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Background: Ovarian cancer is a highly malignant epithelial tumor. Recently, it has been 
reported the role of glycosyltransferases (GTs) in various cancers. However, the prognostic 
value of GTs-related genes in ovarian cancer remained largely unknown.
Methods: RNA-sequencing (RNA-seq) data and corresponding clinical characteristics of 
patients with ovarian cancer were extracted from the public database of the Cancer Genome 
Atlas (TCGA) and Genotype-Tissue Expression (GTEx). We constructed the least absolute 
shrinkage and selection operator (LASSO) Cox regression model to explore a multigene 
signature comprising GTs-related genes in the TCGA and GTEx cohort. Patients with 
ovarian cancer in International Cancer Genome Consortium (ICGC) database were applied 
for further validation. We also performed functional analysis on the differentially expressed 
genes (DEGs) of high-risk and low-risk groups in the TCGA cohort. Additionally, the 
immune status between the two risk groups was assessed, respectively.
Results: Our results showed that 64 GTs-related genes were differentially expressed 
between tumor tissues and normal tissues in the TCGA and GTEx cohort. A prognostic 
model of 15 candidate genes was constructed, which classified patients into high- and low- 
risk groups. Compared with low-risk patients, high-risk patients had an obvious worse 
overall survival (OS) (P < 0.0001 in the TCGA and GTEx cohort and P = 0.042 in the 
ICGC cohort). Multivariate Cox regression analysis revealed that the risk score was an 
independent factor for OS of ovarian cancer. Functional analysis indicated that these DEGs 
were also enriched in immune-related pathways, and the immune status was significantly 
different between the two risk groups in TCGA cohort.
Conclusion: In conclusion, a novel GTs-related gene signature may be used for the 
prognosis of ovarian cancer. Targeting GTs-related gene can act as a therapeutic alternative 
for ovarian cancer.
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Introduction
Ovarian cancer is the leading cause of death from gynecologic cancer in the world. 
Surveillance, Epidemiology, and End Results (SEER) data show that 21,410 new cases 
and 13,770 deaths of ovarian cancer are expected in the United States in 2021.1 The 
high mortality rate is mainly due to the lack of effective diagnostic and prognostic 
methods for cancer occurrence and recurrence.2 So far, there was still a poor prognosis 
of ovarian cancer patients. Therefore, it is very important to discover more effective 
prognostic model for ovarian cancer.
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On the basis of bioinformatics methods, more and 
more genes related to the prognosis of ovarian cancer 
had been found. Feng et al had found four significant up- 
regulated DEGs (BUB1B, BUB1, TTK and CCNB1) with 
poor prognosis in OC by integrated bioinformatical meth-
ods, which could be potential biomarkers for OC patients.3 

Zheng et al found that thirty genes were associated with 
the prognosis of ovarian cancer by bioinformatics 
analysis.4 At present, microarray technology and bioinfor-
matic analysis have rapidly developed and have been 
widely used in diagnosis, treatment, and prognosis of 
ovarian cancers, which can enable us to identify the 
DEGs and find the interactions among them.

Glycosylation is the most common post-translational 
modification of proteins and lipids, which is essential for 
cell adhesion and stability as well as cell to cell 
communication.5 Studies have shown that the increase of 
glycosylation level and abnormal expression of related 
enzymes are closely related to the occurrence and devel-
opment of various cancers. The expression levels of gly-
cosyltransferase (GTs) and O-glycosylation in breast 
cancer (BC) tissues were significantly higher than those 
in adjacent tissues.6–10 Compared with colon cancer 
metastases, the expression of glycosyltransferase was sig-
nificantly decreased in the primary tumor.6,10 In endome-
trial cancer, prostate cancer, lung cancer and liver 
cancer,11–14 the glycosylation level had strong correlations 
with the degree of tumor malignant. In addition, a large 
number of studies had shown that abnormal glycosylation 
can increase the risk of pancreatic cancer, liver cancer, 
breast cancer, rectal cancer and gastric cancer, indicating 
that abnormal glycosylation may contribute to the occur-
rence and development of tumors.15,16

In recent years, abnormal expression of glycosylation 
and related enzymes had also been found in ovarian can-
cer. Chou et al found that glycosyltransferase C1GALT1 
could change the O-glycosylation level of glycoprotein in 
ovarian cancer cells, and it could promote the invasion and 
proliferation of tumor cells, and even improved the stem 
cell potential of tumor cells.17 Matthew et al found that 
glycosyltransferase ST6Gal-I was up-regulated in ovarian 
cancer and enriched in metastatic tumor, which was asso-
ciated with decreased survival rate of patients.18

