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Abstract: Sepsis is a major immune response disorder caused by infection, with very high 
incidence and mortality rates. In the clinic, sepsis and its complications are mainly controlled and 
treated with antibiotics, anti-inflammatory, and antioxidant drugs. However, these treatments 
have some shortcomings, such as rapid metabolism and severe side effects. The emergence of 
drug delivery nanosystems can significantly improve tissue permeability, prolong drugs’ circula-
tion time, and reduce side effects. In this paper, we reviewed recent drug delivery nanosystems 
designed for sepsis treatment based on their mechanisms (anti-bacterial, anti-inflammatory, and 
antioxidant). Although great progress has been made recently, clinical practice transformation is 
still very difficult. Therefore, we also discussed key obstacles, including tissue distribution, 
overcoming bacterial resistance, and single treatment modes. Finally, a rigorous optimization of 
drug delivery nanosystems is expected to present great potential for sepsis therapy. 
Keywords: sepsis, anti-bacterial, anti-inflammatory, anti-oxidative, drug delivery 
nanosystems, multidrug resistance

Introduction
Sepsis, a life-threatening organ dysfunction caused by the host immune response to 
infection, is one of the leading causes of death worldwide. According to a recently 
published study,1 48.9 million sepsis cases and 11 million sepsis-related deaths 
were recorded in the world in 2017, accounting for about 20% of global deaths.2 

Among them, septic shock and multiple organ dysfunction mortality can be as high 
as 50%. Although critically ill sepsis patients’ management has improved in the 
past decade, sepsis-related mortality is still high.3,4 The global age-standardized 
sepsis incidence rate dropped from 1074.7 cases per 100,000 in 1990 to 67.5 cases 
per 100,000 in 2017, showing a decrease of 37.0%. The percentage of global deaths 
related to age-standardized sepsis dropped from 29.1% in 1990 to 20.1% in 2017, 
indicating a decrease of 31.0%.5 Moreover, the prognosis of sepsis is severe. A total 
of 30% of survivors can develop long-term dysfunction and cognitive impairment,6 

leading to a tremendous burden to society and individuals.
Sepsis management guidelines focus on three main components:7 (1) hemodynamic 

stability, (2) infection control, and (3) sepsis response regulation. Other interventions 
include organ support non-specific measures, such as oxygen therapy, mechanical 
ventilation, hemodynamic support, corticosteroids, and renal replacement therapy.8 

Often, sepsis management is based on multimodal treatment severity. For example, 
mild single organ dysfunction can be controlled by appropriate support, while multiple 
organ dysfunction requires invasive treatments.
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Antibiotic treatments are the standard in clinical guide-
lines for sepsis. However, 70–80% of sepsis deaths are 
related to persistent infection, indicating widespread anti-
biotic resistance and a lack of effective antibiotics. For 
example, it is estimated that 214,000 neonatal septicemia 
deaths are caused by drug-resistant pathogens 
worldwide.9,10 In neonatal drug resistance, Escherichia 
coli showed resistance to β-lactam antibiotics and amino-
glycosides; group B streptococci were resistant to penicil-
lin; Listeria monocytogenes were resistant to 
cephalosporins and vancomycin; Staphylococcus aureus 
and coagulase-negative staphylococci were not sensitive 
to vancomycin and methicillin.11,12 This drug resistance 
can harm sepsis prognosis and almost double mortality.

Additionally, although antibiotics’ timely administra-
tion is very active, the host sepsis response can trigger 
the systemic release of various cytokines, reactive oxygen 
species, and other biomolecules. This can be overwhelm-
ing and easily lead to multiple organ failures and death. 
Recent clinical data showed that despite more than 60% of 
sepsis patients surviving the initial inflammatory storm, 
they rapidly developed a longer immunosuppressive 
state, characterized by paralysis and immune cells’ death, 
resulting in the inability to remove invasive pathogens 
increasing hospital-acquired infection susceptibility, and 
high mortality. Therefore, new adjuvant therapies such as 
anti-inflammatory agents, immunomodulators, and antiox-
idants are being explored. However, many anti- 
inflammatory agents and antioxidants are limited by 
a short half-life, lack of tissue or cell-specific targeting 
ability, and poor water solubility and bioavailability. 
Additionally, due to cellular enzymes activities, some pep-
tides showed significant anti-inflammatory activity in vitro 
but could not reproduce this effect in vivo. Additionally, 
complex pathophysiology involving multi-channel cyto-
kine storms requires a multi-pronged approach since sin-
gle-drug approach may not be effective.

