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Abstract: N6-methyladenosine (m6A) is the most prevalent and abundant type of internal 
post-transcriptional RNA modification in eukaryotic cells. METTL3 is a methylation mod
ifying enzyme, which can directly or indirectly affect biological processes, such as RNA 
degradation, translation and splicing. In addition, it was found that 67% of 3’-UTR regions 
containing m6A sites had at least one miRNA binding site, and the number of m6A at 3’- 
UTR sites was closely related to the binding sites of miRNA. With the improvement of 
human living standards, obesity has become a very serious and urgent problem. The essence 
of obesity is the accumulation of excess fat. Exploring the origin and development mechan
isms of adipocyte from the perspective of fat deposition has always been a hotspot in the 
field of adipocyte research. The aim of the present review is to focus on METTL3 regulating 
fat deposition through mRNA/adipocyte differentiation axis and pri-miRNA/pre-miRNA 
/target genes/adipocyte differentiation and to provide a theoretical basis according to the 
currently available literature for further exploring this association. This review may provide 
new insights for obesity, fat deposition disease and molecular breeding. 
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Introduction
In the early 1970s, a novel RNA epigenetic modification, N6-methyladenosine (m6A), 
was first discovered and proposed in eukaryotic messenger RNA (mRNA) from 
Novikoff hepatoma cells.1 N6-methyladenosine (m6A) is one of the most abundant 
internal modifications in eukaryotic messenger RNA that affects a variety of cellular 
biological processes, including splicing, processing, nuclear export, stability and decay, 
translation, cellular differentiation and metabolism.2,3 M6A modification refers to the 
methylation of the 6th N of adenine on mRNA under the action of methyltransferase 
complex (MTC), which is a dynamic and reversible process regulated by both methyl
transferase and dimethyl transferase,4 such as methyltransferase like 3 (METTL3) and 
methyltransferase like 4 (METTL4).5,6

METTL3 was discovered and named from Hela cells in 19947 and was con
served from yeast to human, including leading spiral structure LH, nuclear localiza
tion signal NLS, Methyltransferase domain MTD containing SAM binding domain 
and zinc finger motif ZFD.6,8 Studies have shown that zinc finger participates in 
RNA binding, ZNF1 interacts with RNA electrostatically, whereas ZNF2 interacts 
with RNA hydrophobically, which suggests that zinc finger is responsible for 
specifically recognizing RNA and making METTL3 play a role.9 The formation 
of miRNA requires the cutting of the complex composed of DGCR8 and DROSHA, 
and METTL3 deletion reduced the binding of DGCR8 to pri-miRNA.10 According 
to its function, RNA can be divided into two broad categories, including noncoding 
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RNA and encoding protein mRNA. MiRNAs are a group 
of conservative, small and non-coding RNAs inhibiting 
translation of or degrading target mRNAs by binding to 
the complementary sequences in the 3’untranslated 
region.11 It has been proved that miRNAs play important 
roles in energy homeostasis,12 sugar and lipid 
metabolism,13 insulin secretion,14 pancreatic β-cell 
development,15 and adipocyte differentiation.16 More and 
more studies have shown that miRNA can interact with 
transcription factors and important signal molecules 
related to adipocyte differentiation.17 Adipose tissue 
deposition is characterized by increased cell size (hyper
trophy) and increased cell numbers (hyperplasia) at the 
cellular level, which indicates that cell differentiation is 
a necessary process of fat deposition. In addition, studies 
found the formation of METTL3 and METTL14 heterodi
mers played an important role in adipocyte 
differentiation.18 Another study also found METTL3 reg
ulates adipocyte differentiation by regulating genes 
alone.19 So, METTL3 plays an important role in fat deposi
tion. However, the specific mechanism by which METTL3 
regulates fat deposition remains unclear.

Despite recent progress in METTL3 research, the pre
sence and functionality of METTL3 remains largely 
unknown. Recent studies have reported the emerging 
roles of METTL3 in the development of fat deposition. 
The present review focuses on the latest progress in made 
METTL3 research and provides an up-to-date summary of 
the association between METTL3 and fat deposition, 
which may provide insight into METTL3-related molecular 
biomarkers and increase of fat deposition in animals.

