 
OS (Figure 4A and E). The risk score distribution and the 
survival status of LUAD patients in the training set are 
shown in Figure 4B and suggest that the higher the risk 
score, the higher the mortality rate. The validation set 
produced similar results (Figure 4F). The maximum area 
under the curve (AUC) values of the prognostic signature 

Figure 3 Identification of prognostic genes. (A) Venn diagram of DE-HRGs and IRGs. (B) Box line plot of expression differences in the 30 H&IRGs in the GSE68465dataset. 
(*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001) (C) Forest plots of multivariate Cox regression analyses in LUAD. 
Abbreviations: DE-HRGs, differentially-expressed hypoxia-related genes; IRGs, immune-related genes; H&IRGs, hypoxia- and immune-related genes; LUAD, lung 
adenocarcinoma.
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in the training and validation sets were 0.712 and 0.711, 
respectively (Figure 4C and G).

The expression levels of the five DE-H&IICRGs were 
next evaluated in the training and validation sets, which 
showed that FBP1 and GPC3 were underexpressed in the 
high-risk group while LDHA, MAFF, and PDGFB were 
overexpressed in the high-risk group (Figure 4D and H). 
The five-gene signature consistently predicted OS in patients 
with LUAD. Moreover, risk scores were generally higher in 
LUAD patients with T4, N3, stage III disease and patients 
with a smoking history but showed no significant association 
with age, gender, or M stage (Supplementary Figure 3).

A Five Gene-Based Risk Score Was an 
Independent Prognostic Factor for LUAD 
Patients
The 500 LUAD patients with associated information on 
age, gender, TNM stage, phase, and smoking history in the 
training set were further analyzed. Cox regression analyses 
(univariate and multivariate) suggested that the T stage and 
our five-gene risk score were independent prognostic fac
tors for OS (Figure 5A and B). We therefore established 
a nomogram that included the T stage and risk score to 
predict the survival of LUAD patients at 1, 3, and 5 years 
(Figure 5C). Higher scores denoted poorer clinical out
comes, and the calibration curves indicated an excellent 
match between the actual and predicted survival from 
LUAD (Figure 5D), particularly for five-year survival.

Risk Score-Related DEGs Were Mainly 
Enriched in Cell Cycle and 
Immune-Related Terms and Pathways
We identified 487 DEGs (230 upregulated and 257 down
regulated; Supplemental Table 9) between the high- and 
low-risk groups, and their distribution is shown in 
Figure 6A. We next applied GO and KEGG enrichment 
explorations to reveal the functions of these genes. In the 

BP category, extracellular structure organization, extracel
lular matrix organization, and mitotic nuclear division 
were significantly enriched terms and included genes pre
dominantly associated with the cell cycle (nuclear divi
sion, organelle fission, cellular modified amino acid 
metabolic process) and immune responses (antimicrobial 
humoral response, antigen processing and description of 
exogenous peptide antigen via MHC class II, humoral 
immune response, chemokine production). As expected, 
response to reduced oxygen levels, response to oxygen 
levels, and response to hypoxia were also significantly 
enriched. In the CC analysis, the top four significantly 
enriched terms were collagen-containing extracellular 
matrix, lamellar body, collagen trimer, and condensed 
chromosome, centromeric region. Extracellular matrix 
structural, extracellular matrix structural constituent, con
stituent conferring tensile strength, and extracellular 
matrix binding were the top four enriched terms in the 
MF category (Figure 6B; Supplementary Table 10). 
Furthermore, these 487 DEGs were notably enriched for 
the top four pathways of digesting and absorbing protein, 
ECM-receptor interactions, asthma, and type I diabetes 
mellitus (Figure 6C; Supplementary Table 9).

Patients in the Low-Risk Group Were 
More Likely to Benefit from ICIs
The immune checkpoints are instrumental to immune reg
ulation, and their inhibitors have revolutionized cancer 
management over the last ten years.22,23 Given our finding 
that the DEGs associated with risk scores were involved in 
regulating immune responses, we proceeded to explore the 
expression of 27 immune checkpoint genes in the high- 
and low-risk groups. Of the 27 immune checkpoints avail
able in the current study, 13 (BTLA, CD160, CD244, 
CD274, CD276, CD47, CD48, CEACAM1, LAG3, 
LGALS9, PVR, TNFRSF14, and TNFSF4) were signifi
cantly differentially expressed between the two groups. 
BTLA, CD160, CD244, CD47, CD48, CEACAM1, 