The emergence of nanotechnology has opened up a new 
pathway to overcome the serious adverse effects and resis-
tance of drugs. Nanotechnology is a system that takes 
synthetic or natural materials as carriers and introduces 
drugs through various methods (grafting, adsorption, and 
physical encapsulation), which is called a drug-delivery 
nanosystem. Besides this, nanotechnology can also include 
nano-drug crystals that directly process raw drugs. This 
review only focuses on drug-delivery nanosystems. Most 
nanocarriers do not have any function (some special nano-
carriers may show certain internal activities, such as 

photothermal performance, antioxidant performance, etc.), 
while drugs have nano-size and surface characteristics 
because they enter a new system, which significantly 
changes their own distribution and metabolic pathway to 
play a drug effect different from raw drugs. Different nano-
carriers have been developed, including liposomes,13,14 

nanoparticles,15 solid lipid nanoparticles,16 polymer 
micelles,17,18 and extracellular vesicles.19–21 The employ-
ment of nanotechnology has great potential for accurate 
sepsis treatment, attributed to their proper physical and 
chemical properties (such as size, charge, surface chemistry, 
shape, etc.) and their possible surface functionalization. For 
example, a particle size ranging from 0.5 μm to 5 μm exerts 
an excellent pulmonary-targeting ability since the particles 
could be trapped by pulmonary capillaries.22 Aiming at 
targeting renal tubule, drug-delivery nanosystems with 
a particle size smaller than endothelial fenestrations (70– 
90 nm) could be designed since nanocarriers need to pass 
anatomical barriers of endothelial fenestrations (70–90 nm) 
and be trapped in the gap between endothelial fenestrations 
and the glomerular basement membrane (2–8 nm). 
Furthermore, a positively charged drug-delivery nanosys-
tem could be transported more easily than negatively 
charged drug carriers owing to the presence of negatively 
charged heparin sulfate and sulfated glycosaminoglycan on 
the fenestrae.23,24 Additionally, drug-delivery nanosystems 
can also be engineered with peptides,25 antibodies,26 and 
oligonucleotides,27 allowing site-specific delivery of drugs. 
These contribute to modulating the pharmacokinetics of the 
encapsulated drug, improving the efficacy, stability, and 
bioavailability.28 All of these options together have 
prompted drug-delivery nanosystems for the precision treat-
ment of sepsis.

Therefore, in this review, we introduced drug delivery 
nanosystems designed for sepsis treatment based on dif-
ferent mechanisms (eg, antibacterial, antioxidative, and 
anti-inflammatory). Meanwhile, we concluded and dis-
cussed the future outlooks of these systems.

Drug Delivery Nanosystems for 
Sepsis Treatments
Antibacterial Drug Delivery Nanosystems
Sepsis and its complications are mainly controlled and 
treated with antibiotics and other drugs. However, small- 
molecule drugs have disadvantages in the organism, such 
as a too-fast clearance rate, low utilization, high toxicity 
and side effects, which may lead to inappropriate treatment 
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effects. Recently, with material technology and nanotech-
nology’s continuous development, studies involving anti-
bacterial and anti-inflammatory drug delivery 
nanosystems, based on functional materials, have been 
published.28–30 However, how to truly target the infection 
site and effectively treat and control sepsis has not been 
solved. Based on sepsis’s pathological characteristics, 
Zhang et al31 designed and developed bioresponsive nano-
particles for drug targeted delivery, achieving effective 
sepsis control and treatment. First, a pH/enzyme sensitive 
amphiphilic polymer was synthesized by Michael’s step- 
by-step addition method, which could self-assemble into 
nano micelles and effectively load antibiotics and anti- 
inflammatory drugs. Then, through biotin-avidin specific 
action, targeted intercellular adhesion molecule-1 (ICAM- 
1) antibodies were modified on drug-loaded nano micelles’ 
surface, and new drug delivery nanosystems with targeting 
effect were prepared. To evaluate biocompatibility, the cell 
viability of the prepared nanosystem was assessed in three 
cell lines (NHF, HUVEC, and HEK 293T). There was no 
obvious change in the percentages of survival cells after 
nanosystem treatment, implying nonsignificant cytotoxi-
city. In a sepsis mouse model caused by bacteria, the 
drug delivery nanosystems effectively eliminated the inva-
sive bacteria and alleviated the inflammatory reaction, thus 
improving the survival rate. Altogether, these results con-
firmed the capability of the new drug delivery nanosys-
tems for effective sepsis treatment.

