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Abstract: Lung cancer is characterized by high morbidity and mortality rates, and its 
occurrence is associated with many types of cell death. As a new form of regulated cell 
death, ferroptosis is an iron- dependent pattern of cell death and characterized by lethal 
accumulation of lipid-based reactive oxygen species (ROS), which is different from apopto-
sis, necrosis and autophagy at both the morphological and biochemical levels. It plays an 
important role in the development of lung cancer and induction of ferroptosis in lung cancer 
cells has become a new strategy for anti- lung cancer treatment. However, a few reviews 
summarized ferroptosis and its role in lung cancer has not been elucidated, and the precise 
mechanism of ferroptosis modeling lung cancer has not yet been revealed till date. Herein, 
we review the latest literature on the process of ferroptosis regarding lung cancer, including 
basic molecular or biology mechanistic studies both in vivo and in vitro, as well as human 
studies with a more translational or clinical approach. This review provides a practical, 
concise and updated outline on the mechanisms and therapeutic strategies in lung cancer with 
ferroptosis alterations. Looking ahead, further studies are required to uncover the possible 
modulatory relationship between ferroptosis and lung cancer. 
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Introduction
Lung cancer is one of the main causes of tumor-related death worldwide, and its 
high incidence rate and mortality have become the focus of the world, which is 
responsible for approximately 18.4% of all cancer mortalities.1,2 However, tradi-
tional therapies (ie surgery, radiotherapy or chemotherapy), novel molecular tar-
geted therapy or immunotherapy have not brought desirable benefits to patients 
reaching advanced stages of the disease.3 Consequently, clinicians face the dilemma 
that there is considerable ambiguity in the most appropriate consolidation treatment 
for patients with advanced stages of lung cancer. Therefore, further exploring the 
occurrence and development mechanisms of lung cancer, discovering new thera-
peutic targets, and finding effective therapeutic methods and drugs should be 
urgently designed and implemented.

Cell death is important for mammalian development and homeostasis and is fully 
integrated with the physiological function and pathological state of an organism.4 The 
orchestration of cell death both spatially and/or temporally is critical for the develop-
ment of various human diseases.5 Regarding most of the different cells in the body, 
cell death can be conventionally divided into four distinctive types: apoptosis, necro-
sis, autophagy, and pyroptosis.6 In 2012, a new non-apoptotic cell death pattern caused 

Correspondence: Jinghua Jiao; Shan Zhao  
Email jean0905@163.com; 
zhaoshan1109@163.com

Journal of Inflammation Research 2021:14 7079–7090                                                     7079
© 2021 Chen et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Inflammation Research                                                         Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 5 November 2021
Accepted: 10 December 2021
Published: 20 December 2021

Jo
ur

na
l o

f I
nf

la
m

m
at

io
n 

R
es

ea
rc

h 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://orcid.org/0000-0003-3774-0021
mailto:jean0905@163.com
mailto:zhaoshan1109@163.com
http://www.dovepress.com/permissions.php
https://www.dovepress.com


by an iron-dependent lipid peroxidation injury was presented 
and named “Ferroptosis”.7

Ferroptosis is a cell death caused by cell membrane 
damage due to glutathioneperoxidase (GPX) activity failure 
and intracellular lipid peroxide, accompanied by the iron- 
dependent production of reactive oxygen species (ROS).7,8 

Its morphology, genetics and biochemical characteristics are 
significantly different from apoptosis, necrosis, autophagy 
and pyroptosis (Table 1).9 Morphologically, ferroptosis 
occurs mainly in cells as reduced mitochondrial volume, 
increased bilayer membrane density and reduction or disap-
pearance of mitochondrial cristae, without nuclear concen-
tration and chromatin marginalization.10 Generally, the 
mitochondrion can regulate ROS generation, ferroptosis 
and cell cycle, and it has been implicated in various malig-
nancies including lung cancer. Furthermore, irradiation and 
hypoxia promote mitochondrial stress pathways activity to 
survive the harsh environment. Against normal cells, both 

the consumption of ROS and irons are elevated in tumor 
cells as a consequence of increased metabolic rate.11,12 

Consequently, the above changes inhibit ferroptosis in 
tumor cells. At present, many studies on ferroptosis and 
lung cancer have made certain progress. Of which, ferrop-
tosis inducers are used as traditional treatment programs and 
new adjuvants have been shown to be effective in the treat-
ment of lung cancer. Therefore, inducing ferroptosis in lung 
cancer cells has become a new anti-cancer treatment 
strategy.13,14 Generally, ferroptosis plays an important role 
in the development and therapeutics of lung cancer, which 
we will describe in detail in the following sections.