Although these glycosyltransferases had certain ability 
to predict prognosis, the prediction ability of single index 
was limited. It was more necessary to establish 
a multivariate prognostic model to improve the accuracy. 
Therefore, this study was based on the analysis of TCGA 

and ICGC databases and glycosyltransferase genes to pro-
vide new biomarkers for the prognosis of ovarian cancer. 
In this study, we used 15 differential expressed glycosyla-
tion genes to construct a prognostic model for ovarian 
cancer, which could better predict the survival of patients 
with ovarian cancer. Based on this model, the differential 
genes of the high- and low-risk groups were analyzed and 
found to be related to immune infiltration, which provided 
a new target and idea for the clinical diagnosis and treat-
ment of ovarian cancer.

Materials and Methods
Data Collection
RNA sequencing data and corresponding clinical information 
of ovarian cancer patients were obtained from the TCGA 
database (Supplementary Table1). 379 tumor samples were 
included in the TCGA-Ovarian Cancer database. In this study, 
we excluded 3 samples with no clinical information and 5 
samples labeled as non-primary tumors, and the remaining 
371 samples were selected as the basis for subsequent analysis. 
Since there was a lack of data related to normal ovarian 
samples in the TCGA database, information on 180 normal 
ovarian tissue samples was collected from the GTEx database 
(https://www.gtexportal.org/home/) (Supplementary Table 2) 
and served as a normal control group in the subsequent ana-
lysis. Moreover, we obtained RNA-seq data and clinical infor-
mation from 81 ovarian cancer patients (including time to 
complete survival) in the ICGC database, which was utilized 
as an independent external validation set to assess the general 
applicability of the risk score model. Moreover, the clinical 
information of the relevant samples from the GTEx, TCGA, 
and ICGC databases was presented in Supplementary Table 3. 
210 GTs-related genes were obtained from the previous litera-
ture of NCBI’s publicly available PubMed database19 

(Supplementary Table 4).

Differential Expression Analysis
We first integrated the tumor tissues samples of TCGA 
database and normal tissues samples of GTEx database for 
further analysis. Principal component analysis (PCA) was 
used to reduce dimensionality between the tumor and 
normal samples followed by normalization with “sva” 
package in R. Thereafter, the differential expression ana-
lysis was used to identify DEGs with |Log2FC| ≥ 1, 
adjusted P-value ≤0.05 using Limma R package. 
Subsequently, DEGs identified from TCGA and GTEx 
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databases were combined with 210 GTs-related genes to 
get the co-differentially expressed GTs-related genes.

Construction and Validation of 
a Prognostic Model of GTs-Related 
Genes
Here, we selected 370 of the 371 TCGA-ovarian cancer 
samples containing complete survival information as the 
basis for this part of the study. Univariate Cox analysis 
was applied to identify GTs-related genes associated with 
the prognosis of ovarian cancer. Then, 15 GTs-related 
genes were found with LASSO Cox regression analysis 
using glmnet Package in the R. A better optimal model 
was obtained after lasso Cox regression, including 
MGAT3, ALG13, FUT8, GAL, ALG8, GALNT6, 
B3GNT3, GALT, GBGT1, GCNT4, B4GALT5, 
ST6GALNAC2, ST6GALNAC6, DPM3, UGT8. We con-
structed an interaction network for the 15 candidate fac-
tors in ovarian cancer prognosis using STRING database 
(https://string-db.org/). Correlation analysis between the 
15 GTs-related genes associated with the prognosis of 
ovarian cancer were conducted (* P < 0.05, ** P < 0.01, 
*** P < 0.001). We constructed a prognostic model by 15 
candidate factors. The risk score of each sample in ovarian 
cancer was calculated as follows: score = esum (each gene’s 

expression levels × corresponding coefficient)/ esum (each gene’s mean 

expression levels × corresponding coefficient). The patients in TCGA 
(n = 370) database were classified by high-risk and low- 
risk groups according to the median of the risk score. 
Survival analysis of ovarian cancer patients was per-
formed using Kaplan–Meier (K-M) curve, and the time- 
dependent ROC curve was constructed to evaluate the 
accuracy of prognostic model using “survivalROC” 
R package.

