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Abstract: Type 1 diabetes mellitus (T1DM) is a progressive disease as a result of the severe 
destruction of islet β-cell function, which leads to high glucose variability in patients. 
However, α-cell function is also compromised in patients with T1DM, characterized by 
aberrant fasting and postprandial glucagon secretion. According to recent studies, this 
aberrant glucagon secretion plays an increasing role in hyperglycemia, insulin-induced 
hypoglycemia and exercise-associated hypoglycemia in patients with T1DM. With applica-
tion of continuous glucose monitoring system, dozens of metrics enable the assessment of 
glycemic variability, which is an integral component of glycemic control for patients with 
T1DM. There is growing evidences to illustrate the contribution of glucagon secretion to the 
glycemic variability in patients with T1DM, which may promote the development of new 
treatment strategies aiming to mitigate glycemic variability associated with aberrant gluca-
gon secretion. 
Keywords: type 1 diabetes, glucagon secretion, continuous glucose monitoring, 
hyperglycemia, hypoglycemia, glycemic variability

Key Summary Points
Why carry out this study?

Aberrant glucagon secretion also contributes to T1DM.
The contribution of glucagon secretion to glycemic variability in patients with 

T1DM has not been clarified.
What is learned from the study?
In addition to β-cell dysfunction, aberrant glucagon secretion also contributes to 

glycemic variability in type 1 diabetes.
Glucagon suppression or inactivation may underlie potential therapeutic advan-

tages over insulin monotherapy.

Introduction
Type 1 diabetes mellitus (T1DM) is a chronic, immune-mediated disease on 
account of the destruction of islet β-cell that leads to insulin deficiency.1–3 

Multiple genetic and environmental factors are involved in the development of β- 
cell-targeted autoimmune processes and β-cell dysfunction.4 However, α-cell func-
tion and gene expression are also compromised in T1DM.5 Dysfunction of α-cell 
can aggravate hyperglycemia caused by abnormally elevated glucagon and hypo-
glycemia resulting from insufficient glucagon due to failure of counter regulation,6 

such as impaired glucagon secretion making patients with T1DM more prone to 
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insulin-induced hypoglycemia and postprandial hypergly-
cemia associated with hyperglucagonemia.7,8

Glucagon is a proglucagon-derived peptide hormone 
secreted from pancreatic islet α-cell in response to 
hypoglycemia,9 as well as has a reaction to nutrients, 
hormones, neurotransmitters, and drugs.10,11 Glucagon, as 
a glucose-regulating hormone, can counteract excessive 
insulin action and play an important role in maintaining 
blood glucose homeostasis.10–12 In healthy individuals, 
physiological glucagon levels are in the range of 20–40 
pg/mL in fasting state, which is twice as much as that in 
prandial state.6,13,14 In contrast, individuals with T1DM 
are characterized by postprandial hyperglucagonemia and 
inadequate glucagon secretion during hypoglycemia. The 
bi-hormonal hypothesis of diabetes was first proposed by 
Roger Unger,15 arguing that diabetes is as much caused by 
glucagon excess as insulin deficiency, and its association 
with T1DM has been known for nearly half a century.16,17 

In recent years, studies surrounding the glucagon receptor 
in rodents with T1DM have demonstrated that glucagon 
plays an important part in regulating glucose 
homeostasis,18–21 which gives support to clinical observa-
tions discussed in the following.

Glycemic variability (GV) is an integral component of 
glycemic control in patients with T1DM,22,23 which can repre-
sent the presence of excess glycemic excursions and, conse-
quently, the risk of hyperglycemia or hypoglycemia.24,25 With 
application of continuous glucose monitoring system (CGMs) 
since the late 1990s, dozens of metrics enable estimation of 
GV in patients with T1DM.26–28 Some studies showed that 
GV was associated with diabetic complications in T1DM,29–32 

but this remained controversial33–38 and needed to be eluci-
dated by further prospective studies on a large group of dia-
betes patients using CGM. Besides, it was reported that GV 
influenced the quality of life in patients with T1DM.39–41 

Recent studies proposed GV in T1DM is not only due to the 
insulin deficiency, but also due in part to the aberrant dynamics 
of glucagon secretion.