Mechanism of Ferroptosis
To date, the major biochemical processes involved in ferrop-
tosis can be simply comprised of four steps, ie, (i) inactiva-
tion of cysteine/glutathione antiporter system Xc− (xCT), (ii) 
depletion of glutathione and lipid repair enzyme (glutathione 

Table 1 Cell Morphology, Biochemical Features, and Key Regulators of Necrosis, Autophagy, Apoptosis, Pyroptosis, Ferroptosis

Type of 
Cell 
Death

Identification Cell Morphology Biochemical Features

Necrosis Traumatic cell death due to mechanical 

shear stress or other physicochemical 

factors.

Mitochondria swells in cytoplasm, forming 

vesicles of different sizes, and 

mitochondrial cristae break until they 
disappear. Cytoplasm can lose water, and 

cell volume is reduced.

Necrosome

Autophagy A process of engulfing one’s own 

cytoplasmic proteins or organelles and 

coating them into vesicles, fusing with 
lysosomes to form autophagic lysosomes, 

and degrading the contents it 

encapsulates.

Autolysosome accumulation, cytoplasmic 

vacuolization.

Conversion from light chain 3 (LC3)-I to 

LC3-II, degradation of p62Lck, Beclin-1 

dissociation from Bcl-2/XL

Apoptosis A morphologically distinct form of 

programmed cell death that is mediated 
by a number of proteases that cleave their 

target proteins at specific aspartate 

residues.

Plasma membrane blebbing; reduction of 

cellular and nuclear volume; nuclear 
fragmentation; and chromatin 

condensation

Activation of caspases and proapoptotic 

Bcl-2 family proteins, oligonucleosomal 
DNA fragmentation, exposure of Plasma 

membrane rupture, dissipation of 

dissipation.

Pyroptosis A unique form of programmed cell death 
mediated by the gasdermin family of 

proteins and causes lytic cell death and 

release of proinflammatory cytokines.

Cellular swelling and lysis, release 
inflammatory factors.

Inflammasome

Ferroptosis A type of regulated cell death caused by 

an excess iron-dependent accumulation of 
lipid peroxides and is morphologically and 

biochemically distinct from other types of 

cell death.

Small mitochondria with a condensed 

mitochondrial membrane, vanishing or 
reduction of mitochondria crista, and 

rupture of outer mitochondrial membrane

Iron loading, ROS accumulation, System 

Xc− inhibition with reduced GSH, GPX4 
inhibition
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peroxidase 4, GPX4), (iii) lipid peroxidation and (iv) excess 
iron and accumulation of ROS in cells.15–17 The main reg-
ulatory mechanism of ferroptosis is shown in Figure 1.

Cysteine/Glutathione Antiporter System
The cysteine/glutathione antiporter, also named system 
Xc−, as a trans-membrane protein, is an important intra-
cellular antioxidant element. System Xc− is composed of 
the light-chain SLC7A11 (xCT) and the heavy-chain 
SLC3A2 (CD98hc or 4F2hc) and its functions are as raw 
materials for the synthesis of glutathione (GSH).18 As its 

main functional subunit, SLC7A11 encodes a cystine 
transporter also known as xCT, which is highly specific 
to cystine and glutamic acid (Glu), responsible for the 
major transport activity. Additionally, CD98hc as 
a companion protein maintains the stability of xCT 
protein.19 System Xc− regulates the 1:1 exchange of extra-
cellular cystine for intracellular glutamic acid in and out of 
cells.20 Interestingly, Glu, cysteine (Cys), and glycine 
(Gly) under the catalysis of glutamate cysteine ligase 
(GCL) and glutamylcysteine synthetase (GCS) generated 
GSH. On the other hand, GPXs are kinds of highly 

