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Background: Colon adenocarcinoma (COAD) is a common gastrointestinal tumor and 
often occurs in the left colon with a poor prognosis. The progression of COAD is closely 
related to the tumor microenvironment, especially the hypoxia. Currently, few studies have 
reported the correlation between hypoxia-related genes and the prognosis of COAD patients. 
Furthermore, we constructed a prognostic model using four hypoxia-related genes to predict 
the prognosis of COAD patients.
Methods: The mRNA expression profiles and corresponding clinicopathological data were 
downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO). The string online analysis tool was used to construct a protein–protein interaction 
network (PPI) of hypoxia-related genes. Kaplan–Meier curve was used to analyze the 
relationship of hypoxia risk score and the overall survival of COAD patients, and the 
receiver operating characteristic (ROC) curve was used to assess the reliability.
Results: We screened out four hypoxia genes, including TKTL1 (transketolase like 1), 
SLC2A3 (solute carrier family 2 member 3), ALDOB (aldolase, fructose-bisphosphate B) 
and ENO3 (enolase 3), which were used to construct a hypoxia risk model to predict the 
overall survival of COAD patients. Besides, we also found that the hypoxia risk score was 
correlated with the immunosuppression of tumor microenvironment.
Conclusion: The model we constructed with four survival-related hypoxia genes, including 
TKTL1, SLC2A3, ALDOB and ENO3, could be used to predict the overall survival of 
COAD patients with high stability.
Keywords: bioinformatic analysis, hypoxia risk model, tumor microenvironment, colon 
adenocarcinoma, prognosis

Introduction
Colon adenocarcinoma (COAD) is a common type of malignant gastrointestinal tumor 
that occurs more in the left colon. The incidence of COAD in Asia was increasing rapidly 
in the past ten years, and patients with COAD usually have a poor prognosis due to 
recurrence.1,2 According to a WHO report in 2018, 1.8 million COAD cases were 
diagnosed and accounted for 10.2% of all cancer cases.3 More and more studies have 
reported the role of hypoxia in tumor formation and progression. According to a study by 
Liu et al, hypoxia promoted the invasiveness and angiogenesis of colon cancer by 
upregulating the Orai1 expression.4 Hypoxia also enhanced the ability of tumor metas-
tasis by changing the composition of extracellular matrix, such as HIF1 (Hypoxia- 
inducible factor 1), P4HA2 (prolyl 4-hydroxylase α-subunit isoform 2), and PLOD1 
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(procollagen-lysine 2-oxoglutarate 5-dioxygenase 1).5–7 

Moreover, hypoxia regulated anticancer drug resistance, apop-
tosis, autophagy and epithelial-mesenchymal transition of can-
cer cells by activating hypoxia-related genes. According to 
a report, hypoxia decreased chemotherapeutic sensitivity of 
colon cancer by upregulating MDR1 (multidrug resistance 1) 
expression.8 Similarly, hypoxia inhibited DNA-damage- 
induced cell apoptosis by antagonizing the function of CEP- 
1, the homolog of the tumor suppressor p53.9

Hypoxia-induced immunosuppression and immune escape 
of cancer cells have aroused wide attention. Previous research 
revealed that immune cells (including T cells and natural killer 
cells) were inhibited or in a nonfunctional state under 
a hypoxic microenvironment.10,11 Hypoxia also caused immu-
nosuppression by inhibiting the function of CD4+ effector 
T cell and increasing the amount of suppressive cells (regula-
tory T cells and tumor-associated macrophages) or cytokines 
(IL-10, TGFB1, and ARG1).12,13 Some immune genes in the 
tumor microenvironment, such as SLC10A2 (solute carrier 
family 10 member 2), CXCL3 (CX-C motif chemokine 
ligand 3) and IGHV5-51 (immunoglobulin heavy variable 5– 
51), could be used to predict the prognosis of tumor patients.14 

Besides, hypoxia regulated the amount of immune cells and 
the expression of immune genes. Hence, hypoxia could trigger 
the immunosuppression of tumor microenvironment, and it is 
necessary to construct a prognostic model using hypoxia- 
related genes.