Papers published up to December 2020 in the PubMed 
database were reviewed using the terms “glucagon”, “type 
1 diabetes”, “hypoglycemia”, “hyperglycemia” and “gly-
cemic variability”. The references of pertinent articles 
were also handsearched for relevant papers. Only papers 
published in English were considered.

Glucagon Secretion in T1DM
It is generally acknowledged that the aberrant glucagon 
secretion dramatically affects glucose control in patients 

with T1DM,6,42 even at the special stage, the partial remis-
sion (PR) phase generally called “the honeymoon”, which 
is characterized by transient β-cell function recovery and 
better glycemic control accompanied by lower insulin 
requirement.43 PR after diagnosis of T1DM were more 
prone to have lower glucagon secretion than non- 
remission.44 The aberrant glucagon secretion in fasting 
and postprandial state is a complex phenomenon that 
plays a pivotal role in aggregating hyperglycemia and 
hypoglycemia in patients with T1DM.

Fasting Glucagon Secretion in T1DM
By comparison of serial sampling data, it was found that 
there was significant elevation of fasting glucagon in 
patients with T1DM,45 which was in line with the results 
of non-insulin treatment type 2 diabetes mellitus 
(T2DM)46 and T1DM with different disease durations.47 

However, other researchers found that fasting glucagon 
concentrations in new onset T1DM remained within the 
health control reference range over 12 months.48,49 There 
are multiple interpretations for these incompletely consis-
tent results, such as differences in subjects, insulin resis-
tance and detection methods,50–53 but certainly not all. The 
inhibition of glucagon secretion by insulin is the core 
mechanisms involved in the regulation of glucagon 
secretion.54,55 It’s understandable, then, that elevated fast-
ing glucagon is associated with disease durations in 
T1DM, which is conditional on rates of decrease in β- 
cell function.56 Besides, earlier study in T1DM patients 
without residual β-cell function clearly demonstrated that 
exogenous insulin can restrain responses to other glucagon 
secretagogues.57 As expected, exogenous insulin infusion 
was shown to suppress glucagon secretion.58,59 Based on 
these data, it can be observed that exogenous insulin does 
not fully normalize glucagon secretion in poorly controlled 
T1DM patients. On the contrary, in insulin-treated and 
relatively well-controlled T1DM patients, fasting glucagon 
levels tend to be within normal range, suggesting that 
hyperglucagonemia may not be detected if only sampling 
in fasting state.

Postprandial Glucagon Secretion in 
T1DM
The postprandial hyperglucagonemia plays a role in initia-
tion and maintenance of postprandial hyperglycemia in 
T1DM even including LADA (latent autoimmune diabetes 
in adults) and T2DM.60–62 The early study showed 

https://doi.org/10.2147/DMSO.S343514                                                                                                                                                                                                                               

DovePress                                                                                             

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021:14 4866

Guo et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


postprandial plasma glucagon level increased 160% in five 
years follow-up period after diagnosis of T1DM, which 
was negatively associated with postprandial C-peptide, an 
index to evaluate the residual β-cell function.63 Further 
study also showed that residual β-cell function had poten-
tial impact on postprandial glucagon in some individuals 
with long-standing T1DM.64 Recent study in T1DM with 
more than 3 years duration suggested that patients with 
high postprandial glucose tended to have high postprandial 
plasma glucagon,65 which may exacerbate glycemic con-
trol gradually. Therefore, it is clear that the trend of gra-
dual aggravation in postprandial hyperglucagonemia in 
line with the progressive reduction in β-cell function. 
Intriguingly, the aberrant increase in postprandial glucagon 
showed no inversion when euglycemia was achieved prior 
to oral glucose test in patients with T1DM,66 which 
demonstrated the postprandial hyperglucagonemia in 
T1DM irrespective of ambient glycemia. Besides, the 
secretion of glucagon is inhibited during hyperglycemia 
by paracrine mechanisms of insulin, zinc, and GABA 
secreted by β-cell.67–69 When the postprandial glucose 
level increases, β-cell is stimulated simultaneously. As 
alteration of β-cell function, individuals with T1DM have 
no power to completely inhibit glucagon secretion.70,71 It 
might result in the postprandial hyperglucagonemia, which 
is consistent with the U-shaped dose-response curve for 
glucose-regulated glucagon secretion obtained in animal 
experiment.72 These findings illustrate that postprandial 
hyperglycemia induces glucagon secretion, which in turn 
exacerbates postprandial hyperglucagonemia. Of course, it 
triggers a vicious circle.