Functional Enrichment Analysis and 
ssGSEA
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis was performed on 
the identified prognostic genes by R package clusterProfiler20 

and false discovery rate (FDR) <0.05 was set as the signifi-
cance threshold. Gene Set Enrichment Analysis (GSEA) was 
used to further investigate the biological functions of GO and 
KEGG pathways based on the DEGs between high-risk and 
low-risk patients with ovarian cancer. P-values less than 0.05 
was considered as significant enrichment.

ssGSEA and ESTIMATE
The single-sample gene set enrichment analysis (ssGSEA) 
enables the classification of gene sets with common bio-
logical functions.21 In this study, ssGSEA was applied to 
explore the different infiltration levels of 28 immune cell 
types in the expression profiles of the high- and low-risk 
groups based on TCGA-ovarian cancer, using the 
R package “GSVA”. The ESTIMATE algorithm aims to 
calculate scores that reflect the level of immune and stro-
mal cell infiltration in the tumor microenvironment, and it 
is implemented based on specific gene expression levels of 
immune and stromal cells.22 In this study, the immune 
score, stromal score, and ESTIMATE score of ovarian 
cancer samples in the high- (n = 185) and low- (n = 185) 
risk groups in the TCGA database were calculated using 
the RNA-seq-based expression level ESTIMATE algo-
rithm via the R package “ESTIMATE”. The ESTIMATE 
score represents the combination of the stromal and 
immune scores. The difference between the three scores 
in the two risk groups was assessed by the Wilcoxon test. 
In addition, the R package “ggpubr” was used to present 
violin plots of ESTIMATE scores, immune scores, and 
stromal scores in the two risk groups.

Statistical Analysis
The “limma” packages in R and one-way ANOVA were 
applied to compare the gene expression between tumor 
samples and normal samples. The Chi-squared test was 
used to compare the differences in proportions. The overall 
survival between groups was performed using Kaplan– 
Meier analysis with long rank test. All the analyses of 
present study were performed using R software. 
Generally, a P-value less than 0.05 above was considered 
as significant unless specified in our analysis.

Results
Identification of Co-Differentially 
Expressed GTs-Related Genes in Ovarian 
Cancer
To clearly distinguish the significant difference between 
tumor and normal tissues samples of TCGA and GTEx 
databases, we performed PCA to reduce the dimension and 
assess the independence of these tissues. As shown in 
Figure 1A, normal tissues vs tumor tissue samples in 
TCGA and GTEx databases displayed an obvious difference, 
indicating the independent of each group. Subsequently, we 
used limma package to screen the DEGs after integration of 
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TCGA and GTEx databases. Totally, 6814 DEGs were iden-
tified with 3094 of them up-regulated and 3720 down- 
regulated (Supplementary Table 5). Volcano plots in 
Figure 1B demonstrates the number of DEGs identified 
from TCGA and GTEx databases. Here, we also showed 
the expressions of DEGs between tumor and normal groups 
in a heatmap (Figure 1C). Moreover, the expressions of top 
10 DEGs showed significant differences between tumor 
group and normal group (Figure 1D). Venn diagram showed 
the intersections of genes between the data of DEGs and 
glycosyltransferase genes, and 61 co-differentially expressed 
GTs-related genes were found in ovarian cancer (Figure 1E).

Identification of GTs-Related Genes 
Associated with Prognosis in Ovarian 
Cancer
To address which GTs can be useful in ovarian cancer, we 
sought to identify the potential prognostic factors. Based on 
the above mentioned 61 co-differentially expressed GTs- 
related genes, we performed univariate Cox regression 

analysis in the TCGA-ovarian cancer database (n = 370). 
The results indicated that 18 of 61 genes (P ≤ 0.2)23 may be 
associated with OS in ovarian cancer patients. Specifically, 
GBGT1, ST6GALNAC6, MGAT3, GAL, B3GNT3, and 
B4GALT5 were likely oncogenes (all HR > 1), whereas 
HR < 1 for ALG8, DPM3, ALG13, GCNT4, GALT, FUT8, 
PIGM, GALNT6, ALG3, UGT8 ST6GALNAC2, and 
ST6GALNAC1, in contrast, might be protective genes for 
ovarian cancer patients (Figure 2A). A better optimal model 
was constructed after LASSO Cox regression analysis, 
which contained 15 candidate genes, such as MGAT3, 
ALG13, FUT8, GAL, ALG8, GALNT6, B3GNT3, GALT, 
GBGT1, GCNT4, B4GALT5, ST6GALNAC2, 
ST6GALNAC6, DPM3, UGT8 (Figure 2B and C). The PPI 
network indicated the interaction among these 15 candidate 
genes (Figure 2D). Specifically, excluding B4GALT5, GAL, 
GALT, and UGT8, which were not interacting with any other 
prognostic signature genes, there were 15 interactions 
between the remaining 11 genes. ST6GALNAC2 interacted 
with a total of 5 genes (FUT8, GALNT6, GBGT1, GCNT4, 
and MGAT3). ST6GALNAC6 interacted with FUT8, 