Figure 1 Main regulatory mechanism of ferroptosis. Iron homeostasis, and lipid peroxidation metabolism are core regulators of ferroptosis. 
Abbreviations: TFR1, transferrin receptor 1; DMT1, divalent metal ion transporter 1; FPN, ferroportin; IRP, iron regulatory protein; PHD1, prolyl hydroxylase domain 
protein 1; HSPB1, heat shock protein β-1; FIN56, specific iron death inducer; System Xc-, cystine/glutamate transporter; Cys, cysteine; Glu, glutamic; Gln, glutamine; GLS, 
glutaminase; GSH, glutathione; GPX4, glutathione peroxidase 4; Hcy, homocysteine; CGL, cystathionine-γ-lyase; HOX1, heme oxygenase-1; PRDX6, peroxide reduction 
enzyme-6; CISD1, CDGSH iron sulfur domain 1.
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conservative enzymes on evolution, which are essential 
components of cellular detoxification systems that defend 
cells against ROS.21 To the best of our knowledge, GPX4 
is the core controlling factor in ferroptosis, and the intra-
cellular GSH content directly affects GPX4 enzyme 
activity.22 Currently, many small-molecule inducers, 
namely ferroptosis-inducing agents (FINs), are identified 
as ferroptosis-inducing compounds. Like ras selective 
lethal 3 (RSL3), FIN56 inhibits GPX4 activity without 
GSH depletion.23,24 Inactivation of GPX4 by GSH deple-
tion is found to trigger ferroptosis.25,26 Thus, elucidation 
of the factors that underlie the sensitivity of a given cell 
type to ferroptosis is crucial to understand the physiologi-
cal and pathophysiological manifestation of ferroptosis 
and how it may be exploited for the management of 
cancer.

Iron Metabolism
Iron (Fe) exists in two oxidation states including the fer-
rous cation (Fe2+) and ferric cation (Fe3+). Non-haem Fe in 
food is mainly in the form of Fe3+, which is reduced back 
to Fe2+ by Fe reductase, such as duodenal cytochrome 
b (Dcytb)27 and antioxidant enzyme heme oxygenase-1 
(HO-1) in the intestine.28 Dietary Fe enters the intestinal 
epithelium cells (IECs) via the brush-border transporter 
divalent metal transporter 1 (DMT1) and exits through 
the basolateral membranes.29 Overexpression of DMT1 
promoted cell ferroptosis, while knockdown of DMT1 
significantly inhibited the ferroptosis.30 Meanwhile, fer-
rous cation (Fe2+) absorbed by IECs is transported by the 
action of ferroportin-1 (FPN1) on the extracellular side of 
the membrane. An oxidation of Fe2+ into Fe3+ by cerulo-
plasmin (CP), hephaestin (HP) and poly(rC)-binding pro-
tein 2 (PCBP2), which combines with transferrin (Tf) to 
form the Tf (with loading two Fe3+) complex.31 Then, Tf- 
Fe3+ binds to the transferrin receptor (TfR) forming Fe3+- 
Tf/TfR complex on the cell membrane and internalizes to 
cell as endosomes,32 whereas Fe3+ is released and subse-
quently transported by six-transmembrane epithelial anti-
gen of the prostate 3 (STEAP3) reduced to Fe2+, where 
iron enters the cytoplasm via DMT1 on the endosomal 
membrane.33,34

Oxidation of excess ferrous iron to the ferric state in 
the cell cytoplasm is known as unstable iron pool, which 
has metabolic activity and plays a crucial role in a variety 
of biological functions, such as ferroptosis.35 Cellular iron 
homeostasis needs to be tightly regulated by balancing its 
uptake, transport, and storage. Intracellular iron deficiency 

can lead to insufficient energy production, whereas iron 
overload triggers ROS formation via the Fenton reaction, 
which begins with the oxidation of the ferrous ion (Fe2+) 
to the ferric ion (Fe3+) in the presence of hydrogen per-
oxide, which acts as an oxidizing agent (Fe2++ 
H2O2→Fe3+ + •OH + OH−).36 Through Fenton reaction, 
a large number of hydroxyl radicals are produced, trigger-
ing a strong oxidative stress reaction, producing a large 
number of ROS and inducing ferroptosis.37 Thereby, iron 
is an essential element for ferroptosis, and iron metabolism 
is a necessary process for ferroptosis.

