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Abstract: The chemical compound ABT-737 is a nanomolar inhibitor of several antiapoptotic 

Bcl-2 family members with potential therapeutic efficacy for a variety of cancers. Herein, we 

describe the development of a complementation-based RNAi assay that can be used to  identify 

mechanisms of ABT-737-resistance. HeLa cells, which were resistant to ABT-737, were optimized 

for reverse-transfection efficiency and tested for siRNA-mediated silencing. The developed 

assay utilized HeLa cell reverse-transfection with 10 nM siRNA, followed by 48 h incubation, 

ABT-737 or DMSO treatment for 24 h, and cell viability measurement using ATPlite (which 

measures ATP levels as an indicator of cell viability). As a validation, the kinase subset of the 

Ambion Silencer Human Druggable Genome siRNA Library V2, which consisted of 865 genes 

(three siRNA sequences per gene), was screened. Several assay-positive siRNAs were tested 

and confirmed to sensitize cells to ABT-737. Transfection of cells with siRNAs targeting Bcl-2 

family member Mcl-1 also potently sensitized HeLa cells to ABT-737. The current assay thus 

represents a screen that can be utilized to identify ABT-737-sensitizing siRNAs and correspond-

ingly, potential new targets for drug discovery.
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Introduction
Cell death includes such processes as apoptosis, autophagy, and necrosis, with apoptosis 

being common under nonpathological circumstances.1–4 The pathological inhibition 

of apoptosis is a causative and/or contributing factor in autoimmune disease, and is 

considered a hallmark of cancer.1,5,6 Particularly common in cancer is the dysregulation 

of the Bcl-2-family of proteins, which function to either inhibit (eg, Bcl-2 (BCL2), 

Bcl-X
L
 (BCL2L1), Mcl-1 (MCL1), Bcl-B (BCL2L10), Bfl-1 (BCL2A1), and Bcl-W 

(BCL2L2) in humans) or promote (eg, Bax (BAX), Bak (BAK1), Bim (BCL2L11), 

and Puma (BBC3)) apoptosis at mitochondria.7–9

Bcl-2 was initially cloned in the 1980s from follicular lymphomas, wherein 

its involvement in a reciprocal translocation results in its overexpression and the 

inhibition of apoptosis.10–13 Changes in gene structure, gene copy number, microR-

NAs, epigenetics, and post-translational modifications have all since been shown to 

affect the Bcl-2 family proteins in cancer.7,14–17 The over-expression of antiapoptotic 

 Bcl-2-family proteins and under-expression of proapoptotic Bcl-2 family proteins 

not only contributes to cancer pathogenesis, but also allows malignant cells to resist 

chemotherapeutic interventions.4,18 Accordingly, much attention has focused on 

inhibiting antiapoptotic Bcl-2 family proteins or mimicking proapoptotic Bcl-2 

family members.19–24
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Synthetic compounds such as ABT-737 (and ABT-263), 

GX15-070, and HA-14-1, as well as natural products such 

as (-)-Gossypol and (-)-epigallocatechin gallate (EGCG), 

bind to a hydrophobic cleft on the surface of antiapoptotic 

Bcl-2-family proteins, inhibiting their cytoprotective 

activity.4,18,25–28 Perhaps the most advanced antiapoptotic 

Bcl-2 family-targeted compound is ABT-737, a nanomolar 

inhibitor of Bcl-xL, Bcl-2, and Bcl-w that has progressed to 

clinical trials in the form of ABT-263.26,29 ABT-737 shows 

efficacy in various cancer cell lines, primary patient-

derived cells, and animal models.26,30–33 However, several 

ABT-737-resistant tumor cell lines have been identified, 

such as A549, NCI-H82, NCI-H196, and OCI-AML3, most 

likely related to the compound’s inability to effectively 

inhibit the antiapoptotic Bcl-2 family proteins Bcl-B, Mcl-

1, or Bfl-1 (A1).26,30,34

To identify other genes whose products contribute to 

ABT-737 resistance, we developed an RNA interference 

(RNAi) assay using an ABT-737-resistent human tumor cell 

line. A test screen was performed using the kinase subset 

(865 genes, three different siRNA sequences per gene) of 

the Ambion Silencer Human Druggable Genome siRNA 

Library V2, and several siRNAs were confirmed to  sensitize 

cells to ABT-737. In addition, siRNAs targeting Mcl-1 were 

highly effective at conferring sensitivity to ABT-737 in this 

assay, confirming prior results showing that expression of 

Bcl-2 family members that ABT-737 failed to bind are com-

monly responsible for resistance to this candidate anticancer 

drug.30,34

Methods and materials
cell culture
HeLa cells were obtained from ATCC (Manassas, VA) and 

cultured in Dulbecco’s modified Eagle’s medium (DMEM; 

Invitrogen, Carlsbad, CA), with 10% FBS (Clontech, 

Mountain View, CA) and penicillin-streptomycin (diluted 

according to manufacturer’s specifications; Invitrogen) at 

37°C, 5% CO
2
.