Table 1 Multivariate Cox Regression Analysis in LUAD

Gene Name Coefficient HR Lower 95% CI Upper 95% CI P-value

FBP1 −0.14328 0.86651 0.754681 0.994909 0.042117
LDHA 0.459959 1.584009 1.262305 1.987699 7.16E-05

MAFF 0.200754 1.222324 0.961703 1.553573 0.100838

PDGFB 0.19965 1.220975 1.020561 1.460746 0.029077
GPC3 −0.08563 0.917936 0.816077 1.032508 0.153616

Abbreviations: CI, confidence interval; HR, hazard ratio.
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LGALS9, and TNFRSF14 were overexpressed in the low- 
risk group, while CD274, CD276, LAG3, PVR, and 
TNFSF4 were overexpressed in the high-risk group 
(Figure 7A). Even though 14 immune checkpoints were 
not significantly differentially expressed between the two 

groups, they tended to show higher expression in the low- 
risk group of patients.

Finally, we assessed responses to anti-PD-1 and anti- 
CTLA4 treatments in the high- and low-risk groups using 
the TIDE algorithm.21 The TIDE score was higher in the 

Figure 4 The prognostic value of the risk score signature in the TCGA and GSE68465 datasets. (A) Kaplan-Meier overall survival curves for clinical data in TCGA. (B) 
LUAD patients with high-risk scores were correlated with a higher death rate and shorter survival time. (C) The area under the (ROC) curves (AUCs) were 0.712, 0.704, 
and 0.611 for predicting 1-, 3-, and 5-year OS events in TCGA data, respectively. (D) A heatmap of expression patterns for prognostic genes in high- and low-risk groups in 
TCGA. (E–H) Validation of the risk score signature in GSE68465 using the same analysis. 
Abbreviations: TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; ROC, receiver operating characteristic.
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high-risk group compared with the low-risk group 
(P = 2.8e-09; Figure 7B), suggesting that patients in the 
low-risk group may be more sensitive to anti-PD-1 and 
anti-CTLA4 treatments. Indeed, more patients in the low- 
risk group responded to ICI therapy (Figure 7C) and, 
furthermore, correlation analysis revealed a positive corre
lation between risk score and TIDE score (Figure 7D). 
Therefore, we hypothesized that patients in the low-risk 
group would be more likely to benefit from an ICI.

Discussion
Lung adenocarcinoma (LUAD), which originates from 
mucus-secreting type II alveolar cells in small airway 
epithelia, is the most common subtype of NSCLC, with 
an extremely high incidence and mortality across the 
world. As sequencing technologies and precision medicine 
have rapidly progressed, so too have the need and cap
ability to develop novel prognostic signatures based on 
various tumor hallmarks including aerobic glycolysis, 

hypoxia, angiogenesis, and immune invasion. However, 
robust prognostic models suitable for predicting long- 
term survival, accurately stratifying at-risk groups, and 
facilitating personalized treatment planning remain an 
essential unmet clinical need.

Hypoxia is one of the most notable hallmarks of the 
TME, and it contributes to aggressive tumor phenotypes 
by enhancing motility, invasion, drug resistance, and 
immune escape.24,25 Recently, Jing et al identified hypoxia 
as a basic risk element through ssGSEA and Cox-PH 
regression models and developed a hypoxia-associated 
gene signature for early-stage LUAD.16 Run et al also 
identified hypoxia as a dominant risk factor and con
structed a hypoxia-related prognostic signature for stage 
I LUAD patients which outperformed conventional clin
ical characteristics both in terms of predicting survival and 
response to ICI therapy.17 The TME is another vital factor 
affecting the phenotype and prognosis of cancer patients. 
Several studies have established immune-related 

Figure 5 Independent prognostic analysis of the five-gene signature. (A and B) Forest plot of the association between risk factors and survival from LUAD in univariate (A) 
and multivariate (B) Cox regression analyses. (C) A nomogram for the quantitative prediction of 1-, 3-, and 5-year survival for LUAD patients based on the risk score and 
T stage. (D) Calibration plots for predicting 1-, 3-, and 5-year survival. 
Abbreviation: LUAD, lung adenocarcinoma.
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signatures that divide LUAD patients into low- and high- 
risk subgroups through various bioinformatics methods. 
Of these, Sijin et al identified immune-related genes 
using the ESTIMATE algorithm and WGCNA and con
structed an effective immune-related gene signature for 
LUAD patients using univariate Cox analysis, stability 
selection, and lasso Cox regression analysis.18 While it is 
known that there is a close association between hypoxia 
and immunosuppression, and indeed targeting hypoxia 
may enhance immunotherapy responses,13,26 existing 
hypoxia- or immune-related prognostic signatures were 
all established individually without considering the signif
icance of crosstalk between hypoxia and immune 

responses in the TME of LUAD. Therefore, we developed 
a combined hypoxia- and immune-related five-gene 
(FBP1, LDHA, MAFF, PDGFB, and GPC3) prognostic 
signature for LUAD, which may also represent 
a predictive biomarker of ICI response in LUAD patients.