Glucagon Secretion and Hyperglycemia in 
T1DM
Previous studies have clearly shown that aberrant hyper-
secretion of glucagon plays a key role in inducing hyper-
glycemia in patients with T1DM.73 The early study74 

reported postprandial glucagon increased by 17% and 
C-peptide decreased by half from baseline levels in the 
first year after diagnosis. Further studies on C-peptide- 
negative T1DM patients suggested that plasma glucagon 
concentration might be higher in hyperglycemic 
patients,65,75 which was consistent with the study between 
total pancreatectomy and T1DM with a complete lack of 
endogenous insulin.76 There is some evidence that the 
impact of glucagon response on early postprandial glucose 
excursion is independent of residual β-cell function in type 

1 diabetes.77 In summary, there is growing evidences that, 
aberrant hyperglucagonemia, under the condition of rela-
tive insulin deficiency, is one of the main pathogenesis of 
hyperglycemia in patients with T1DM.

Another interesting phenomenon was that patients with 
T1DM manifested hyperglucagonemia when suffering 
from diabetic ketoacidosis,16 which contributed not only 
to their pronounced hyperglycemia but also to their hyper-
ketonemia. Glucagon increases hepatic glucose and ketone 
production, in the case of insulin deficiency.73 The soma-
tostatin, the first glucagon-suppressing agent,78 reduced 
plasma β-hydroxybutyrate and glucose level in patients 
after temporary withdrawal of insulin with T1DM.79 

Because these T1DM patients almost certainly lost con-
siderable β-cell function, it was rational to attribute the 
hypoglycemic effect of somatostatin to its inhibition of 
glucagon secretion.54 Besides, administration of somatos-
tatin analog also allowed some patients to achieve better 
glycemic control80 and the suppression of glucagon secre-
tion might increase insulin sensitivity at the same 
time.81,82

Glucagon Secretion and Hypoglycemia in 
T1DM
The risk of hypoglycemia in individuals with T1DM is 
high: about 12% of the patients experience severe hypo-
glycemia with loss of consciousness per year.83 Insulin- 
induced hypoglycemia is customarily the result of the 
interaction between excessive exogenous insulin and aber-
rant glucagon secretion in T1DM. This kind of hypogly-
cemia is main complication of T1DM and is estimated to 
account for 4% of all-cause mortality in patients with 
T1DM.84 The early study suggested that the glucagon 
response to hypoglycemia was lost as early as the first 
month after diagnosis of T1DM,85 which was consistent 
with the finding that aberrant glucagon secretion during 
hypoglycemia was commonly observed after the first year, 
in youth with T1DM.86 The glucagon response to hypo-
glycemia in patients with T1DM is relevant to the duration 
of diabetes and can be deprived early in the disease. The 
physiological mechanism for the speedy deprivation of the 
glucagon response to hypoglycemia is certainly multifac-
torial. Most important of these is likely the decrease of 
insulin secretion and the aberrant counter-regulation of 
glucagon secretion during hypoglycemia. However, this 
counter regulation follows the recognition of hypoglyce-
mia by the autonomic nervous system. Early studies 
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suggested that marked loss of islet sympathetic nerves as 
well as diabetic autonomic neuropathy could destroy the 
recognition function of hypoglycemia in patients with 
T1DM.87,88 Intriguingly, a recent study in adults with 
T1DM reported that impaired awareness of hypoglycemia 
was not associated with autonomic dysfunction or periph-
eral neuropathy.89 For these reasons, the aberrant glucagon 
secretion is one of the key components in pathophysiology 
of insulin-induced hypoglycemia, although the exact 
mechanisms in vivo remain to be identified.