Reverse-transfections were performed using Lipo-

fectamine RNAiMAX (RNAiMAX; Invitrogen) with several 

modifications to the manufacturer’s specifications. Briefly, 

siRNAs (1 µL/well, 10 nM final) were spotted into white, 

tissue culture-treated, 384-well plates (Greiner Bio-One, 

Monroe, NC), followed by 10 µL/well of an Opti-MEM 

(Invitrogen)-RNAiMAX mixture (100:1 ratio of Opti-

MEM:RNAiMAX). The plates were then centrifuged at 

1000 rpm for 1 min and incubated at room temperature 

for 15 min. Cells (40 µL/well, 4000 cells/well) were then 

dispensed using the ThermoScientific Matrix WellMate bulk 

dispenser (Thermo Fisher Scientific, Hudson, NH), and the 

plates incubated at 37°C.

Cell viability relative to untreated cells was measured 

using the ATPlite Luminescence ATP Detection System 

(20 µL/well of a 384-well plate; PerkinElmer, Waltham, 

MA) and an EnVision Multilabel Plate Reader (PerkinElmer) 

according to the manufacturer’s specifications.

chemicals
ABT-737 was synthesized at the MD Anderson Cancer Center 

as described previously.26 ABT-737 was diluted in DMSO and 

then further diluted in water (0.1% DMSO final). Cisplatin 

was purchased from Sigma-Aldrich (St Louis, MO).

Immunofluorescence
Cells were reverse-transfected in 384-well polystyrene clear 

bottom plates (Greiner). After 72 h, the cells were washed with 

phosphate-buffered saline (PBS), fixed in a 3.7% paraform-

aldehyde (Sigma- Aldrich)/PBS solution for 15 min, washed 

with PBS, incubated in a 0.1% Tween-20/PBS solution for 

10 min, incubated in a 0.1% Tween-20 (Sigma-Aldrich)/3% 

skim milk/PBS solution for 2 h, washed with PBS, incubated 

with mouse anti-GAPDH primary antibody (0.67 µg/mL; 

Invitrogen) in 0.1% Tween-20/PBS solution at 4°C over-

night, washed with PBS, incubated with Rhodamine-labeled 

anti-mouse secondary antibody (2.67 µg/mL; Invitrogen) in 

a 0.1% Tween-20/PBS solution at 4°C for 4 h, washed with 

PBS, and incubated with DAPI (100 ng/mL) for 30 min. Imag-

ing and analyses were performed using the Cell Lab IC 100 

 (Beckman Coulter, Fullerton,  CA) and CytoShop software 

(Beckman Coulter).

High-throughput screening
HeLa cells (4000 cells/well) were reverse-transfected (using 

RNAiMAX) with no siRNA (negative control), scrambled 

control siRNA (siSC; negative control), Mcl-1 siRNA 

(siMcl-1; positive control), or siRNAs from the kinase subset 

(865 genes, 3 siRNAs/gene) of the Ambion Silencer Human 

Druggable Genome siRNA Library V2 (Applied Biosystems, 

Foster City, CA) (10 nM), and incubated for 48 h. The cells 

were then treated with 0.1% DMSO or 1 µM ABT-737 (dis-

solved in 0.1% DMSO) for 24 h, after which cell viability 

was measured using ATPlite. The ThermoScientific Matrix 

WellMate bulk dispenser and BioMek FX Laboratory Auto-

mation Workstation (Beckman Coulter) were used for liquid 

dispensing and the EnVision  Multilabel Plate Reader was 
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used for plate reading. The screen was performed twice, 

with mean results reported. siRNAs were purchased from 

Ambion, with Ambion  identification  numbers shown where 

relevant.

Q-Pcr
Reverse-transfections were scaled to 12-well plates. At 

48 h after reverse-transfection, RNA was extracted using 

the RNeasy Mini Kit (Qiagen, Valencia, CA) and cDNA 

synthesis was performed using SuperScript III RT (Invit-

rogen), both according to manufacturer’s  specifications. 