Due to a serious increase in bacterial resistance, treating 
sepsis caused by drug-resistant bacteria infections is even 
more difficult. Macrophages, one of the main participants in 
host immune defense, mainly encapsulate bacteria in its 
phagocytic lysosomes, and kill bacteria through active nitro-
gen oxides and lysosomal enzymes activity. However, many 
bacteria, such as Staphylococcus aureus and Escherichia 
coli, can survive in cells, resisting bactericidal mechanisms 
and eventually leading to infection recurrence. Additionally, 
although antibiotic therapies are among the most basic treat-
ments for bacterial sepsis, 70–80% of sepsis deaths are still 
accompanied by persistent infection, which might be due to 
a lack of effective antibiotics for some drug-resistant bac-
teria. To solve the drug-resistance problem, Hou et al32 

designed and constructed an mRNA encoding an antimicro-
bial peptide, an enzyme-sensitive linker peptide, and 
a lysosomal signal protein. They screened lipidic vitamins 
with optimal composition to prepare vitamin 
C nanoparticles. After the nanoparticles enter the macro-
phages, the mRNA is released into the cytoplasm, then 

translated into a triblock protein: antimicrobial peptide 
enzyme-sensitive peptide lysosomal signal protein. Under 
lysosomal signal protein guidance, the triblock protein 
enters the lysosome, and the sensitive enzyme peptide is 
cut off by lysosomal enzymes, and the antimicrobial peptide 
is finally released. When the macrophage contacted the 
bacteria, bacteria were first wrapped in the phagosome, 
and then the phagosome fused with the lysosome. At this 
time, the exogenous antimicrobial peptides and other bacter-
icidal components in the lysosome dissolved into the phago-
some, achieving a synergistic bactericidal effect, effectively 
reducing the number of drug-resistant bacteria in the body 
and improving the host’s body function. Finally, the host’s 
survival rate of sepsis induced by drug-resistant bacteria was 
improved. Surprisingly, the levels of bodyweight, white 
blood cells, and lymphocytes of the survived mice fully 
recovered after treatment, implying good biosafety.

The shape of nanoparticles is closely related to their 
biological distribution and interaction with target cells, 
affecting drug delivery characteristics. Anisotropic nanopar-
ticles indicated that the shape of nanoparticles was not 
invariant with respect to direction. Compared with spherical 
nanoparticles, anisotropic ones have greater resistance to 
non-specific cell elimination when administered in the 
whole body, which would enhance the membrane-coated 
nanoparticles’ stealth. Almost all previous bionic designs 
used spherical nanoparticles. To fabricate anisotropic nano-
particles, Ben Akiva et al33 first synthesized spherical poly 
(lactic-co-glycolic acid) (PLGA) nanoparticles by single 
emulsion and then stretched them above the glass transition 
temperature of PLGA. Stretching two-fold in one dimension 
generated prolate nanoparticles, and 1.5-fold in two dimen-
sions presented oblate ellipsoidal nanoparticles. After inter-
action with red blood cell membranes, three types of 
biomimetic anisotropic nanoparticles were yielded. The 
results showed that although the prepared anisotropic nano-
particles curvature radius increased, it did not significantly 
affect coating fluidity or stability, and can be covered by 
naturally derived cell membranes. Compared with uncoated 
spherical nanoparticles, anisotropic nanoparticles coated 
with red blood cell membrane can better escape macro-
phages’ clearance and reduce 50 to 60% of internalization, 
resulting from the synergistic effect of altering the nanopar-
ticle shape and introduction of the membrane. Moreover, the 
nanoparticles with a prolate ellipsoidal shape demonstrated 
a superior half-life (171.6 min) compared to any other nano-
particles (82.0 min for coated oblate ellipsoidal particles and 
64.8 min for coated spherical particles). As a result, 
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approximately 50% of the mice treated with coated prolate 
ellipsoidal nanoparticles remained healthy 1 week after alpha 
toxin administration, whereas only 33% of the mice in the 
oblate ellipsoidal nanoparticles group showed one-week sur-
vival. Overall, anisotropic nanoparticles coated with red 
blood membranes are expected to be a potential treatment 
for improving the survival rate in patients with sepsis.