With the development of various online databases, 
including TCGA (https://portal.gdc.cancer.gov/), GEO 
(https://www.ncbi.nlm.nih.gov/geo/) and TIP (http://biocc. 
hrbmu.edu.cn/TIP/), we can use large amounts of data to 
obtain reliable analysis results. In this study, we constructed 
a hypoxia risk model with four survival-related hypoxia 
genes to reflect the immune microenvironment and predict 
the prognosis of COAD patients. Shortly, this model may 
guide clinicians to formulate more appropriate therapies and 
improve the overall survival of COAD patients.

Materials and Methods
Datasets
The RNA-seq transcriptome data and corresponding clinico-
pathological data of 437 COAD patients were downloaded 
from TCGA (https://portal.gdc.cancer.gov/) as a train set, 
and the consistent data of 177 COAD patients were down-
loaded from GEO (GSE17536) as a validation set. Hypoxia 
gene set and tumor immune gene set were downloaded from 

GSEA (https://www.gsea-msigdb.org/gsea/index.jsp) and 
TIP (http://biocc.hrbmu.edu.cn/TIP/), respectively.

Construction of Protein–Protein 
Interaction (PPI) Network
STRING database (https://string-db.org/; August 20th, 
2021) was used to construct a protein–protein interaction 
network with hypoxia-related genes. Then the 
R programming language was utilized to calculate the 
number of each node’s (each node represents a hypoxia 
gene) interconnections and the result was shown in a bar 
plot. The more interconnections a gene had, the more 
likely that this gene was a critical hypoxia-related gene.

Filtration of Prognosis-Related Hypoxia 
Genes
Information including the expression of hypoxia genes, the 
survival status, and survival time of COAD patients were 
extracted from the datasets we downloaded. The survival 
package of R programming language was used for uni-
variate Cox analysis and multivariate Cox analysis to 
identify the prognosis-related hypoxia genes. P<0.05 was 
considered statistically significant.

Establishment of a Risk Model
The hypoxia genes screened out by univariate Cox analy-
sis and multivariate Cox analysis were used to constitute 
a risk model. The formula to calculate the risk score was:

risks core ¼ ∑n
i Expi� Coeið Þ

In this formula, n was the number of hypoxia genes we 
screened out; i was the sequence number of each hypoxia 
gene; Expi and Coei represented the expression quantity 
and its corresponding multivariable Cox regression coeffi-
cient of each hypoxia gene.

Analysis on the Relationship of the Risk 
Score and Patients’ Overall Survival
All COAD patients were divided into the high-hypoxia-risk 
group and low-hypoxia-risk group according to the median 
value of hypoxia risk score in both train set and validation 
set. Then, the survival package and survminer package of 
R programming language were utilized to perform univariate 
Cox analysis and multivariate Cox analysis to confirm the 
risk score as an independent risk factor for OS (overall 
survival) in COAD. Kaplan–Meier analysis was also con-
ducted to compare the OS in two groups. Finally, a ROC 
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curve was generated to assess the risk model’s accuracy and 
reliability in predicting the prognosis of COAD patients.

Gene Set Enrichment Analysis (GSEA)
To further verify the differential expression of the hypoxia 
gene set in the high-risk group and the low-risk group of the 
two sets, GSEA was performed to evaluate the enrichment of 
hallmark gene sets (h.all.v7.2.symbols.gmt). The gene set 
permutation was conducted 1000 times for this analysis.

Infiltration of Immune Cells and 
Expression of Related Immune Genes
As an online analytic tool, CIBERSORT (https://cibersort. 
stanford.edu/) could be used to provide the proportions of 
the various cells in a mixed cell population with RNA-seq 
transcriptome data.15 So, we used CIBERSORT to acquire 
the infiltration of various immune cells in high-risk group 
and low-risk group. The limma package of 
R programming language was used to compare the expres-
sion of immune genes in two groups.