Exercise is a fundamental component of diabetes man-
agement. Current guidelines recommend that individuals 
with T1DM can benefit from physical activity, and exer-
cise should be recommended to all.90 However, the com-
plexity of exercise-associated management has become 
a major impediment to attainment of regular exercise at 
recommended levels for many patients with T1DM. 
Although both mean peak glucagon levels and the AUC 
(area under the curve) glucagon had little difference 
between individuals with T1DM and health controls dur-
ing exercise,91 the episodes of hypoglycemia would influ-
ence glucagon secretion. Therefore, the addition of 
glucagon might have great potential to reduce hypoglyce-
mia during exercise. Low-dose glucagon was more effec-
tive in preventing exercise-induced hypoglycemia than the 
reduction of insulin dosage and might result in less post-
intervention hyperglycemia than carbohydrate 
supplement.92 The artificial pancreas, combining storage 
and delivery of insulin and glucagon with CGM,93 is 
a highly effective and safe approach for treating 
T1DM.94,95 The dual-hormone artificial pancreas has 
a better practicality in glycemic control during exercise 
than the single-hormone artificial pancreas in patients with 
T1DM.96

Glucagon Secretion and Glycemic 
Variability in T1DM
GV is an integral component of glycemic control in 
patients with T1DM, closely associated with insulin defi-
ciency as well as aberrant glucagon secretion during gly-
cemic changes, such as a deficient glucagon response to 
hypoglycemia and a relative hyperglucagonemia during 
hyperglycemia. These aberrant glucagon secretions might 
be related to GV in patients with T1DM, which is 
a serious clinical problem and a major consideration 
when evaluating quality of glycemic control. GV 
increases progressively from prediabetes to advanced 

T2DM and is much higher in T1DM.97,98 Besides, the 
increased availability of CGM offers dozens of metrics 
for variability and enables measurement and observation 
of GV within a day and intraday, a more rigorous and 
valuable approach to evaluate glycemic control in daily 
life.98 Therefore, to illustrate the contribution of glucagon 
secretion to GV in patients with T1DM may promote the 
development of new treatment strategies, could even-
tually mitigate GV associated with aberrant glucagon 
secretion.99

Glucagon Secretion and Glycemic 
Variability Calculated by CGM
In a study exploring the relationship between aberrant 
glucagon secretion and GV in T1DM with different dis-
ease duration,47 the correlation between fasting glucagon 
levels and SD (standard deviation of glucose) and MAGE 
(mean amplitude of glycemic excursions) was demon-
strated. As mentioned above, in insulin-treated and rela-
tively well-controlled T1DM patients, fasting glucagon 
levels are prone to be within normal range. Fasting gluca-
gon may reflect the status of glycemic control and is 
potentially used as an index to predict GV. Further study 
showed positive correlations between some parameters of 
GV and arginine-stimulated postprandial glucagon secre-
tion response in T1DM without any endogenous insulin.75 

In this study, patients with higher AUC glucagon tended to 
have higher SD and MAGE. In addition, recent research 
also showed positive associations between measurement of 
GV and AUC glucagon undergoing arginine stimulation 
tests and AUC glucagon was significantly correlated with 
the SD.100 Moreover, other measurements of GV such as 
MODD (absolute means of daily differences) and LBGI 
(low blood glucose index) were also reported to be sig-
nificantly correlated with AUC glucagon in T1DM.47 So 
far, from the above researches it can be seen that fasting 
glucagon, postprandial glucagon and AUC of glucagon are 
all closely related to GV. Furthermore, it was reported that 
metrics of GV were predictors of aberrant glucagon secre-
tion. CV (coefficient of variation) and CONGA (continu-
ous overall net glycemic action) were correlated with 
change in glucagon concentration during the progressive 
fall in plasma glucose and might be predictors of impaired 
glucagon responses to insulin-induced hypoglycemia in 
patients with T1DM.101

According to the above research findings in patients 
with T1DM, dysfunction of β-cell responsiveness to 
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hyperglycemia as well as α-cell responsiveness to hypo-
glycemia likely resulted in higher GV demonstrated by 
CGM, and the contribution of aberrant glucagon secretion 
was indeed not negligible.