Figure 1 GTs-related genes in ovarian cancer. (A) Principal component analysis of tumor and normal tissues samples of TCGA and GTEx databases. (B) Volcano plots of 
DEGs from TCGA and GTEx databases. (C) Heatmap of DEGs. (D) Boxplot of expressions of top 10 DEGs. (E) Venn diagram of intersection of glycosyltransferase gene 
and DEGs. In (D), asterisk indicator in each grid represents the significance p value of the correlation of the corresponding genes, ****Means P <0.0001.
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GALNT6, GBGT1, and MGAT3. GALNT6, GBGT1, and 
ST6GALNAC2; GBGT1, ST6GALNAC2, and FUT8; 
ST6GALNAC6, FUT8, and MGAT3; ALG13, DPM3, and 
ALG8 could complete a closed-loop circle of relationship. 
Besides, B3GNT3 showed reciprocal relationship with 
GCNT4 only. In addition, a Pearson correlation analysis 
and P-value between these candidate genes were presented 
in Figure 2E and F. Detailed, there was a significantly power-
ful positive correlation between ST6GALNAC6 and GBGT1 
(r = 0.74, P < 0.001); followed by ST6GALNAC6 and GALT 
(r = 0.73, P < 0.001), ST6GALNAC6 and ALG13 (r = 0.71, 
P < 0.001), GALT and ALG13 (r = 0.7, P < 0.001). 
Meanwhile, ST6GALNAC6 was moderately negatively cor-
related with FUT8 (r = −0.49, P < 0.001), GALNT6 (r = 
−0.49, P < 0.001), DPM3 (r = −0.46, P < 0.001), UGT8 (r = 
−0.45, P < 0.001), ST6GALNAC2 (r = −0.44, P < 0.001), 
and B3GNT3 (r = −0.41, P < 0.001). GBGT1 was moderately 
negatively correlated with DPM3 (r = −0.46, P < 0.001), 
UGT8 (r = −0.46, P < 0.001), GALNT6 (r = −0.44, P < 

0.001), and FUT8 (r = −0.42, P < 0.001). Moreover, 
GALNT6 also showed a moderately negative correlation 
with ALG13 (r = −0.44, P < 0.001) and GALT (r = −0.41, 
P < 0.001).

Prognostic Value of These Candidate 
Factors in Ovarian Cancer
Having shown that GTs-related genes may play an impor-
tant role in the development of ovarian cancer, so we 
focused on the prognostic value of these candidate factors. 
The risk score was firstly calculated, and the patients were 
divided into high-risk group and low-risk group on the 
basis of median cut-off value of risk score. Moreover, 
patients in high-risk group showed a higher death rate 
compared with those in low-risk group (Figure 3A). To 
further understand the role of these candidate factors in 
ovarian cancer, K-M analysis was performed both in the 
GTEx database and TCGA database in which samples 
were classified by high- or low-risk score. Consistently, 