Moreover, the discovery of a new antibacterial nanomater-
ial is another important possibility for overcoming multi-drug 
resistance. Since S-thanatin (Ts) is an antibacterial peptide with 
specific targeting ability, it was modified onto the surface of the 
liposome to act both as the targeting moiety and antibacterial 
component25 (Figure 1). Then, the antibiotic levofloxacin was 
loaded into liposomes with the ammonium sulfate gradient 
method. As displayed, Ts-anchored liposome significantly 
enhanced the bacterial internalization of the antibiotic, result-
ing in the synergistic effect of an antibiotic and antibacterial 
peptide. In mice receiving clinical multidrug-resistant (MDR) 
isolates, the bacterial was rapidly cleared by the fabricated drug 
delivery nanosystems, contributing to remarkably decreased 
lethality rate of the septic shock (100% in the control group 
within 36 h versus 93.3% in the Ts-modified drug delivery 
nanosystem within 72 h).

Graphene oxide (GO), a single layer with a two- 
dimensional honeycomb lattice structure by the carbon 
atoms, was regarded as a promising engineered nanoplat-
form due to the strong antibacterial effects. Many studies 
have explored the bacterial killing ability of GO-based 
drug delivery nanosystems with different physicochemical 
characteristics and their mechanisms of bacterial killing. 
For a summary of the antibacterial applications of GO- 
based drug delivery nanosystems, please refer to Zhang 
et al’s review for details.34

Antioxidative Drug Delivery 
Nanosystems
Sepsis is an abnormal systemic inflammatory response 
mediated by excessive reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) production. Excessive ROS 
and RNS can change a series of intracellular events and the 
function of different enzymes and ion channels. Therefore, 
reducing ROS and RNS levels in cells and mitochondria can 
inhibit sepsis’s abnormal inflammatory response. Traditional 
organic antioxidants have low structural stability, poor ROS 
and RNS scavenging activity, and poor scavenging activity 
persistence under physiological conditions. Yim et al35 pre-
pared three kinds of 2D transition metal dichalcogenide 
nanosheets (Tungsten disulfide (WS2), Molybdenum selenide 
(MoSe2), and Tungsten diselenide (WSe2)) by liquid phase- 
stripping using an amphiphilic copolymer (poly(ε- 
caprolactone)-b-poly(ethylene glycol)) (Figure 2). These 
exfoliated nanosheets displayed an average lateral size of 
37.5 nm, thickness of 4 nm, and negative ζpotentials. The 
RNS and ROS scavenging experiment showed that the pre-
pared WS2, MoSe2 and WSe2 nanosheets could effectively 
remove mitochondrial and cytosolic ROS and RNS of inflam-
matory cells (including hydroxyl radicals, superoxide, hydro-
gen peroxide (H2O2), and nitric oxide). Compared with 
MoSe2 or WSe2 nanosheets, WS2 nanosheets can more 
effectively inhibit the excessive secretion of inflammatory 
cytokines except for the scavenging of ROS and RNS, con-
tributing to significantly improved severe sepsis mice survi-
val rate (up to 90%). Additionally, this pharmacokinetic study 
showed that WS2 nanosheets could be excreted in mice after 
intravenous injection for 3 days.

Ceria nanoparticles exhibit similar activities to superox-
ide dismutase (SOD) and catalase (CAT) through reversible 

COOH NH2-PEG2000-DSPE
EDC

PEG2000-DSPE

HSPC
CHO

Levofloxacin(LEV)

S-thanatin

Levofloxacin

Liposome

Figure 1 The preparation schema of S-thanatin-modifed liposomes loaded with levofloxacin. Reprinted with permission from Fan X, Fan J, Wang X, Wu P, Wu G. S-thanatin 
functionalized liposome potentially targeting on Klebsiella pneumoniae and its application in sepsis mouse model. Front Pharmacol. 2015;6:249.25
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conversion between Ce3+ and Ce4+ valence states and 
oxygen-binding.36,37 They could eliminate H2O2, and super-
oxide anion (O2-), and hydroxyl (●OH) radicals.38,39 