Glucagon Suppression or Inactivation and 
Glucose Variability Migration
The aforementioned findings suggest that glucagon sup-
pression or inactivation may underlie potential therapeutic 
advantages over insulin monotherapy.102 The adjunctive 
treatment of GLP-1 analogue liraglutide to insulin therapy 
was effective in well-controlled T1DM characterized by 
reduction in glycemic excursions and insulin dose.103 

Besides, the addition of pramlintide created a more effi-
cient capacity to suppress the postprandial glucagon secre-
tion than liraglutide.104 Similarly, compared with baseline 
and control patients, there was a significant decrease of 
arginine-stimulated glucagon secretion with a concomitant 
reduction of the MAGE and CV in exenatide-treated 
patients, although it had no effect on glucagon during 
hypoglycemia.105 However, the DPP-4 inhibitor vildaglip-
tin combined with insulin in T1DM retained glucagon 
counter-regulation during hypoglycemia while improved 
glycemic excursion due to, at least in part, the inhibition 
on postprandial glucagon secretion.106 Another study has 
also shown reduction in AUC glucagon and changes in 
GV and insulin requirement in the linagliptin group, 
although not statistically significant, after all it was 
a small size study.107 Moreover, the addition of glucagon 
might also have great potential to improve glycemic con-
trol. For example, the improved mean glycemia and 
reduced hypoglycemia with the dual-hormone artificial 
pancreas relative to insulin pump therapy in preadolescent 
children was reported in T1DM.92 Besides, patients with 
T1DM displayed absolute glucagon concentrations and 
a decrease in glucagon levels across the night comparable 
to those observed in the healthy control subjects.108 The 
application of dual-hormone artificial pancreas systems 
also provided better overnight glucose control than con-
ventional therapy with T1DM.109

Discussion
Glucagon is a critical regulator of glucose homeostasis110 

and the aberrant glucagon secretion in patients with T1DM 
is heterogeneous that is not fixed over the course of disease 
and poor glycemic control would flow from these changes, 
even in patients with tight glycemic control.6,42 The effect 

of aberrant glucagon secretion includes hyperglycemia 
owing to paradoxical increase in glucagon, postprandial 
hyperglucagonemia in particular, and hypoglycemia 
induced by inadequate glucagon secretion. Emerging thera-
pies designed to improve aberrant glucagon secretion are 
promising to mitigate GV.

The challenge, of course, is to interpret the available 
research results of glucagon concentration in patients with 
T1DM on account of the use of different assays.6 RIA kits 
use polyclonal antibodies against the glucagon C-terminal 
region, which will cross-react with proglucagon, truncated 
forms of glucagon and other fragments also containing 
this C-terminal region.14 Subsequently, with the advent 
of double-sandwich ELISA kits, these monoclonal anti-
bodies against both the C- and N-terminal regions of 
glucagon allow for greater accuracy and have power to 
detect small changes with little cross-reactivity to other 
fragments. Therefore, the aberrant glucagon secretion in 
patients with T1DM needs to be revised based on previous 
results obtained from RIA kits.13 Next, one of multiple 
possible reasons for discrepant results between studies on 
glucagon secretion is probably due to the stimuli of var-
ious amino acid composition in the different tests, such as 
MMTT, oral glucose, arginine stimulation, etc. Thus, there 
is an urgent need to establish the method of standardiza-
tion of glucagon assay, and it is important to select the 
methods to stimulate and detect glucagon scientifically 
and rationally.

What’s more, T1DM is a progressive disease, and 
a more in-depth research of aberrant glucagon secretion 
at different stages of T1DM has been hindered by the 
incapable of early diagnosis before overt decline of insulin 
secretion and hyperglycemia. Therefore, prospective mul-
ticenter studies with large sample size are needed in dif-
ferent stages, especially prediabetes and first-degree 
relatives of T1DM, to confirm the present findings.
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