Figure 2 GTs-related genes associated with prognosis in ovarian cancer. (A) Forest plot with P-value <0.2 in univariate Cox analysis. (B) A model was constructed after 
LASSO cox regression analysis. (C) LASSO deviance diagram. (D) protein–protein interaction of 15 candidate genes. (E) Person correlation analysis between 15 candidate 
genes. (F) P-value of Pearson correlation analysis. In E and F, the color of each square indicates the correlation between genes on the corresponding X and Y axes. Blue 
represents positive correlation, red represents negative correlation, and the darker the color, the stronger the correlation. In E, the number in each grid represents the 
Pearson correlation coefficient between the corresponding genes. In F, asterisk indicator in each grid represents the significance p value of the correlation of the 
corresponding genes, *Represents P < 0.05, **Represents P < 0.01, and***Means P < 0.001.
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Figure 3 Prognostic value of these candidate factors. (A) Survival state diagram of ovarian cancer patients. The abscissa of the survival state diagram expressed the patient, 
the ordinate meant the survival time (year). The red represented the dead patient, and the blue represented the living patient. (B) Survival curve of high and low risk 
patients. The abscissa meant the survival time, and the unit was day. The ordinate represented the survival rate. Red expressed high-risk and blue indicated low-risk in 
patients. (C) Roc curve for the risk score of OS. The abscissa represented the false-positive rate, and the ordinate meant the true positive rate. (D and E) Nomogram of 
survival rate in 3,5,7,10-year. (F) Forest plot with clinical factors in univariate Cox analysis. (G) Forest plot with ages of patients in multivariate Cox analysis. (H) Heatmap of 
15 candidate factors and clinicopathological features.
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K-M curve revealed that the high-risk patients had an 
obvious worse OS compared with those low-risk patients 
(Figure 3B, P < 0.0001). Thereafter, the ROC curve at 3-, 
5-, 7-, and 10-year for the risk score of OS was performed, 
and the AUC reached 0.688 at 3 years, 0.708 at 5 years, 
0.719 at 7 years, and 0.761 at 10 years (Figure 3C). 
A nomogram and corresponding calibration plot were con-
structed based upon these results (Figure 3D and E).

Additionally, the clinical factors were added into our 
analysis to observe the effect on OS of patients. We found 
that age of patients in ovarian cancer were risk factors, and 
the previous multivariate Cox analysis model was still sig-
nificant in the presence of age (Figure 3F and G), indicating 
that risk score was an independent factor for the OS of 
ovarian cancer patients. The expression profiles of these 15 
candidate factors and clinicopathological features of ovarian 
cancer in low- and high-risk groups were displayed in 
a heatmap (Figure 3H). We found that DPM3, GALT, 
GCNT4, GALNT6, ST6GALNAC2, ALG8, ALG13, 
FUT8, and UGT8 were all highly expressed in the low-risk 
group with long OS, suggesting that these genes may be 
protective genes for patients with ovarian cancer; while 
MGAT3, B3GNT3, ST6GALNAC6, GBGT1, B4GALT5, 
and GAL were all overexpressed in the high-risk group 
with poor prognosis, indicating that these genes may be pro- 
oncogenes. This was consistent with previous inferences 
based on HR values calculated from univariate Cox analysis. 
However, the risk score based on 15 characteristic genes 
appeared to be independent of the clinical characteristics of 
ovarian cancer patients, implying that our risk score model 
may be able to bypass the impact of pathological character-
istics on patient OS. From the analyses above, the 15 candi-
date factors had obvious prognostic value for the OS of 
ovarian cancer patients.

Validation of the Prognostic Model 
Constructed by 15 Candidate Factors in 
ICGC Dataset
To further investigate prognostic model constructed in the 
previous study, the patients in the ICGC dataset were also 
classified by high- or low-risk groups based on the risk 
score. In accordance with the results above, patients in the 
low-risk group exhibited longer OS and good prognosis 
compared to patients in the high-risk group (Figure 4A). In 
addition, there was significant difference on the OS 
between the two risk groups (Figure 4B, P = 0.042). 
Besides, the AUC of the candidate factors was 0.572 at 3 

years, 0.663 at 5 years, 0.666 at 7 years, 0.785 at 10 years 
(Figure 4C), which further indicated that the prognostic 
model constructed by 15 candidate factors was effective in 
ICGC database. All the data revealed that the 15 candidate 
factors were associated with ovarian cancer prognosis.

Functional Analyses in TCGA Database of 
Ovarian Cancer
Further, we performed functional enrichment analysis on 15 
prognostic genes. In GO analysis, these genes were enriched 
to a total of 36 BP terms, 2 CC terms, and 3 MF terms (all 
FDR < 0.05; Supplementary Table 6). The top 10 of GO-BP 
and all GO-CC and -MF terms are displayed in Figure 5A. 
We focused on the GO-BP category and found that these 
genes were significantly associated with “glycosylation” and 
its related processes (“protein glycosylation”, “macromole-
cule glycosylation”, ‘oligosaccharide biosynthetic process’, 
‘poly-N-acetyllactosamine biosynthetic process’, etc.); also, 
protein localization-related terms (“protein localization to 
axon”, “protein localization to early endosome”, “regulation 
of protein catabolic process in the vacuole”, and “positive 
regulation of protein localization to endosome”) were nota-
bly enriched; moreover, the GO system showed that these 
genes served the molecular functions of “transferase activity, 
transferring glycosyl groups”, “catalytic activity, acting on 
a glycoprotein”, and “neuropeptide hormone activity” in 
“Golgi cisterna membrane” and “Golgi cisterna”. KEGG 
enrichment analysis indicated that these genes were involved 
in the N-glycan biosynthetic pathway (Figure 5B; 
Supplementary Table 7). Furthermore, we constructed net-
work of the prognostic gene-glycosylation-related BP term 
(Figure 5C) and the prognostic gene-glycosylation-related 
KEGG pathway (Figure 5D).