Compared with most small-molecule antioxidants, cerium 
oxide (CeO2) nanoparticles have a stronger ROS scavenging 
ability and renewable activity, promising for antioxidant 
applications, and have been widely studied. Chen et al40 

synthesized polyphenol-stabilized CeO2 nanoparticles using 
Camellia sinens leaves xtract and evaluated the death rate, 
respiratory rate, blood pressure, and body temperature in 
a lipopolysaccharide (LPS)-induced sepsis model. The results 
demonstrated that the CeO2 treatment significantly decreased 
the level of tumor necrosis factor-α (TNF-α), interleukin-1β 
(IL-1β), interleukin-6 (IL-6) and high-mobility group protein 
1 (HMGB1), as well as the orientation of inducible nitric 
oxide synthase (iNOS), an NF-kB transcriptional bustle. All 
these changes resulted in reduced hepatic damage and wea-
kened systemic swelling. However, ordinary CeO2 nanopar-
ticles can not selectively target the mitochondria, a key ROS 
production site in cells. Thus, it may not directly and effi-
ciently remove excessive ROS, requiring improvement. Yu 
et al41 first synthesized triphenylphosphine-modified CeO2 

nanoparticles (TCeria) to target the mitochondria, followed 
by the synthesis of ROS-responsive grafts.Then, atorvastatin 
and TCeria were co-loaded into the core of ROS-responsive 
grafts to construct the drug delivery nanosystems (Atv/PTP- 
TCeria). Results showed that the prepared drug delivery 
nanosystems could be effectively distributed to the mice’s 
kidneys with a sepsis-induced acute injury. Additionally, the 
retention time was prolonged. At 24 and 48 h after adminis-
tration, TNF-α levels in renal tissue of Atv/PTP-TCeria trea-
ted mice were significantly lower, compared with the PBS 

group. At the same time, Atv/PTP-TCeria treatment can 
effectively improve renal function, alleviate renal tubular 
injury, and reduce renal tissue apoptosis and necrosis. Since 
LPS can cause liver injury in mice, the levels of serum 
aspartate aminotransferase and alanine aminotransferase 
were evaluated to confirm the compatibility. There was no 
significant difference between the control group and Atv/ 
PTP-TCeria group, suggesting that no serious adverse effect 
occured in the mouse liver during the treatment. This strategy 
provided a new idea for precisely scavenging ROS in the 
mitochondria of inflammatory cells.

Anti-Inflammatory Drug Delivery 
Nanosystems
When the human body is invaded by exogenous pathogens, 
lesions (tumors), or trauma, neutrophils are activated. Through 
self-deformation through the vascular barrier, neutrophils are 
enriched in the lesion.However, their survival time is short. 
After death, they release a large number of inflammatory 
factors and cause an excessive immune response. 
Additionally, during the human immune response, neutrophils 
can not distinguish between threats and non-threats. While 
releasing different toxic proteins to attack bacteria and other 
invasive pathogens, neutrophils can also kill healthy human 
cells, tissues, and organs, leading to various inflammatory 
diseases. Based on overexpressed FC-γ on the surface of 
activated neutrophils, Zhang et al42 linked doxorubicin to 
bovine serum albumin (BSA) via pH-sensitive bonds to pre-
pare nanoparticles (doxorubicin-hydrazone-bovine serum 
albumin, DOX-hyd-BSA), which can induce apoptosis.43 

The obtained nanoparticles could target and recognize acti-
vated neutrophils. When they reach the activated neutrophils, 
they are stimulated by low pH, releasing anti-cancer drugs, 
promoting apoptosis, avoiding neutrophils’ accumulation in 
tissues, and improving the occurrence of many inflammatory 
diseases, such as sepsis. Additionally, they found that mice 
treated with the prepared nanoparticles resumed levels of 
neutrophils and cytokine contents at 72 h comparable to the 
healthy mice. This indicated that DOX-hyd-BSA nanoparticles 
do not inhibit neutrophil production and function in bone 
marrow.