SYBR Green quantitative real-time polymerase chain reac-

tion (Q-PCR) (Applied Biosystems) was performed with 

a Mx3000P (Stratagene, Cedar Creek, TX). The following 

primers were used:

 PPID: GACCCAACACAAATGGTTC, AGTCAG 

CAATGGTGATCTTC

 M c l - 1 :  A AC G G G AC T G G C TAG T TA A AC A , 

CCAGCTCCTACTCCAGCAAC

 H A K :  AT G C C A A G AT C T A C G C T G C T , 

TCTCCAATCAGCTCCTCCTC

 W N K 2 :  C C C T T G G T G G A G A A G T C A G A , 

GACCACATGGGAGTCTGAGG

All samples were analyzed in triplicate, with mean fold 

change in expression was calculated using the 2-∆∆Ct method, 

where Ct values are normalized to PPID Ct values and 

 compared to untransfected controls.35

Statistical analyses
Statistical analyses was performed using GraphPad Prism 

(La Jolla, CA) as indicated.

Results
Development of an ABT-737-rnAi 
complementation screen
Our first objective was to develop a screen for detecting 

siRNAs that sensitize cells to ABT-737. HeLa cells were 

characterized for this screen due to their robust nature and 

ease of manipulation for high throughput screening (HTS). 

Previous studies have shown that ABT-737 decreases cell 

viability in a variety of different cell types at concentrations 

well below 1 µM.26,30 However, HeLa cells were found to 

be resistant to ABT-737 (Figure 1A).

Reverse-transfection efficiency in 384-well plates was 

then assessed. Several reverse-transfection conditions were 

tested (data not shown), with the most effective shown in 

Figure 1. Cells were reverse-transfected with scrambled 

control siRNAs (siSC) or GAPDH siRNAs (siGAPDH) in 

384-well plates, and after a 72 h incubation, GAPDH protein 

was immunofluorescently stained (Rhodamine) and imaged 

using high content screening (HCS) equipment. As shown 

in Figure 1B, siGAPDH efficiently decreased GAPDH 

protein expression. GAPDH expression, as determined by 

Rhodamine fluorescence intensity per cell, was also quanti-

fied to further evaluate siRNA-mediated silencing. Mock 

reverse-transfected HeLa cells and siSC reverse-transfected 

HeLa cells, whether treated with DMSO (0.1%) or ABT-737 

(1 µM, 0.1% DMSO), did not display a decrease in GAPDH 

protein expression (Figure 1C). In contrast, siGAPDH sig-

nificantly decreased GAPDH protein expression (P , 0.05, 

ANOVA, n = 3). This decrease was similar whether cells 

were treated with DMSO (0.1%) or ABT-737 (1 µM, 0.1% 

DMSO), suggesting that RNAi activity was not affected by 

ABT-737 and that DMSO would provide for an adequate 

negative control during HTS.

Finally, to validate positive and negative controls, and 

screening reproducibility, cells were reverse-transfected 

with either siSC or Mcl-1 siRNAs (siMcl-1), incubated 

for 48 h, treated with DMSO (0.1%) or ABT-737 (1 µM, 

0.1% DMSO) for 24 h, and assayed for cell viability 

using ATPlite (which detects ATP levels as an indicator 

of cell viability) (Figure 1D). As expected, siSC reverse-

transfection did not significantly change cell viability. 

siMcl-1 drastically decreased cell viability in the presence 

of ABT-737 (P , 0.05, ANOVA, n = 12), thus validating 

it as a positive siRNA control. The Z’-factor between 

ABT-737-treated siSC and ABT-737-treated siMcl-1 

reverse-transfected cells was greater than 0.6, which is 

considered “excellent”.36

In summary, the current assay detected siRNAs that 

 sensitize HeLa cells to ABT-737 using DMSO, siSC, and 

siMcl-1 as controls, and has been validated for siRNA trans-

fection efficiency, siRNA silencing efficiency, and reproduc-

ibility (Figure 1E).

ABT-737-rnAi complementation 
screening
The aforementioned assay was used to screen the kinase 

subset (865 genes, three siRNAs/gene) of the Ambion 

Silencer Human Druggable Genome siRNA Library V2 

twice (to increase accuracy), with mean results reported. 

As shown in Figure 2, siMcl-1 (positive control) decreased 

cell viability in the presence of ABT-737 as expected (data 

points falling below the y = x diagonal line). The 10 genes 

with the lowest average ABT-737:DMSO cell viability ratio 

were chosen for further analyses. Twelve additional genes 
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selected based on a combination of having one siRNA with 

an ABT-737:DMSO cell viability ratio lower than 0.66 and 

literature searches. siRNAs from a total of 22 genes were 

thus re-assayed (Table 1). Further genes were not evaluated 

due to resource limitations.