To explore the potential biological functions strongly 
correlated with the risk score, we first performed 
a differential analysis between high-risk and low-risk 
groups. As a result, a total of 211 DEGs were screened in 
the TCGA database, of which 109 were up-regulated and 
102 were down-regulated compared with low-risk group 
(Figure 6A). Moreover, these DEGs identified in TCGA 
database of ovarian cancer were visualized by a heatmap, 
revealing the expressions of DEGs between tumor tissues 
and normal tissue samples (Figure 6B). Furthermore, GSEA 
was performed to elucidate GO enrichment of DEGs. As 
expected, these DEGs were mainly involved in several 
important biological processes, such as immune effector 
process (Figure 6C), positive regulation of immune system 
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process (Figure 6D), regulation of immune response 
(Figure 6E), immune system development (Figure 6F), 
innate immune response (Figure 6G), and leukocyte activa-
tion involved in immune response (Figure 6H) (all P-value 
<0.05). Thus, we suspected that glycosyltransferase genes 
might play a key role in the prognosis of ovarian cancer via 
some important immune-related biological processes.

Investigation of the Relationship Between 
Risk Score and Immune Landscape in 
Ovarian Cancer
In order to investigate our suspect, we characterized the 
relationship between the risk score and immune in ovarian 
cancer using ssGSEA to quantify the enrichment scores of 

various immune cells. Interestingly, the scores of these 
immune cells, mainly including Central memory CD4 
T cell, Central memory CD8 T cell, Neutrophil, Memory 
B cell, and T follicular helper cell, were statistically sig-
nificant between the high-risk and low-risk groups in 
TCGA database of ovarian cancer (Figure 7A). The stro-
mal scores and ESTIMATE scores based on the 
ESTIMATE algorithm were significantly different between 
the two risk patients with ovarian cancer (Figure 7B and 
C). In particular, the immune scores had no statistical 
significance in TCGA database (Figure 7D).

Discussion
Glycosylation is one of the most important post-translational 
modifications of proteins, which widely exists in various 

Figure 4 External validation of the prognostic gene signature. (A) Relationship between the survival status/risk score rank and survival time (days)/risk score rank (up). The 
heatmap of mRNA expression of the fifteen-gene signature in the ICGC cohort. (B) Kaplan–Meier curves of OS of the low- and high-risk groups. (C) Time-dependent ROC 
curve analysis of survival prediction by the prognostic model. 
Abbreviations: ICGC, International Cancer Genome Consortium; OS, overall survival; ROC, receiver operating characteristic.
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cells, tissues and organs.24 Abnormal glycosylation of pro-
teins is associated with the occurrence of important diseases, 
such as tumors, cardiovascular diseases, infectious diseases, 
immune diseases, neurodegenerative diseases and metabolic 
diseases. Additionally, abnormal glycosylation regulates the 
malignant behavior of tumor cells and becomes a target of 
clinical diagnosis and treatment.25

As mentioned above, glycosyltransferase played an 
important role in the occurrence, development, metastasis 
and prognosis of ovarian cancer. However, as a prognostic 
factor of ovarian cancer, single glycosyltransferase had 
poor sensitivity and specificity. In our study, we used 
TCGA and GTEx databases to screen the differential GT 
genes of ovarian cancer and established a 15-gene prog-
nostic model. The model had a good predictive ability and 
was further validated through the external of ICGC 
database.