Lipopolysaccharide (LPS), the main structural compo-
nent of the Gram-negative bacteria outer membrane, can 
bind to Toll-like receptor 4, triggering transcription factors 
(such as nuclear factor kappa beta (NF-κB) family) signals 
to produce inflammatory responses, the main sepsis char-
acteristic. Curcumin (Curcuma longa) is a natural 

Figure 2 The treatment schema of 2D Transition Metal Dichalcogenide (TMD) 
Nanosheets. Reprinted with permission from Yim D, Lee DE, So Y, et al. Sustainable 
nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxy-
gen and nitrogen species. ACS Nano. 2020;14(8):10324–10336. Copyright (2020) 
American Chemical Society.35
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bisphenol compound extracted from the Curcuma longa 
rhizome. It has many biological and pharmacological 
properties such as anti-cancer and anti-inflammation. 
However, because of its poor water solubility, fast degra-
dation, and low bioavailability, curcumin has a limited 
therapeutic effect. Therefore, Wang et al44 prepared curcu-
min-loaded solid lipid nanoparticles and evaluated their 
therapeutic potential for sepsis. The in vivo imaging 
results showed that in transgenic mice with LPS (3 mg/ 
kg) intraperitoneal injection causing a corresponding 
inflammatory response, a maximum fluorescence intensity 
after 3 hours trend was detected, then gradually weakened. 
Intraperitoneal injection of curcumin-loaded solid lipid 
nanoparticles (30 mg/kg) could significantly inhibit the 
fluorescence expression intensity for 3 h and was equiva-
lent to dexamethasone. The results of an enzyme linked 
immunosorbent assay showed that the curcumin-loaded 
solid lipid nanoparticles could significantly reduce IL-6 
and TNF-α inflammatory factors in the serum of mice 
and IL-1 β. Additionally, IL-10 expression was signifi-
cantly increased. The hematoxylin-eosin staining results 
showed that this nanosystem could effectively attenuate 
glomerular and tubular injury and reduce hepatic necrosis 
compared with the free curcumin group. Finally, Western 
blot results showed that it could significantly inhibit the 
Toll-like receptor-4 (TLR-4), TLR-2, NF-κB) in lymph 
nodes and TNF-α protein expressions. These results pro-
vided new insights for sepsis treatments.

Other Drug Delivery Nanosystems
Recent studies have shown that the cell free DNA (cfDNA) 
content increaseds in sepsis patients’ blood and can be recog-
nized by the TLR-9 receptor of immune cells, resulting in an 
abnormal immune response. The TLR-9 knockout sepsis 
mice mortality is reduced, as the inflammation in vivo. 
Therefore, cfDNA neutralization or elimination may reduce 
sepsis organ damage by immune response regulation, inhibit-
ing the pro-inflammatory cascade and cytokine storm. Based 
on this, Dawulieti et al45 synthesized three polyethylenei-
mine (PEI) functionalized and biodegradable mesoporous 
silica nanoparticles (MSN-PEI 25K, MSN-PEI 800, and 
MSN-NH2) with different charge densities using PEI, and 
investigated their ability to scavenge cfDNA. The results 
showed that MSN-PEI had better therapeutic and protective 
effects than PEI. The therapeutic effect of MSN-PEI 25K 
with a high charge density on sepsis mice was better than 
MSN-PEI 800 with a low charge density. MSN-PEI 25K 
with a high charge density had a stronger nucleic acid 

binding ability, stronger inhibitory effect on the cfDNA 
induced inflammatory response, higher targeting, better 
retention of inflammatory sites in septic mice, and improved 
anti-inflammatory effects. Moreover, they found that MSN- 
PEI 25K exhibited an increased macrophages inhibitory con-
centration of 61.45 μg/mL compared with soluble PEI 25K 
(22.98 μg/mL). Additionally, MSN-PEI 25K could signifi-
cantly reverse the elevated serum alanine aminotransferase, 
aspartate aminotransferase, bilirubin, blood urea nitrogen, 
creatinine and creatine kinase, indicating reduced toxicity 
to macrophages and major organs. Therefore, it represents 
a more efficient and safer cfDNA scavenger.