Results
Preliminary Filtration of Hypoxia-Related 
Genes Using PPI
We downloaded the hypoxia-related gene set from Gene Set 
Enrichment Analysis (hallmark-hypoxia), which contained 
200 hypoxia-related genes. Then these genes were used to 

constitute a protein–protein interaction network (PPI) with 
the STRING online database (https://string-db.org/) to screen 
out the essential genes (Figure 1A). In this network, each node 
represented a hypoxia-related gene. If two genes are con-
nected, there is some interaction between them. Fifty genes 
with the highest interaction levels were preserved and shown 
in a histogram (Figure 1B). The more connections a hypoxia 
gene had, the more likely it was a critical hypoxia gene.

Identifying Prognosis-Related Hypoxia 
Genes Using Univariate and Multivariate 
Cox Analysis
We extracted the patients’ survival time, survival status, 
and the expression of the 50 hypoxia genes with the high-
est interaction levels. The survival package of 
R programming language was used to conduct univariate 
and multivariate Cox analysis in the train set. According to 
the result of univariate Cox analysis, six hypoxia genes, 
including TKTL1, SERPINE1, ALDOB, ENO2, SLC2A3, 
and ENO3, were found to be closely related to the survival 
of COAD patients (Figure 2A). Moreover, the result of 
multivariate Cox analysis indicated that four hypoxia 
genes, including TKTL1, ALDOB, SLC2A, and ENO3, 
could act as an independent prognostic factor for COAD 
patients (Figure 2B). So, the four hypoxia genes were 
utilized to constitute a risk model to predict COAD 
patients’ survival.

Figure 1 Preliminary filtration of hypoxia-related essential genes using PPI. (A) The protein–protein interaction network constructed with 200 hypoxia-related genes; (B) 
the 50 genes with the highest interaction levels.
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Using Four Prognosis-Related Hypoxia 
Genes to Construct a Risk Model That 
Could Predict the Survival of COAD 
Patients
The correlation analysis of 4 prognosis-related hypoxia genes 
was conducted before constructing a risk model. As is shown 
in Figure 3A, the four genes had a poor correlation with each 
other. This feature enabled them to exclude each other’s influ-
ence in the process of calculating the hypoxia risk score and 
constitute a more accurate risk model. According to the multi-
variable Cox regression coefficients of 4 genes calculated by 
the R programming language, we gained the risk score 
formula:

risk score ¼ð0:24� TKTL1Þþð0:38� SLC2A3Þ
þð� 0:2� ALDOBÞþð0:97� ENO3Þ

The COAD patients in 2 sets were divided into the high-risk 
group and the low-risk group, respectively, referring to the 
median value of risk score (Figure 3B). Furthermore, we 
found that the expression of the four hypoxia genes was sig-
nificantly different in two groups (Figure 3C). To further 
identify the prognostic value of hypoxia risk score in COAD 
patients, we conducted the univariate and multivariate Cox 
analysis of patients’ age, gender, TNM stage, and hypoxia 
risk score. The results indicated that the hypoxia risk score 
could be used as an independent prognostic factor to predict 
COAD patients’ survival (Figure 3D and E).

Our results also showed that COAD patients’ mortality in 
the high-risk group was higher than that in the low-risk group 
(Figure 3F and G). Moreover, we performed a Kaplan–Meier 
analysis to reflect the prognostic value of the risk score 

straightly. The result showed that the high-hypoxia-risk score 
was correlated with the poor prognosis of COAD patients 
(Figure 3H). To assess the risk model’s reliability, the received 
operating characteristic (ROC) curve was performed and the 
result confirmed the high predictive value of our model. The 
area under the ROC curve (AUC) was 0.716 at 1-year, 0.725 at 
3-years, 0.701 at 5-years in the TCGA train set, and was 0.611 
at 1-year, 0.705 at 3-years 0.785 at 5-years in the GEO test set, 
respectively (Figure 3I). On these bases, we developed 
a nomograph to more directly predict COAD patients’ survival 
rate based on the result of multivariate Cox analysis (N stage, 
M stage, and the risk score) (Figure 3J). A calibration of the 
nomograph was also conducted to indicate the high reliability 
(Figure 3K).