Lipid Metabolism
Ferroptosis is also driven by iron-dependent lipid 
peroxidation.38 Lipid peroxidation refers to the process in 
which oxidants obtain an unstable hydrogen atom from the 
diallyl methyl phosphate of polyunsaturated fatty acids 
(PUFAs) and generates a large number of free radical 
lipid peroxidation and hydrogen peroxide content.25 The 
content of intracellular PUFAs determines the degree of 
lipid peroxidation in cells and its sensitivity to 
ferroptosis.39 Recent studies have revealed that many fac-
tors or signaling molecules participate in the regulation of 
fatty acid synthesis, such as glutamine (Gln), citrate 
synthase (CS) and acetyl-CoA carboxylase (ACC), parti-
cipating in the regulation of ferroptosis by mediating lipid 
oxidation.40–42 However, the exact mechanism of these 
factors` role in ferroptosis remains unclear and will be an 
exciting topic for future studies.

So far, many factors participate in the production of 
lipid peroxides such as Acyl-CoA synthetase long-chain 
family 4 (ACSL4), lysophosphatidylcholine acyltransfer-
ase 3 (LPCAT3), and lipoxygenases (LOXs).43 ACSL4 is 
a member of the long-chain acyl coenzyme A synthase 
family (ACSLs), which is a class of essential enzymes 
involved in fatty acid metabolism.44 LPCAT3 is a protein 
that catalyzes the reacylation of lysophospholipids to 
phospholipids. Li et al revealed that the knockdown of 
LPCAT3 activity has been shown to increase intracellular 
lysophospholipid levels and promote very low-density 
lipoprotein secretion in hepatocytes.45 LOXs (the 15- 
LOX-1 isoform, in particular) have been implicated as 
a key regulator in ferroptotic cell death.46,47 Depending 
on cellular contexts, ACSL4 and LPCAT3 activate free 
long-chain polyunsaturated fatty acids, promote the con-
version of lysophosphatidylcholine (LPC) into lecithin, 
and participate in the synthesis of phospholipid of oxidized 
cell membrane, thus mediating the fereoptosis process. On 
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the other hand, ACSL4 esterify mainly arachidonic acid 
(AA) into acyl-CoA, for biosynthesis of polyunsaturated 
fatty acids required for fatty acid oxidation and 
ferroptosis.48 The absence of CoA leads to a decrease in 
lipid peroxidation substrates, which declines the level of 
ferroptosis. Yang et al have demonstrated that cells are 
resistant to ferroptosis when LOXs activities are knocked 
down by small interfering RNA (siRNA).47 LOXs are not 
only essential for the execution of ferroptosis but may also 
play a key role in its initiation by contributing to the lipid 
hydroperoxides, which promote lipid autoxidation.49

The Role of Ferroptosis in Lung 
Cancer
Based on the theories above, ferroptosis is a form of iron- 
dependent cell death characterized by the accumulation of 
lipid peroxides, and it plays a dual role in tumor occurrence. 
Generally speaking, many drugs can induce ferroptosis to 
suppress lung cancer cell growth by causing cysteine deple-
tion or by inactivating GPXs. Additionally, ferroptosis could 
evoke immunosuppression to promote tumor growth of 
NSCLC by mediating the inflammatory responses.50 

Herein, combining ferroptosis inhibitors with immunother-
apy may be a novel strategy for lung cancer therapy.

Ferroptosis and the Development of Lung 
Cancer
Iron Ion
Epidemiological and laboratory findings confirmed that 
iron intake is associated with the development of lung 
cancer. In a previous prospective population-based cohort 
study using the Rotterdam dataset, researchers found that 
dietary higher intake of iron was associated with 
a decreased risk of lung cancer after adjusting for potential 
variables.51 These findings are in agreement with the 
results from another prospective, National Institutes of 
Health-American Association of Retired Persons (NIH- 
AARP) Diet and Health Study with 7052 lung cancer 
cases, which showed that a higher intake of dietary iron 
was associated with a significantly reduced risk of lung 
cancer (13%) after mean follow-up of 7 years.52 A risk 
reduction ranging from 19% to 34% for total iron intake 
was found in a case–control study with 1139 cases and 
people with low Fe+2 suboptimal DNA repair capacity 
(DRC) may have approximately two-fold risk for lung 
cancer compared with those with high Fe+2 proficient 
DRC.53 In a Massachusetts hospital-based case–control 

study involving 923 cases and 1125 healthy controls, diet-
ary iron intake may play an important role in the develop-
ment of lung cancer, whereas heme iron was associated 
with a decreased risk.54 Mechanically, minerals including 
iron are essential dietary intakes for maintaining the integ-
rity of DNA by preventing oxidative DNA damage.55 