M6A Methylation
Epitranscriptomic m6A modification is dynamically and rever
sibly regulated by modulators characterized as dedicated 
demethylases (erasers), m6A binding protein (readers) and 
methyltransferases (writers), according to their functions,20 

Erasers (FTO, ALKBH5) and writers (METTL3, METTL14, 
WTAP) are responsible for catalyzing and removing m6A, 
respectively.21–24 In complex METTL3/METTL14/ WTAP, 
METTL3 and METTL14 form a heterodimer complex and 
interact with WTAP. METTL3 is identified as a SAM-binding 
component of the complex and has its own catalytic ability, 
which is highly conserved in eukaryotes.25 It has been reported 
that m6A can label pri-miRNAs and identify DGCR8 mole
cules by METTL3/m6A, participating in the mature process of 
miRNAs and leading to differential expression of miRNAs in 
many biological processes.10,26 In addition, it was found that 

METTL3 knockout decreased the binding activity between 
DGCR8 and pri-miRNA, leading to decreased expression of 
mature miRNAs.10 So, understanding the structure of 
METTL3 and its interaction mechanism with target RNA will 
help to further understand the post transcriptional regulation 
level of genetic information.

METTL3 Promoted the 
Transformation of pri-miRNA into 
Mature miRNA (miR-21, miR-25, 
miR-34a, miR126, miR-143-3p, 
miR-221/222 and miR-320)
MicroRNAs (miRNAs) are a group of single-stranded, non- 
coding small RNAs that are broadly present in eukaryotic cells 
and are highly conserved during evolution with a length of 19– 
24nt.27 As miRNAs are critical in development, differentia
tion, and fat deposition, their mature are controlled by multiple 
ways during their biogenesis cascade. Figure 1 shows the role 
of METTL3 in miRNA maturation. Alarcon et al demonstrated 
that m6A modification could mark pri-miRNA for processing 
by recognizing DGCR8 in a METTL3-dependent manner,10 

indicating that altered METTL3 mediated m6A modification 
might be responsible for the aberrant expression of miRNAs in 
many biological processes. In addition, it was shown that 
depletion of METTL3 leads to decreased accumulation of 
miRNAs and to an overaccumulation of pri-miRNAs due to 
their impaired processing.10,28 Similar to previous results,1 

miR-21 was up-regulated when METTL3 was 
overexpressed.10,29 METTL3-dependent m6A methylation 
promoted primary miR-34a (pri-miR34a)30 and miRNA-126 
(pri-miR126)31 maturation through DGCR8. Other researchers 
have demonstrated that upregulation of METTL3/m
6A modification promotes pri-miR-25,32 pri-miR-221/22233 

and pri-miR-143-3p34 maturation (decreasing the expression 
of pri-miRNA but increasing the expression of pre-miRNA 
and miRNA). In addition, pre-miR-320 was much less 
enriched after METTL3 inhibition, indicating that pre-miR 
-320 was a target of METTL3.35

MiRNA (miR-21, miR-25, miR-34a, 
miR126, miR-143-3p, miR-221/222 
and miR-320) Regulated Adipocyte 
Differentiation by Targeting Target 
Genes
MicroRNAs (miRNAs), a novel class of endogenous, non
coding, single-stranded RNAs, have emerged as a group of 
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important regulators via degradation or translational inhi
bition of their target mRNAs.36 As shown in Table 1, 
miRNA regulates adipocyte differentiation by targeting 
multiple target genes.