GnT-III is a key enzyme in the N-acetylglucosamine 
transferase family. It is encoded by the MGAT3 gene and 
catalyzes the connection of N-acetylglucosamine to the core 
mannose of complex or mixed N-glycans in the form of β1,4 
to form a bisecting GlcNAc branch structure. Research by 
Heba et al showed that high expression of glycosyltransfer-
ase GnT-III could activate Notch signal and promoted the 
growth and progression of ovarian cancer.26 Zhang et al 
found that abnormal expression of bisecting GlcNAc and 
mgat3 could inhibited the metastasis of ovarian cancer 
cells.27 Fucosyltransferase 8 (FUT8) is the only enzyme 
that catalyzes α 1.6-fucosylation in mammals, which is 
expressed in many cancers, such as liver cancer,28 ovarian 
cancer,29 thyroid cancer30 and colorectal cancer.31 It had 
been found that the core fucosylation catalyzed by FUT8 is 
involved in the progression of epithelial ovarian cancer 
(EOC). Fucosylation of copper transporter 1 (CTR1) played 

Figure 5 Functional analysis of 15 prognostic genes. (A) The dotplot of top 10 BP and all CC and MF terms by GO analysis. (B) The dotplot of KEGG pathway. (C) The 
network diagram between glycosylation-related BP terms and prognostic genes. (D) The network diagram between KEGG pathways and prognostic genes. The larger the 
circle, the more genes it contained; conversely, the smaller the circle, the fewer genes it contained. The color of the circle is correlated with the FDR-value. The smaller the 
FDR-value is, the closer it is to the red value. The larger the FDR-value is, the closer it is to the blue green. 
Abbreviations: GO, Gene Ontology; BP, biological processes; CC, cell component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false 
discovery rate.
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an important role in cell-mediated cisplatin (cDDP) uptake,32 

which provided a new strategy for improving the efficacy of 
cDDP-based EOC chemotherapy. The polypeptide 
N-acetylgalactosamine transferase-6 (GALNT6), a member 
of the N-acetyl-D-galactosamine transferase family, is an 
enzyme that mediates the initiation step of mucus 
O-glycosylation.33 As biomarkers of endometrial cancer,34 

breast cancer,35–37 pancreatic cancer,38 and colorectal 
cancer,39 GALNT6 regulated glycosylation and played an 
important role in the occurrence and development of cancers. 
Previous study has shown that the expression of GALNT6 in 
ovarian cancer was significantly increased compared with 
control tissues, suggesting that the expression of GALNT6 
was related to the poor prognosis of ovarian cancer. 
Moreover, GALNT6 enhanced the invasive behavior of 

ovarian cancer cells by regulating the activity of EGFR.40 

GBGT1 is a candidate gene for malignant transformation of 
ovarian EMS.41 The expression of GBGT1 in ovarian cancer 
is epigenetically silenced by hypermethylation of the 
promoter.42

Among these 15 genes, as mentioned above, MGAT3, 
FUT8, GALNT6 and GBGT1 were associated with the 
prognosis of ovarian cancer. B3GNT3, GCNT4, 
ST6GALNAC6, DPM3, B4GALT5, ST6GALNAC2 and 
UGT8 were rarely reported in ovarian cancer, but they 
correlated with the prognosis of other types of tumors.

Over expression of B3GNT3 is related to the poor 
prognosis of patients with non-small cell lung cancer.43 

High expression of B3GNT3 in early cervical cancer is 
associated with pelvic lymph node metastasis, leading to 

Figure 6 Functional analyses of DEGs between high- and low-risk groups by GSEA. (A) The DEGs between high- and low-risk groups from TCGA database. The red and 
green dots represent significantly upregulated and downregulated DEGs, respectively. The black dots represent genes that are not differentially expressed high- and low-risk 
groups samples. (B) Heatmap of the expression levels of the top 25 up- and down-regulated DEGs in high- and low-risk groups. Red upregulation; Green downregulation. 
The value of expression intensity is based on the gene expression level analysis by R software. (C) Enrichment plot: immune effector process. (D) Enrichment plot: positive 
regulation of immune system process. (E) Enrichment plot: regulation of immune response. (F) Enrichment plot: immune system development. (G) Enrichment plot: innate 
immune response. (H) Enrichment plot: leukocyte activation involved in immune response. 
Abbreviations: DEGs, differentially expressed genes; GSEA, gene set enrichment analysis.
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a poor prognosis.44 GCNT4 protein expression is an inde-
pendent prognostic factor for overall survival (OS) in 
patients with gastric cancer. Studies have demonstrated 
that GCNT4 regulated the cell cycle of gastric cancer, 
and overexpression of GCNT4 could prevent the prolifera-
tion of gastric cancer cells.45 In the early stage of color-
ectal cancer, the silencing of ST6GALNAC6 can lead to 
the production of inflammatory mediators that promote 
cancer.46 Manos et al reported that DPM3 could inhibit 
the progression of prostate cancer.47 B4GALT5 regulates 
breast cancer stem cells through glycosylation modifica-
tion. Over-expression of B4GALT5 lead to significant 
tumor growth in vivo, which is highly associated with 
breast cancer stem cell markers.48 In addition, B4GALT5 
may be a target gene involved in the poor prognosis of 
HCC patients.49 Sialyltransferase ST6GALNAC2 is 
a novel metastasis suppressor of breast cancer,50 which 
could be used as a predictive biomarker and potential 