Moreover, iron deficiency or overload may lead to oxida-
tive DNA damage,56 which can further predispose to can-
cer development.57 Similar findings from epidemiological 
evidence have shown that DNA repair capacity is asso-
ciated with increased lung cancer risk.58,59 Previous 
laboratory data have identified excessive iron can induce 
apoptosis, necrosis and ferroptosis. Erastin, first discov-
ered as an inducer of ferroptosis, promotes iron-dependent 
cell death accompanied by antioxidant depletion caused by 
cystine glutamate antiporter inhibition.60 In BALB/c (nu/ 
nu) mice model of lung cancer, overexpression of trans-
ferrin receptor 1 (TFR-1) can accelerate the iron absorp-
tion rate of lung cancer cells, promote tumor growth, and 
shorten the mice survival time.61 Moreover, heat shock 
protein B 1 (HSPB1) is a negative regulator of ferroptosis 
as it inhibits the accumulation of iron by inhibiting TFR1 
expression.62 Noteworthy, although iron can catalyze the 
production of ROS through Fenton reaction and modulate 
ferroptosis, its underlying mechanism for lung cancer is 
still unknown. Following the publication of the above 
paper, there is no report on whether and how normal 
cells also rely on iron to cause death, or whether their 
changes are significantly different from lung cancer cells.

SLC7A11
SLC7A11, as a potential biologic marker, is highly expres-
sive in non-small cell lung cancer (NSCLC).63 SLC7A11 
can promote metastasis as well as proliferation of lung 
cancer cells both in vitro and in vivo, and down- 
regulating SLC7A11 can inhibit metastasis as well as 
proliferation of lung cancer cells.64,65 Furthermore, 
SLC7A11 overexpression could restore the REDOX 
homeostasis under stress by mediating cystine uptake, 
reducing ROS production and promoting the proliferation 
and migration abilities of human lung adenocarcinoma 
(A549).66 On the contrary, down-regulation of SLC7A11 
gene expression by siRNA can induce ROS accumulation, 
and contribute to ferroptotic cell death and inhibit A549 
cell proliferation.67 In patients with The Kirsten Rat 
Sarcoma (KRAS)-mutant lung adenocarcinoma (LUAD), 
SLC7A11 was overexpressed and positively related to the 
progression of tumor progression. Correspondingly, 
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a potent SLC7A11 inhibitor, HG106, markedly decreased 
cystine uptake and intracellular glutathione biosynthesis. 
Furthermore, inhibiting SLC7A11 expression by HG106 
can reduce intracellular cystine uptake, inhibit intracellular 
GSH biosynthesis, and, thus, significantly inhibit tumor 
growth and metastasis in vitro, prolong the survival time 
of mice with lung cancer, and exhibit selective cytotoxicity 
toward KRAS-mutant cells by increasing oxidative stress- 
mediated cell apoptosis in vivo.68 Overall, these findings 
reveal that KRAS-mutant LUAD cells are sensitive to 
SLC7A11 inhibition, bringing potential therapeutic 
approaches for this currently incurable disease.

The Family of Glutathione Peroxidase
The family of GPXs, as an antioxidant enzyme in human 
tissues, has been identified to play an important role in the 
development of cancers. Lung cancer cell lines also 
showed high expression of GPXs, such as GPX8 and 
GPX4. Clinically, GPX8 expression in NSCLC samples 
was statistically much higher than that in the non- 
tumorous tissues. The high expression of GPX8 is corre-
lated with the worse clinical prognosis of NSCLC patients. 
Mechanically, these effects may be due to GPX8 inhibiting 
the apoptosis of tumor cells and promoting its migration 
and invasion.69 Recently, Wang and co-researchers found 
that the promoter region of GPX4 could be bound by 
cyclic adenosine monophosphate (cAMP) response ele-
ment-binding (CREB) protein, and this binding could be 
enhanced by E1A binding protein P300 (EP300). 
Furthermore, CREB, GPX4, EP300 and 
4-Hydroxynonenal (4-HNE) were closely related to cancer 
development, such as proliferation, migration, invasion 
and angiogenesis. Hence, targeting this CREB/EP300/ 
GPX4/4-HNE pathway may provide a new strategy for 
treating LUAD.70 Additionally, the overexpression of 
GPX4 can promote the proliferation of the lung cancer 
cell and resist ferroptosis, whereas RSL3 inhibits the 
activity of GPX4 and limits proliferation, migration, and 
invasion of A549 cells.71 Notably, ferrostatin-1 (Fer-1) 
which is an inhibitor of ferroptosis, can reverse the 
above phenomenon.72 This means that inhibiting GPX4 
can induce ferroptosis of lung cancer cell, and it may be 
a new therapeutic regimen under investigation that would 
benefit patients with lung cancer.