Further validation of ABT-737-rnAi 
complementation screening “hits”
To further validate our top screening “hits”, siRNAs for genes 

with two siRNAs that possessed confirmed ABT-737:DMSO 

viability ratios of less than 0.66 were purchased and tested. 

Dose-response studies confirmed siMcl-1-induced sensi-

tization of cells to ABT-737 (Figure 3A). One out of three 

HAK siRNAs (siHAK) complemented ABT-737, while all 

WNK2 siRNAs (siWNK2) showed at least some ABT-737 

complementation (Figure 3B, 3C).

The siRNAs were then evaluated for eff icient target 

gene expression knockdown relative to untransfected 

cells by Q-PCR (Table 2). All siRNAs decreased their 

target RNAs to at least 0.15-fold levels compared to 

control. However, siHAK (ID#111041) induced a 0.34-

fold change in Mcl-1 and was also the only siHAK 

to sensitize cells to ABT-737, suggesting that off-

target effects were responsible for the observed siHAK 

complementation. None of the three WNK2 siRNAs 

markedly decreased Mcl-1 levels, but interestingly, all 

three decreased HAK levels. At this time it is not clear 

whether WNK2 affects HAK, or if off-target siRNA 

effects were observed. In any case, the results indicate 

that the current RNAi assay can be effectively used 

for the high throughput identif ication of siRNAs that 

sensitize cells to ABT-737.
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Figure 1 High-throughput ABT-737-rnAi complementation screen development. A) HeLa cells are resistant to ABT-737. HeLa cells were seeded in 384-well plates 
(4000 cells/well), incubated overnight, and treated with ABT-737 or ABT-737 + cisplatin (cDDP; 100 µM; cell death positive control) for 24 h. cell viability was measured 
using ATPlite. Mean ± standard deviation (n = 4) are shown. B) Efficient siRNA knockdown of GAPDH expression. HeLa cells (4000 cells/well) were reverse-transfected 
(using RNAiMAX) with scrambled control siRNA (siSC) or GAPDH siRNA (siGAPDH) in 384-well plates. After 72 h, the cells were fixed, immunofluorescently stained 
(mouse anti-gAPDH primary antibody (0.67 µg/mL), rhodamine-labeled anti-mouse secondary antibody (2.67 µg/mL), DAPI (100 ng/mL)), and imaged using the cell Lab 
Ic 100. C) Quantification of efficient siRNA transfection and silencing. HeLa cells were reverse-transfected (using RNAiMAX), incubated for 48 h, treated with either 0.1% 
DMSO or 1 µM ABT-737 (dissolved in 0.1% DMSO) for 24 h, immunofluorescently stained for GAPDH, and imaged (six images/well, three wells/condition). Fluorescence 
signal intensity per cell was quantified using CytoShop software. Mean ± standard deviation (n . 200 cells/condition) are shown, with * indicating P , 0.05 (AnOVA). 
D) siMcl-1 complements ABT-737. HeLa cells were reverse-transfected, incubated for 48 h, and treated with either DMSO or ABT-737 for 24 h as previously described. 
cell viability was measured using ATPlite. Mean ± standard deviation are shown, with * indicating P , 0.05 (AnOVA, n = 12). E) Summary of the developed ABT-737-rnAi 
complementation screening procedure.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of High Throughput Screening 2010:1 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

167

An rnAi screen for ABT-737 sensitizers

Discussion
The current study describes a cell viability-based siRNA 

screen for ABT-737 sensitizers. After testing for siRNA 

transfection/silencing efficiency and reproducibility, the 

865-gene (three different siRNA sequences per gene) 

kinase subset of the Ambion Silencer Human Druggable 

Genome siRNA Library V2 was screened to test the assay. 

After re-assaying siRNAs from 22 genes (10 genes with 

the lowest average ABT-737:DMSO cell viability ratio and 

12 additional genes selected based on having one siRNA 

with an ABT-737:DMSO cell viability ratio lower than 0.66 

and literature searches), siRNAs from two confirmed “hit” 

genes were further evaluated.

For HAK, only one out of three siRNAs (siHAK 

ID#111041) sensitized cells to ABT-737. This same siRNA 

was also the only one of three to decrease Mcl-1 mRNA. 

siMcl-1 is well-known to sensitize cells to ABT-737 

 (Figure 1D),30 thus off-target effects were likely responsible 

for the sensitization effect of this siHAK.