MiR-21 Regulated Adipocyte 
Differentiation
It was found that nearly 25% of miRNA targets are 
conserved in the 3’ noncoding region of human, mouse 
and rabbit.37 In addition, highly conserved miR-21 recog
nition elements were found in the analysis of PTEN 
3’UTR of different species, indicating that PTEN can be 
combined with mir-21.38 At the same time, the results 
presented here indicated that the potential signal pathway 
of miR-21 protection might be achieved by targeting 
PTEN/AKT signaling pathway. PTEN was the main reg
ulator of the PI3K signaling pathway, which was 
involved in lipid metabolism and glucose transport in 3 
T3-L1 adipocytes.39 Previous studies have also shown 
that endogenous PTEN expression is down-regulated dur
ing 3T3-L1 differentiation,40 and knockdown of PTEN 
potentiated the increase in insulin-mediated phosphoryla
tion of AKT/ERK and promoted adipogenesis of 3T3-L1 
cells.41 The study also indicated that miR-21 directly 
targets the 3′-UTRs of SMAD7, and negatively regulates 

mRNA and protein expression levels.42 In addition, 
SMAD7 regulated 3T3-L1 preadipocyte differentiation 
and adipogenesis through TGFβ/SMAD and WNT signal
ing pathway.43

MiR-25 Regulated Adipocyte Differentiation
MiR-25, a member of miR-106b-25 cluster, was signifi
cantly downregulated during the differentiation from 3T3- 
L1 preadipocytes towards mature adipocytes.44 In addi
tion, this study confirmed BTG2,45 FBXW7,46 LATS247 

and PTEN48 are targets of miR-25 and had binding sites 
with miR-25 in the 3’-UTR. Further experiments demon
strated that miR-25 Suppresses 3T3-L1 Adipogenesis by 
directly targeting KLF4 and C/EBPα.44 FBXW7 inhibits C/ 
EBPα-dependent transcription and inactivation of FBXW7 
results in the accumulation of C/EBPα.49 LATS2 regulates 
the balance between proliferation and differentiation dur
ing adipose development. Interestingly, studies provided 
evidence that LATS2 not only negatively modulates cell 
proliferation but also positively regulates cell 
differentiation.50 In addition, a recent study showed that 
BTG2 downregulates interleukin-6 expression by inhibit
ing the signal transducer and activator of transcription 3 
(STAT3) signaling pathway, which is known to regulate 
adipocyte differentiation.51 So, miR-25 can regulate adi
pocyte differentiation through multiple pathways.

Figure 1 METTL3 regulates fat deposition by coding RNA and non-coding RNA.
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MiR-34a Regulated Adipocyte 
Differentiation
In recent years, reports on miR-34a in human fat have found 
that miR-34a can target PPARα Gene regulation of human fat 
deposition in liver,52 which indicated miR-34a played an 
important role in fat deposition. miR-34a was revealed to 
directly target SIRT1 by binding to its 3’-untranslated 
region53 and SIRT1 can promote fat mobilization in white 
adipocytes by repressing PPAR-γ.54 The study provides evi
dence that miR-34a decreases the mitochondrial content and 
increases TAG via PPARα and AMPK pathways by targeting 
the AdipoR2 gene.55 A number of factors regulate the tran
scriptional activation potential of C/EBP-β in stimulated pre
adipocytes. DNA binding of C/EBP-β is facilitated by MAPK 
phosphorylation beginning at 4 h post-stimulation and GSK3β 

phosphorylation-14 h into differentiation. MiR-34a regulates 
therapy resistance by targeting HDAC1.56 We have shown that 
the ability of C/EBP-β to activate C/EBP-β expression in 
preadipocytes stimulated to differentiate is initially reduced 
through the interaction of C/EBP-β with an mSin3A/histone 
deacetylase 1 (HDAC1) complex.57 PPAR-γ and C/EBP-β are 
marker genes of adipocyte differentiation. So, miR-34a can 
regulate adipocyte differentiation by targeting target genes.