Ferroptosis Suppressor Protein 1
Ferroptosis suppressor protein 1 (FSP1) is a ferroptosis 
inhibitor, which is independent of classical GPX4 

signaling pathway and can suppress ferroptosis by ubiqui-
none (also known as coenzyme Q10, CoQ10).22 After 
down-regulating GPX4 gene expression, FSP1 is deco-
rated with cardamom acylation, by regulating NAD(P)H 
to reduce CoQ10, generating lipophilic free radicals to 
capture free antioxidants (radical-trapping antioxidant, 
RTA) to prevent lipid peroxidation, so as to inhibit 
ferroptosis.22 FSP1 expression led to a higher degree of 
resistance in lung cancer cells. On the contrary, FSP1 
inhibitor (iFSP1) can reverse ferroptosis’ resistance caused 
by FSP1, increase the sensitivity of lung cancer cells to 
ferroptosis, and promote ferroptosis in lung cancer cells.22 

At present, the research on FSP1 is still in the embryonic 
stage, and further research is needed.

Ferroptosis and p53 in Lung Cancer
Recently, emerging evidence suggests that p53 could 
induce ferroptosis. Meng et al revealed that levobupiva-
caine, a widely used local anesthetic, could inhibit the 
proliferation and induce the apoptosis of NSCLC cells. 
Moreover, the medication of levobupivacaine enhanced 
the erastin-induced inhibition of proliferation of NSCLC 
cells. Mechanically, the medication of levobupivacaine 
could promote the levels of ROS, iron, and Fe2+ in 
NSCLC cells and induce ferroptosis by regulating p53 
expression in NSCLC cells. Similar results were also 
found in vivo, where the treatment of levobupivacaine 
significantly repressed the tumor growth of NSCLC 
cells.73

Ferroptosis in EGFR-Activating Mutant Lung 
Adenocarcinoma
The discovery of activating mutations in the epidermal 
growth factor receptor (EGFR) gene and the development 
of EGFR tyrosine kinase inhibitors (EGFR-TKIs) have led 
to a paradigm shift in the treatment of lung cancer.74 

Currently, emerging evidence suggests that ferroptosis 
can be therapeutically exploited for the treatment of solid 
tumors and ferroptosis-inducing therapy shows promise in 
EGFR-activating mutant lung cancer cells that display 
intrinsic or acquired resistance to EGFR-TKI.75

Ferroptosis and Drug Resistance of Lung 
Cancer
Cisplatin (DDP) elevates the activities of malondialdehyde 
(MDA) as well as ROS, promotes the expression of heme 
oxygenase 1 (HO-1) and NAD(P)H quinone oxidoreduc-
tase 1 (NQO-1), and also induces ferroptosis of lung 
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cancer cells by regulating lipid peroxidation.76–78 

Activation of Nrf2/xCT pathway is one of the main 
mechanisms of Cisplatin resistance in NSCLC cells.79 

Both erastin and sorafenib significantly induce ferroptosis 
and decrease cell activity, and enhance the sensitivity of 
NSCLC cells to DDP by inhibiting the expression of xCT, 
and Nrf2 downstream targets.79 In contrast, the overex-
pression of SLC7A11 can enhance DDP resistance in lung 
cancer cells.66,80 The expression of SLC7A11 was asso-
ciated with the efficacy of many candidate anticancer 
drugs, of which SLC7A11 was positively correlated with 
the efficacy of 39 drugs and negatively correlated with the 
efficacy of 296 drugs, suggesting that SLC7A11 could be 
used as a predictor factor of GSH-mediated anticancer 
drug resistance to predict the sensitivity of various chemi-
cal drugs.81

Ferroptosis and Radiation Resistance
Under harsh environmental conditions such as ionizing 
radiation (IR), it induces not only ROS but also the expres-
sion of ACSL4 in NSCLC cells, resulting in elevated lipid 
peroxidation and ferroptosis.82 Additionally, IR also 
induces the expression of ferroptosis inhibitors such as 
SLC7A11 and GPX4, as an adaptive response. 
Interestingly, IR deficiency-induced SLC7A11 expression 
activates the radioresistance by inhibiting ferroptosis.82 