As a rate-limiting enzyme in gluconeogenesis, expres
sion of fructose-1,6-bisphosphatase 1 (FBP1) is often lost 
in NSCLC through abnormal methylation of its promoter. 
Restored FBP1 expression dramatically inhibited lung can
cer cell proliferation and migration under hypoxic condi
tions and stopped lung cancer development,27 suggesting 
that FBP1 is a tumor suppressor in NSCLC. Similarly, in 
another study, restoring expression of FBP1 in NSCLC 

Figure 6 GO annotation and KEGG pathway enrichment analysis of risk score-related DEGs. (A) Volcano plot of DEGs between high- and low-risk groups. Blue: 
downregulated; red: upregulated; gray: unchanged. The top 10 enriched (B) GO BP (upper B), CC (middle B), and MF (bottom B) terms as well (C) top 20 enriched KEGG 
pathways. 
Abbreviations: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially-expressed genes; BP, biological process; CC, cellular 
composition; MF, molecular function.
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inhibited the proliferation and invasion of lung cancer cells 
under hypoxic conditions, thereby preventing the develop
ment of NSCLC.28 We found that FBP1 expression was 
higher in low-risk LUAD patients and that these patients 
had a worse prognosis, suggesting that, clinically, FBP1 
may also be a protective factor in LUAD. In another study 
in the H460 large cell lung cancer cell line, silencing FBP1 
significantly increased cellular proliferation and 
migration.29 Therefore, FBP1 seems to consistently act as 
a tumor suppressor in different types of lung cancer.

LDHA is a subunit of the lactate dehydrogenase 
(LDH) enzyme. Mechanistically, LDH catalyzes the 
interconversion of pyruvate and L-lactate, with conco
mitant interconversion of NADH and NAD+ in the final 
step of aerobic glycolysis. LDHA is highly expressed 

in various tumors, and similarly we found that LDHA 
was significantly upregulated in LUAD tissues com
pared with normal. Downregulating LDHA expression 
and suppressing LDHA activity both significantly 
reduce tumor cell proliferation and promote 
apoptosis.30,31 Moreover, LDHA expression might 
only act as an independent predictor of poor overall 
and recurrence-free survival in LUAD.32 These find
ings are consistent with our results showing that low- 
risk LUAD patients have lower LDHA expression. It is 
worth mentioning that LDHA has been included in 
several metabolism-related prognostic signatures for 
LUAD, further demonstrating the clinical significance 
of LDHA and the crosstalk between hypoxia and meta
bolism in LUAD.33–35

A

C

B

D

Figure 7 Predicting the response of two risk subtypes to immunotherapy. (A) The expression of different immune checkpoints between the low- and high-risk patients is 
shown in the violin plot. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (B) The TIDE scores in low- and high-risk patients. (C) The distribution of immunotherapeutic 
responses in low- and high-risk groups based on the TIDE algorithm. (D) Positive correlation between risk score and TIDE values in the TCGA cohort.

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S342107                                                                                                                                                                                                                       

DovePress                                                                                                                      
10477

Dovepress                                                                                                                                                              Wu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


MAFF is a member of the basic leucine zipper (BZIP) 
transcription element MAF (musculoaponeurotic fibrosar
coma oncogene) family. MAFF is an important regulator 
of gene expression that participates in different pathophy
siological processes including cancer development.36,37 

Indeed, we found that MAFF was downregulated in 
LUAD, similar to observations in other cancers including 
hepatocellular (HCC) and breast cancer.37 As reported by 
Minhua et al, MAFF participates in HCC progression 
through the circ-ITCH/miR-224-5p/MAFF pathway. We 
speculate MAFF may play a similar role in LUAD, but 
this requires further study.