therapeutic target for colorectal cancer.51 Studies have 
shown that urinary galactosyl diphosphate ceramide galac-
tosyltransferase (UGT8) is highly expressed in breast can-
cer patients and related to poor prognosis, which is 
a potential prognostic indicator and drug target for breast 
cancer.52 Other studies have indicated that high expression 
of UGT8-galactose is associated with a significantly 
increased risk of lung metastasis in breast cancer patients. 
UGT8 is an important index of breast cancer invasiveness 
and a potential indicator for evaluating the prognosis of 
lung metastasis of breast cancer.53

However, ALG13, GAL, ALG8 and GALT genes have 
not been reported in tumors. ALG13, GAL, ALG8 and 
GALT genes are all protein encoding genes. Abnormal gly-
cosylation of ALG13 (asparagine linked glycosylation 13 
homologue) is thought to be associated with epilepsy and 
mental retardation.54 GAL gene is correlated with diseases, 
such as epilepsy and acute endometritis.55 ALG8 gene was 

Figure 7 The relationship between risk score and immune infiltration. (A) Boxplot of the difference of infiltration of immune cells in high and low risk groups. (B) Violin plot 
of difference of stromal scores in two risk patients. (C) Violin plot of difference of ESTINATE scores in two risk groups. (D) Violin plot of difference of immune scores in 
two risk groups. In Figure 7, asterisk indicator in each grid represents the significance p value of the correlation of the corresponding genes, *Represents P < 0.05, 
**Represents P < 0.01, * * *Means P < 0.001, and****Means P <0.0001.
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related to congenital glycosylation disorders56 and polycystic 
liver disease with or without renal cysts.57 GALT gene is 
involved in galactose metabolism and associated with 
galactosemia.58 More importantly, galactosemia caused by 
GALT-deficiency is more likely to result in premature ovar-
ian insufficiency (POI).

In this project, we took glycosyltransferase genes as the 
target gene set, and found the differential genes in TCGA OV 
and GTEx databases. Subsequently, we established the prog-
nostic model based on these differential glycosyltransferase 
genes of ovarian cancer. The 3-year AUC value reached 
0.688, and the 10-year AUC value was 0.761. The model 
was subsequently verified in the ICGC dataset. The AUC 
value of 3 years was 0.572 and that of 10 years was 0.785, 
indicating that the model was better. Then, ovarian cancer 
patients were divided into the high- and low-risk groups, and 
analyzed differential genes between them to explore possible 
mechanism. We found that differential genes between the 
two risk groups were enriched in immunity-related pathways. 
Thus, we compared the differences of immune infiltration 
and immune cell gene sets between high- and low-risk 
groups. It was found that there were statistical differences 
in central memory CD4 and CD8 T cells between high- and 
low-risk groups, of which CD8 has the most significant 
difference. Compared with the low-risk group, the number 
of central memory T cells in the high-risk group was sig-
nificantly higher. This may be due to the fact that central 
memory T cells have super anti-tumor ability.59 Interestingly, 
TCM and its derived clonal T cells are highly effective anti- 
tumor immune T cells.60 The risk of tumors was higher in the 
high-risk group, so correspondingly more central memory 
T cells may accumulate in the high-risk group, which further 
proved that the model we constructed had good specificity 
and sensitivity from the aspect of immune cells.

At the same time, there were some deficiencies in the 
present study. This article only used the existing public 
database to analyze, without further experimental verifica-
tion. To our knowledge, we firstly reported the prognostic 
value of B3GNT3, GCNT4, ST6GALNAC6, DPM3, 
B4GALT5, ST6GALNAC2, UGT8, ALG13, GAL, ALG8 
and GALT in ovarian cancer. Next, we will further verify the 
expression of these glycosyltransferases and their related 
genes in ovarian cancer and their relationship with prognosis.

Conclusion
In summary, we had constructed a prognostic model of 
ovarian cancer with GT-related genes, which had a good 
prediction ability. The high- and low-risk groups in the 

prognostic model may reflect the prognosis of patients 
through immune mechanisms. This provided a new idea 
and method for the prognosis of ovarian cancer.
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