MiR-126 Regulated Adipocyte 
Differentiation
MiR-126 is a single stranded small RNA molecule with 
a length of 23 nucleotides encoded by endogenous 
genes,58 which can widely mediate the regulation of phy
siological reactions such as cell differentiation, prolifera
tion and migration.59 Functional analysis of miR-126 
demonstrated that its overexpression conveys neurotoxi
city by impairing IGF-1/PI3K/AKT signaling, and that its 
inhibition increases the trophic effects of IGF-1.60 Studies 
also confirmed that miR-126 exerted these pivotal func
tions by down-regulating the expression of CRK.61 During 
3T3-Ll cell differentiation induction, C-CRK is phos
phorylated on tyrosine by IGF-1 receptor kinase and 
dephosphorylated by PTPase.62 In addition, over- 
expression of miR126 down-regulated IRS-1 expression, 
suppressed AKT and ERK1/2 activation. Decreased expres
sion of IRS-1 in embryonic fibroblast cells severely 
decreased the expression of C/EBPα and PPARγ.63 The 
inhibitory effect of mir-126 on VEFG expression was 
investigated and indicated that VEGF is a target of miR- 
126.64 Retrovirus-mediated restoration of VEGF expres
sion in mutant cells reduced adipocyte differentiation to 
the levels exhibited by control cells.65 In a word, miR-126 
played an important role in adipocyte differentiation.

MiR–143-3p Regulated Adipocyte 
Differentiation
miR-143 was identified to promote adipocyte differentia
tion by using antisense oligonucleotides.66 There are many 
target genes of miR-143-3p that play a regulatory role in 
adipocyte differentiation, such as MAPK7,67 MAP3K7,68 

AKT,69 KLF5,70 PI3K71 and EZH2.72 Firstly, MAPK7 
inhibited adipocyte differentiation73 and MAP3K7 induces 
adipocyte differentiation through PPARγ signaling.74 

Secondly, AKT/PKB may play a role in suppression of 
apoptosis and negatively regulate preadipocyte 
differentiation.75 KLF5 is also induced by C/EBPβ/δ, and 

Table 1 METTL3 Regulates Adipocyte Differentiation Through 
Target Genes

miRNA Promoting 
Targeted 
Genes

Inhibitory 
Target 
Gene

Regulation of Target 
Genes on Adipocyte 
Differentiation

miR-21 PTEN84 Down regulate85

SMAD786 Down regulate43

miR-25 BTG287 Down regulate88

LATS247 Up regulate50

PTEN89 Down regulate

FBXW790 Down regulate49

KLF444 Up regulate44

C/EBPα44 Up regulate44

miR-34a AMPK55 Down regulate91

SIRT153 Down regulate92

HDAC193 Up regulate94

mir-126 VEGF95 Down regulate65

IGF-196 Up regulate97

CRK98 Up regulate62

IRS-199 Up regulate100

AKT101 Up regulate102

PI3K103 Up regulate78

mir-143-3p MAPK773 Down regulate73

MAP3K768 Up regulate74

AKT71 Up regulate

KLF570 Up regulate76

PI3K71 Up regulate

EZH272 Up regulate104

mir-221/mir-222 PTEN105 Down regulate

TIMP379 Down regulate106

AKT107 Up regulate

p27Kip182 Down regulate108

mir-320 ERK1/2109 Down regulate110

PI3K111 Up regulate

adipoR1112 Up regulate113
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that it then acts in concert with C/EBPβ/δ to regulate 
PPARγ2 expression76 and EZH2-induced H3K27me3 of 
WNT gene promoters facilitated adipogenic differentiation 
of murine preadipocytes.77 Finally, IRSs/PI3K signal path
way may play an important role in the differentiation of 
3T3-L1 preadipocytes by regulating the expression of C/ 
EBPα and PPARγ.78 These results suggest that miR-143-3p 
can regulate adipocyte differentiation.

MiR–221/222 Regulated Adipocyte 
Differentiation
miR-221/222, located in a cluster on chromosome Xp11.3, 
are considered part of the same family. They share the 
same’seed’ sequence, short regions at their 5’ ends through 
which they bind their target sites in mRNA 3’-UTRs. 
Studies showed that miR-221 and 222, by targeting 
PTEN and TIMP3 tumor suppressors, induce TRAIL resis
tance and activate the AKT pathway.79,80 SH2-B is a key 
regulator of adipogenesis both in vivo and in vitro by 
regulating the insulin/IGF-I receptor-AKT-FOXO1-PPARγ 
pathway,81 which indicates PTEN, TIMP3 and AKT genes 
play an important role in adipogenesis. In addition, miR- 
221 and 222 inhibited the expression of p27Kip182 and 
Genetic ablation of p27Kip1 in mice leads to adipocyte 
hyperplasia.83 In a word, miR–221/222 can regulate adi
pocyte differentiation by multiple pathways.