PDGFB is a platelet-derived development element that 
exerts a crucial effect on the recruitment of platelet- 
derived growth factor receptor beta (PDGFR-β)-positive 
pericytes to blood vessels. It has recently been shown that 
PDGFB expression is correlated with the growth, metas
tasis, and invasion of tumor cells.38 Hypoxia-induced 
PDGF-BB is significantly associated with increased cellu
lar proliferation and migration through the activation of 
the AKT, ERK1/2, and STAT3 signaling pathways.39 

A study in U2020 cells revealed that ectopic re- 
expression of GLCE inhibited cell proliferation and 
tumor formation through various angiogenic growth fac
tors (including PDGFB) and their receptors. It has also 
been shown that PDGFB is a PPARβ/δ-dependent mole
cule that participates in tumor vascularization.40 Similarly, 
we found that PDGFB was dramatically overexpressed in 
high-risk patients, and, interestingly, the risk scores were 
higher in LUAD patients with more involved lymph nodes 
and nodal regions. Therefore, we speculate that upregu
lated PDGFB might be responsible for lymph nodes 
metastasis in LUAD, which of course requires confirma
tion. More importantly, a recent study established an 
immune-related prognostic signature that included 
PDGFB, further supporting the reliability of our prognos
tic signature and approach.41

GPC3, a 65 kDa protein containing 580 amino acids, 
acts as a heparan sulfate chain proteoglycan bound to the 
cell membrane by a glycosylphosphatidylinositol (GPI) 
anchor.42 A recent study revealed complicated roles for 
GPC3 through inhibition of Hedgehog signaling or activa
tion of canonical and non-canonical Wnt signaling. For 
example, GPC3 inhibited proliferation when the prolifera
tion rate was mainly controlled by Hedgehog signaling but 
a pro-proliferative effect when canonical Wnt signaling 
was dominant in cell proliferation, like in most hepatocel
lular carcinomas.43 In the present study, GPC3 was 

downregulated in LUAD and was considered a protective 
factor for LUAD patients. Therefore, GPC3 might play 
a tumor suppressor role in LUAD through the Hedgehog 
signaling pathway. The molecular mechanisms of GPC3 in 
LUAD are likely to be very complicated and require 
further experimental validation.

To understand how our prognostic signature stratifies 
risk, GO enrichment analysis and KEGG pathway enrich
ment were performed on the genes differentially expressed 
between low- and high-risk subgroups. KEGG analysis 
showed that these genes were significantly enriched in 
cell cycle, phagosome, ECM-receptor interaction, p53 sig
naling, and glycolysis/gluconeogenesis pathways. Indeed, 
dysregulated cell cycle, autophagy, and ECM-receptor 
interactions are important hallmarks of cancer,44–46 while 
p53 pathway dysregulation occurs in most human 
cancers.47 Therefore, we hypothesize that these tumor hall
marks and p53 signaling may be responsible for variable 
risk in LUAD patients. We propose that the association 
between our prognostic model and prognosis is closely 
related to the biological functions and molecular mechan
isms of these five genes in LUAD carcinogenesis.

We also detected significant differences in 13 immune 
checkpoint molecules between the high- and low-risk 
groups. Of these, CD276 was particularly interesting. 
Costimulatory molecule CD276 is a member of the B7 
immunoregulation transmembrane glycoprotein family 
expressed by T cells,48 and it has dual functions as a co- 
stimulator and co-inhibitor in T cell immune responses.49 

CD276 is found on chromosome 15q24.1 and, according 
to sequence analysis, CD276 is 951 base pairs in length 
and encodes 316 amino acids.50 The protein has 
a immunoglobulin-like variable signaling peptide at the 
amino terminus. The extracellular segment of the constant 
area, the transmembrane area, and the 45 amino acid 
cytoplasmic area are immunoglobulin superfamily type 
I transmembrane proteins. CD276 is expressed in many 
tumor cells,51 and abnormal expression of CD276 may be 
oncogenic through various mechanisms; indeed, it is an 
indicator of poor clinical prognosis.52 CD276 blockade 
decreases epithelial-mesenchymal transition in squamous 
cell carcinoma, cancer stem cells (CSCs) use CD276 for 
immune escape, and targeting CD276 may decrease CSCs 
in head and neck squamous cell carcinoma.53

This study also has several limitations. We derived and 
validated prognostic genes for LUAD in public databases 
due to difficulties in sample collection. Furthermore, the 
potential biological functions of these prognostic genes 
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and their roles in the development of LUAD have not been 
investigated in depth or functionally validated. This study 
is essentially retrospective in nature, and large-scale pro
spective studies are still needed to further evaluate and 
validate the results.

Conclusions
Here we established a reliable prognostic risk model com
bining immune- and hypoxia-related genes based on 
LUAD transcriptomic data from the TCGA database and 
explored the implications of this risk scoring system ICI 
therapy. In doing so, we provide insights into prognosis- 
related molecular mechanisms underpinning LUAD and 
offer a new reference for the clinical management of 
LUAD. Our findings and conclusions now need further 
mechanistic exploration and molecular validation.

Data Sharing Statement
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