MicroRNAs (miRNAs) are non-encoding RNAs with 21– 
25 nucleotides, which affect gene posttranscriptional regula-
tion by causing gene instability and preventing mRNA 
translation.46–48 MiR-126 is the most abundant miRNA in 
endothelial cells. Studies have shown that high expression of 
microRNA-126 (miR-126) treatment of endothelial progenitor 
cells can improve the survival rate of septic mice with cecal 
ligation and perforation. However, due to the ubiquitous rapid 
degradation of ribonuclease, it is challenging to transfer 
miRNAs to cells in vitro and in vivo. Jones Buie et al49 prepared 
a drug delivery system composed of deacetylated poly- 
N-acetyl glucosamine nanoparticles loaded with miRNA- 
126-3p or miRNA-126-5p. The constructed nanoparticles 
effectively encapsulated miRNAs and prevented their migra-
tion in agarose gel, thereby protecting miRNA from 
Ribonuclease A (RNase A) degradation. Nearly 67% of the 
sepsis mice treated with the complex survived at day 7, while 
only 25% of the untreated mice survived. Therefore, this drug 
delivery nanosystem significantly improved the survival rate 
and reduced inflammatory cytokines response. In addition, 
they also determined the impact of deacetylated poly- 
N-acetyl glucosamine nanoparticles loaded with miRNA-126 
(DEAC-pGlcNAc:miR-126) on cellular metabolic activity. No 
significant differences could be observed between the 
untreated group and the DEAC-pGlcNAc:miR-126-treated 
group.

All the drug delivery nanosystems developed for sepsis 
treatment are listed in Table 1.

Conclusions
Sepsis is a systemic inflammatory response syndrome 
caused by infection, with a high incidence. It has become 
the main cause of death for intensive care unit (ICU) 
patients in China and seriously threatens human health. 
Although the underlying sepsis pathogenesis is unclear, it 
is mainly related to the host’s aggressive immune 
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response. Therefore, sepsis and its complications are 
mainly controlled and treated using antibacterial, anti- 
inflammatory, and antioxidant drugs. However, in the 
organism, small-molecule drugs have disadvantages, such 
as a too-fast clearance rate, low utilization, high toxicity 
and side effects, which can lead to ineffective treatments. 
The great advancement in nanotechnology has brought 
a new technological revolution for small-molecule drugs 
delivery.57–59 Based on action mechanisms, this paper 
reviewed the drug delivery nanosystems recently used for 
sepsis treatment. By directly targeting bacteria or inflam-
matory cells, these drug delivery nanosystems can signifi-
cantly improve their antibacterial, anti-inflammatory, and 
antioxidant abilities, reducing the toxicity and side effects 
of long-term, high-dose administration.

There are some commercial nanoformulations for the 
treatment of infection, including liposomal amphotericin 
B (AmBisome®), amphotericin B lipid complex (Abelcet®), 
nanosilver et al. Amphotericin B with a broad antifungal 
spectrum, has strong antibacterial effect on Candida, 
Aspergillus, and fungus. Moreover, it was reported that it 
had almost no drug resistance in the past.60 However, ampho-
tericin B deoxycholate (AmB), the first formulation used in 
the clinic, has been associated with some drawbacks, includ-
ing nephrotoxicity, low solubility, and low bioavailability 
(<0.9%).61 In contrast, nanoformulations of amphotericin 
B, such as liposomal amphotericin B, tend to prolong the 
circulation time, resulting in distribution into many different 
organs (mainly in the spleen and liver) rather than a large 
accumulation in kidneys. In addition, liposomal amphoteri-
cin B significantly changed the pharmacokinetic parameters, 
as reflected by higher Cmax and the area under the curve.62 

Compared with conventional deoxycholate amphotericin B, 
the tolerated doses of amphotericin B-based nanoformula-
tions improved from 1.5 mg/kg of body weight/day to 15 mg/ 
kg.63 These improvements reduced the toxicity without 
decreasing the therapeutic effect of amphotericin B, promot-
ing the progress of drug delivery nanosystems for sepsis 
treatment. Detailed information of commercial nanoformula-
tions for sepsis treatment is listed in Table 2.

Limitations and Future Perspective
Above all, it is still difficult to translate these new findings 
into clinical practice. The reasons were listed as below.

First, before entering the target site, the drug delivery 
nanosystem needs to overcome many obstacles, such as 
avoiding the reticuloendothelial system phagocytosis,86–88 

and nanomaterial protein corona.89,90Ta
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Second, overcoming bacterial resistance still compli-
cate antibacterial drug delivery nanosystem preparation. 
For example, bacterial biofilm, a systematic bacterial 
growth organization, helps bacteria adapt to environmental 
pressure by adjusting their metabolism and developing 
strong drug resistance.91,92 How to use bacterial biofilms 
to infect a microenvironment with high acidity, hypoxia, 
and ROS content in tissues, and how to design a drug 
delivery nanosystem with high efficiency to destroy the 
biofilm still present some challenges. Additionally, 
although most bacteria are recognized and killed by pha-
gocytes, some can survive in phagocytes.93 Therefore, 
how to construct phagocytes that can actively target the 
infected ones and realize antibiotics intracellular delivery 
should also be the focus of antibacterial drug delivery 
nanosystem development.