MiR-320 Regulated Adipocyte 
Differentiation
MiR-320 is involved in a variety of pathological pro
cesses, including cell proliferation and differentiation.114 

The present results provided evidence that the miR-320/ 
ELF3 axis regulated tumor progression via the PI3K/AKT 
signaling pathway.111 Activated form of PI3K, a critical 
target of IRS1 downstream, led to phosphorylation of 
phosphatidyl inositides and then activated the downstream 
main target AKT, which is pivotal in regulating 3T3-L1 
preadipocyte differentiation.115,116 In addition, Data study 
indicates that miR-320 negatively regulates expression of 
ET-1, VEGF, and FN through ERK1/2.109 The adipocyte- 
specific transcription factor PPARγ can be phosphorylated 
by ERK1/2 to decrease its transcriptional activity and 
inhibit adipocyte differentiation.117 Finally, A luciferase 
assay confirmed that miR-320 binds to the 3’- 
untranslated regions of AdipoR1, which indicated 
AdipoR1 is a target gene of miR-320.112 CTRP6 regulates 
proliferation and differentiation of intramuscular and 

subcutaneous adipocytes through the AdipoR1 
(Adiponectin Receptor 1)/MAPK pathway.118 So miR-320 
can regulate adipocyte differentiation by targeting ERK1/2, 
PI3K and adipoR1.

METTL3 Regulated Adipocyte 
Differentiation by Directly 
Modifying Key Genes
Methyltransferase-like 3 (METTL3), a key RNA methyl
transferase, has been demonstrated to regulate 
neurogenesis,119 spermatogenesis,120,121 early embryonic 
development,122 stem cell pluripotency in mice,122,123 

and white fat cell differentiation in vitro.18 Recently, Yao 
et al found that METTL3 plays an important role in 
BMSCs differentiation and adipogenesis and there was 
a negative correlation between METTL3 expression and 
porcine BMSCs (pBMSCs) adipogenesis.124 It was 
demonstrated that the deletion of METTL3 significantly 
promoted the pBMSCs adipogenesis process and janus 
kinase 1 (JAK1) protein expression via an m6A- 
dependent way.124 Specifically, METTL3 inhibited 
pBMSCs adipogenic differentiation by targeting the 
JAK1/STAT5/C/EBPβ pathway via an m6A-YTHDF2– 
dependent manner.124 C/EBPβ is a marker gene of adipo
cyte differentiation, which indicates METTL3 plays an 
important role in regulating adipocyte differentiation.

Effect of Adipocyte Differentiation 
and on Fat Deposition
Fat deposition is the main means of energy storage in 
animals. Mammalian adipose tissue mainly exists in four 
forms: subcutaneous, visceral, intermuscular and intramus
cular fat. Generally, the differentiation of adipocytes refers 
to the process of preadipocytes differentiating into multi 
compartment adipocytes.125,126 After 8 days of culture 
in vitro, precursor adipocytes were induced to differentiate 
into mature adipocytes by PPARγ, CEBP/a and FABP4.127 

The number and volume of lipid droplets in mature adi
pocytes increased. At the same time, the volume of mature 
adipocytes also increased significantly, which also 
increased the content of adipose tissue. So, adipocyte 
differentiation promoted fat deposition.

Conclusions
In summary, although the correlation between m6A mod
ification and fat deposition, as a hotspot in the field of 
genetics, has been extensively explored, most studies 
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concentrated on gene sequencing analysis, differential 
expression analysis, and modification site analysis. There 
are few studies on the functional phenotypes and mechan
isms of action at the cell level, but studies in this field are 
likely to be key to revealing the origin of fat deposition, 
especially the origin and development of obesity. With 
a deep understanding of mechanism of fat deposition and 
the targeted study for m6A modification, m6A modification 
then provides a new perspective for elucidating the occur
rence and development of related obesity diseases, provid
ing a new direction for guiding the diagnosis and treatment 
of obesity diseases.
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