For WNK2, several siRNAs efficiently decreased WNK2 

RNA levels and sensitized cells to ABT-737. These siRNAs 

did not affect Mcl-1 expression but, interestingly, they 

decreased HAK expression. Further studies will be required 

to assess whether WNK2 affects HAK, or if these siWNK2 

effects are due to off-target mechanisms.
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Figure 2 ABT-737-rnAi complementation screening. 
HeLa cells (4000 cells/well) were reverse-transfected (using rnAiMAX) with no sirnA (negative control), scrambled control sirnA (siSc; negative control), Mcl-1 sirnA 
(siMcl-1; positive control), or sirnAs from the kinase subset of the Ambion Silencer Human Druggable genome sirnA Library V2 (865 genes, three sirnAs/gene) (10 nM), 
and incubated for 48 h. The cells were then treated with 0.1% DMSO or 1 µM ABT-737 (dissolved in 0.1% DMSO) for 24 h, after which cell viability was measured using 
ATPlite. The screen was performed twice, with mean results shown. The y = x line is indicated in black.

Table 1 Hit sirnAs re-tested for ABT-737 complementation

Gene siRNAI ABT-737/DMSO viability

siRMA2 siRNA3 Average

HAK* 0.48 0.75 0.36 0.53
cDc42* 0.91 0.96 0.12 0.66
PrKWnK2* 1.01 0.60 0.41 0.67
MPP6+ 0.28 0.86 0.92 0.69

cKMT1+ 1.00 0.31 0.77 0.69

FgFr4+ 0.59 0.91 0.69 0.73
FgFr3* 1.04 0.97 0.18 0.73
STK23+ 0.49 0.80 0.92 0.74

ADOrA3+ 0.29 0.97 0.97 0.74

STK32A+ 0.45 0.89 1.05 0.80

PDPK1+ 0.94 0.57 0.89 0.80

FLJ13052+ 1.03 0.52 0.93 0.83

TIF1+ 0.85 0.68 0.95 0.83

InSrr+ 0.74 0.76 1.04 0.85

TXK+ 0.75 0.79 1.03 0.86

FLJ32685+ 0.85 0.82 0.97 0.88
nTrK1* 0.97 0.92 0.77 0.89
PIK4cB* 0.60 1.02 1.06 0.89
PAK2+ 1.05 0.86 0.83 0.91
Tec* 0.96 0.88 0.96 0.93
Fer* 1.06 0.87 0.92 0.95
STK22c* 1.06 0.73 1.07 0.95

Notes: *Top ten HTS hits; +additional genes selected based on HTS results and 
literature searches. HeLa cells were reverse transfected with 10 nM sirnAs, incubated 
for 48 h, treated with 0.1% DMSO or 1 µM ABT-737 (dissolved in 0.1% DMSO) for  
24 h, and assessed for viability using ATPlite. ratio of ABT-737-treated cell viability 
to DMSO-treated cell viability is shown.
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Although early reports described the exquisite 

sensitivity of siRNAs in silencing genes, a plethora 

of both sequence-related and sequence-unrelated 

off-target effects have been identif ied.37–39 Indeed, a 

common result of many RNAi screens and follow-up 

studies is not the identif ication of on-target screening 

hits, but the discovery of  responsible off-target genes 

and mechanisms.40–43 Because of the nature of siRNAs 

and high-throughput studies, larger-scale screens will 

require more complicated statistical and biological 

database analyses of screening results, followed by 

 extensive follow-up studies.44,45 Use of siRNA reagents 

that apply newer chemistries for reducing off-target 

effects may also help.46
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Figure 3 sirnA-mediated ABT-737 sensitization is dose-responsive. HeLa cells (4000 cells/well) were reverse-transfected (using rnAiMAX) with a scrambled control sirnA 
(siSC, negative control), a specific siRNA, or a mix of the two in varying ratios as indicated (10 nM of total siRNA was transfected in each case). The cells were incubated for 
48 h and then treated with 0.1% DMSO or 1 µM ABT-737 (dissolved in 0.1% DMSO) for 24 h, after which cell viability was measured using ATPlite. Mean ± standard deviation 
(n $ 4) for (A) siMcl-1 (positive control), (B) siHAK, or (C) siWNK2 are shown (Ambion identification numbers are also indicated).
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In summation, the current study describes the devel-

opment and validation of an RNAi screen that identifies 

ABT-737 sensitizers. Future studies may use this assay for 

larger-scale screens and applications.
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