Third, the existing drug delivery nanosystem treatment 
modes are too unique. Sepsis is fierce, often starting from 
multiple pathways, destroying the body’s function.94,95 

Therefore, it is necessary to develop drug delivery 

nanosystems with more functions to kill bacteria, inhibit 
inflammatory cascades and monitor curative effects.

Overall, through continuous optimization, drug deliv-
ery nanosystems still present great potential for precise 
sepsis treatment.

Abbreviations
ICAM-1, Intercellular adhesion molecule 1; GO, Graphene 
oxide; ROS, Reactive oxygen species; RNS, Reactive 
nitrogen species; TMD, Transition Metal Dichalcogenide; 
CAT, Catalase; LPS, Lipopolysaccharide; TNF-α, Tumor 
necrosis factor-α; IL-1β, IL-6, IL-10, Interleukin-1, inter-
leukin-6, interleukin-10; HMGB1, High mobility group 
protein 1; iNOS, Inducible nitric oxide synthase; TCeria, 
Triphenylphosphine modified Cerium oxide nanoparticles; 
Atv/PTP-TCeria, Atorvastatin and TCeria were co-loaded 
into the core of ROS responsive grafts to construct the 
drug delivery nanosystems; miRNAs, Micro RNAs; PEI, 
Polyethylenimine; RNase A, Ribonuclease A; MIC, 
Minimal inhibit concentration; MDR, Multidrug resistant; 

Table 2 Commercial Nanoformulations for Sepsis Treatment

Name Company Nanocomposition Application Clinical Stage Ref.

Abelcet Enzon Pharmaceutical 
(Sigma-Tau 

Pharmaceuticals)

Liposomal amphotericin B Fungal infection Commercially available [64]

AmBisome Gilead Sciences Liposomal amphotericin B Fungal infection Commercially available [65,66]
Amphotec Sequus Pharmaceuticals Liposomal amphotericin B Fungal infection Commercially available [64]

Fungisome Lifecare Innovations Liposomal amphotericin B Fungal infection Commercially available [67

Neulasta Amgen Inc. Filgrastim-bound polymeric 
NPs

Fibrile 
neutropenia

Commercially available [68,69]

LogiCath AgTive Smiths Medical 

International

Nanosilver Antimicrobial 

coating device

Commercially available [70]

PerOssal Aap Impantate Calcium sulfate and 

nanoparticulate 
hydroxyapatite Composite

Antibiotic 

delivery

Commercially available [71]

Spi-Argent Spire Biomedical 

Corporation

Nanosilver Antimicrobial 

coating device

Commercially available [72–74]

TAK-242 Takeda Global Research & 

Development Center, Inc.

Resatorvid emulsion Sepsis Commercially available [75–77]

PEV7 Pevion Biotech Ltd r-SAP2 virosomal vaccine Recurrent 
vulvovaginal 

candidiasis

Commercially available [78,79]

Cytosorb CytoSorbents 
Corporation

Polymeric nanobeads Hemoadsorption 
device for septic 

shock

Commercially available [80–84]

MAT2501 Matinas Biopharm Amikacin-loaded lipid 
nanocrystals

Bacterial infection Commercially available [85]

Note: Adapted from Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Nanotools for sepsis diagnosis and treatment. Adv Healthc Mater. 2021; 10(1): 
e2001378. © 2020 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH57.
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PLGA, Poly lactic-co-glycolic acid; PA, Pulmonary 
ATRESIA; PT, Prothrombin time; WS2, Tungsten disul-
fide; MoSe2, Molybdenum Selenide; WSe2, Tungsten dis-
elenide; BSA, bovine serum albumin; TLR-2, TLR-4, 
TLR-9, Toll-like receptor-2, Toll-like receptor-4, Toll-like 
receptor-9; NF kappa B, Nuclear factor kappa beta; Nrf2, 
Nuclear factor erythroid-2-related factor 2; SOD, 
Superoxide dismutase; cfDNA, Circulating free DNA; 
ICU, Intensive care unit; AmB, Amphotericin 
B deoxycholate; AmBisome, Amphotericin B; r-SAP2, 
Candida Albicans; Abelcet, Amphotericin B lipid comlex.
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