Inactivating SLC7A11 or GPX4 with ferroptosis inducers 
(FINs) sensitizes radioresistant H460, A549, and H1299 
cell lines and xenograft tumors to IR. Furthermore, radio-
therapy induces ferroptosis in cancer patients, and 
increased ferroptosis correlates with better response and 
longer survival to radiotherapy in esophageal cancer 
patients.82 There is a previously unrecognized link 
between IR and ferroptosis, which indicates that further 
exploration of the combination of radiotherapy and FINs 
in cancer treatment is warranted.

Ferroptosis and Potentiate the Effects of 
Immunotherapy
T cell mediated cellular immunity plays a key role in the 
development of tumor. In the process of immunotherapy, 
activated CD8(+) effector T-cells can enhance the specific 
lipid peroxidation of ferroptosis in tumor cells.83 

Otherwise, the activation of ferroptosis may help to the 
anti-tumor effect of immunotherapy. CD8(+) effector 
T-cells release IFN-γ under expression, inhibit cystine 

uptake, and promote lipid peroxidation and 
ferroptosis.83,84

Exhaustion of intracellular cystine or blocking of anti- 
programmed cell death protein 1/programmed death ligand 
1 (anti-PD-1/PD-L1) immune checkpoint significantly 
enhanced T cell-mediated anti-tumor immunity and 
induced the ferroptosis of tumor cell.85 At the same time, 
clinical data showed that among patients with melanin, the 
expression of cystine associated transporters SLC7A11 
and SLC3A2 was negatively correlated with the number 
of CD8+T cells, IFN-γ expression level and patient 
prognosis.86 Despite recently targeting lung cancer, the 
relationship between T cell and ferroptosis is uncertain. 
However, it is not difficult to find that T cell promotes the 
ferroptosis of lung cancer cell is a potential treatment and 
can enhance the treatment efficiency of immunotherapy. 
Thereby, it is inevitable that continuing research in this 
field will further elucidate the physiological and patholo-
gical roles of ferroptosis, leading to the development of 
translational anticancer strategies. Research into biomar-
kers to precisely trace ferroptosis in patients with cancer, 
and the development and subsequent application of novel 
ferroptosis-based therapies will be of critical importance in 
the next few years.

Targeting Ferroptosis Inducers for Lung 
Cancer Therapy
Emerging findings reveal the crucial contribution of fer-
roptosis as a potential target for lung cancer therapy and 
ferroptosis inducers including small molecules and nano-
materials have been developed.87 Nanotechnology applica-
tions have attracted much attention with specific 
physicochemical properties recently, and the detailed 
information on those previously reported nanoparticles is 
shown in Table 2.

Most nanomaterials such as iron-based nanoparticles are 
based on Fenton reaction. In order to open up a new avenue 
for developing multifunctional advanced new materials for 
cancer therapy, Yao et al prepared a tumor-targeted nanopar-
ticle named FeCO-DOX@MCN (a multifunctional CO/ 
thermo/chemotherapy) nanoplatform targeting near-infrared 
(NIR) light and convert it into ample heat to trigger CO 
release and could also release doxorubicin (DOX) in the 
acidic tumor microenvironment. Its mechanisms on anti- 
cancer included iron loading, ROS level increase, GSH 
depletion, and GPX4 inactivation. In addition, the generated 
CO molecules successfully increased tumor sensitivity to 
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chemotherapeutics through the ferroptosis pathway. It is 
worth noticing that under the guidance of photoacoustic 
imaging, the FeCO-DOX@MCN nanoplatform demon-
strates high efficacy both in vitro and in vivo through 
a combination of chemotherapy, photothermal therapy and 
gas therapy. This multifunctional platform with excellent 
antitumor efficacy has great potential in precision cancer 
therapy.88

Conclusions and Perspectives
Ferroptosis, as a newly discovered form of cell death, has 
a unique advantage and large potential in the treatment of 
tumor. The sensitivity of many aggressive and drug- 
resistant cancer cells to ferroptosis and the FDA approval 
of altretamine, sorafenib and silica nanoparticles as ferrop-
tosis inducers for tumor therapy have generated high 
expectations in the treatment of ferroptosis. Although the 

Table 2 Nanoparticle Inducers in Ferroptosis for Lung Cancer

Nanoparticle 
Inducers

Mechanism Model Advantages Reference

FeCO-DOX 

@MCN

Iron loading, ROS level increase, GSH 

depletion, GPX4 inactivation

In-vitro: MCF-7, 

A549, HeLa; In-vivo 

: MCF-7

Under the guidance of photoacoustic 

imaging, the FeCO-DOX@MCN 

nanoplatform demonstrates high treatment 
efficacies in vitro and in vivo by 

combination of chemotherapy, 

photothermal therapy and gas therapy.

[88]

Exosome-like 

nanovesicles 
(eNVs-FAP)

eNVs-FAP vaccine-activated cellular 

immune responses could promote tumor 
ferroptosis by releasing interferon-gamma 

(IFN-γ) from CTLs and depleting FAP 

+CAFs.

Colon, melanoma, 

lung, and breast 
cancer models

eNVs-FAP showed excellent antitumor 

effects in a variety of tumor-bearing mouse 
models.

[89]

Phenylboronate 
ester (PBE)

The nanoparticles can perform acid- 
activatable photodynamic therapy by 

protonation of the ionizable core, and 

significantly recruit tumor-infiltrating 
T lymphocytes for interferon gamma 

secretion, and thus sensitize the tumor 

cells to RSL-3-inducible ferroptosis.

Lung metastasis of 
4T1 breast tumors

The combination of nanoparticle-induced 
ferroptosis and blockade of programmed 

death ligand 1 efficiently inhibits growth of 

B16-F10 melanoma tumor and lung 
metastasis of 4T1 breast tumors, 

suggesting the promising potential of 

ferroptosis induction for promoting cancer 
immunotherapy.

[90]

Zero-valent- 
iron 

nanoparticle 

(ZVI-NP)

ZVI-NP caused mitochondria dysfunction, 
intracellular oxidative stress, and lipid 

peroxidation, leading to ferroptotic death 

of lung cancer cells. Degradation of NRF2 
by GSK3/β-TrCP through AMPK/mTOR 

activation was enhanced in such cancer- 

specific ferroptosis.

Immunocompetent 
mice and 

humanized mice.

This dual-functional nanomedicine 
established an effective strategy to 

synergistically induce ferroptotic cancer 

cell death and reprogram the 
immunosuppressive microenvironment, 

which highlights the potential of ZVI-NP as 

an advanced integrated anti-cancer 
strategy.

[91]

Citric acid iron 
oxide 

nanoparticles 

(IONPs-Ac)

It displayed important cytotoxicity in 
a human lung cancer cells model (A549 

cells), even at low concentrations, whereas 

free IONPs-Ac displayed adequate 
biocompatibility.

A549 cells It was possible to infer that ferri-liposomes 
were able to induce A549 tumor cells 

death through apoptosis/ferroptosis 

processes, evidenced by a significant 
reduction of the mitochondrial membrane 

potential.

[92]

Erastin/ 

MT1DP@FA- 

LPs (E/M@FA- 
LPs)

Folate (FA)-modified liposome (FA-LP) 

nanoparticles for targeted co-delivery of 

erastin and MT1DP to enhance the 
bioavailability and the efficiency of the 

drug/gene combination.

A549 and H1299 

cells

Identify a novel strategy to elevate erastin- 

induced ferroptosis in NSCLCs acting 

through the MT1DP/miR-365a-3p/NRF2 
axis.

[93]
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research on ferroptosis has made great progress in recent 
years, there are still some problems to be solved, such as 
the particularity of ROS in ferroptosis and the specific role 
of ferroptosis in immunotherapy. In addition, there were 
significant differences in the sensitivity of cells to ferrop-
tosis among different tissues, and there were also signifi-
cant differences among individuals in the sensitivity to 
ferroptosis inducers, such as erastin and sorafenib. 
Therefore, it is of great significance to find biological 
indicators that can reflect the sensitivity of cells and indi-
viduals to ferroptosis and to discover new ferroptosis 
inducers for improving the understanding of ferroptosis- 
related diseases and the diagnosis and treatment level of 
lung cancer. Ferroptosis will become a new strategy for 
cancer treatment, breaking the current dilemma of lung 
cancer treatment and bringing benefits to lung cancer 
patients.
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