Identifying Hypoxia-Related Signaling 
Pathways with GSEA
We used GSEA to confirm the hypoxia-related signaling path-
ways activated in the high-risk group. Our result showed that 
the signaling pathways that promoted the proliferation, metas-
tasis, and anti-apoptosis of the tumor were significantly acti-
vated in the high-risk group. These signaling pathways 
included hypoxia, EMT (epithelial-mesenchymal transition), 
angiogenesis, KRAS, and NF-kB (Figure 4). Normalized 
enrichment score (NES) >1 and nominal p-value (NOM 
p-Val) <0.05 were considered significant gene sets.

The High Hypoxia Risk Score Was 
Correlated with an Immunosuppressive 
Microenvironment
Hypoxia and immunosuppression were both characteristics 
of the tumor microenvironment, and we investigated the 

Figure 2 Identifying prognosis-related hypoxia genes using univariate and multivariate Cox analysis. (A) The univariate Cox analysis result of 50 hypoxia genes; (B) the 
multivariate Cox analysis result of 50 hypoxia genes.
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Figure 3 Using four prognosis-related hypoxia genes to construct a risk model that can predict the survival of COAD patients. (A) The correlation analysis of four 
prognosis-related hypoxia genes; (B) patients were divided into a high-risk group and a low-risk group according to the median risk score; (C) the expression of the four 
hypoxia genes in two groups; (D and E) the univariate and multivariate Cox analysis of patients’ clinical parameters and hypoxia risk score; (F and G) the mortality of COAD 
patients in two groups; (H) Kaplan-Meier overall survival curves for two groups based on the risk score; (I) ROC curves reveal the high predictive value of our model to 
predict the survival rate of patients at 1 year, 3 years and 5 years; (J) a nomograph to more directly predict COAD patients’ survival rate based on N stage, M stage and the 
risk score; (K) a calibration of the nomograph to evaluate the reliability.
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relationship between them. We downloaded immune gene 
signatures (including 22 immune cells) from TIP database 
(http://biocc.hrbmu.edu.cn/TIP/), and CIBERSORT was 
used to assess the infiltration of 22 immune cells in the 
tumor microenvironment (Figure 5A). By analyzing the 
different infiltration of immune cells in the tumor micro-
environment, we found that some immunosuppressive 
cells, including rested NK cells and neutrophils, had 
a significantly higher infiltration degree in COAD patients 
with high hypoxia risk score (Figure 5B and C). Moreover, 
most immune genes related to the rested NK cells and 
neutrophils (CXCL5, CXCL6, CXCL8, CXCL9, 
CXCL10, CCL4, CCL5), were also upregulated in the 
high-hypoxia-risk group (Figure 5D and E). Besides, the 
expression of many negative regulatory genes for immune 
cells in the tumor immune microenvironment, such as 
MICA and LAG3, was also significantly higher in the 
high-hypoxia-risk group (Figure 5F).

Based on previous studies, hypoxia could also stimu-
late the expression of immune checkpoints in the tumor 
microenvironment. Immune checkpoints, including PD1, 
PD-L1, CTLA4, and TIM-3, played an essential role in 
COAD progression. Furthermore, our results also found 
that the expression of PD1, PD-L1, CTLA4, and TIM-3 
was positively correlated with the hypoxia risk score of 
COAD patients (Figure 6).

Discussion
More and more evidence identified the role of hypoxia in 
promoting the proliferation, migration and metastasis of 

malignant tumors through different mechanisms.4,16,17 The 
results of our study indicated that hypoxia could lead to 
tumor microenvironment immunosuppression by upregu-
lating immunosuppressive cell infiltration, immunosup-
pressive genes and immune checkpoints. Moreover, the 
hypoxia risk score could act as an independent prognostic 
factor for COAD patients in our study, what was consistent 
with the results of other studies.18 The hypoxia risk model 
constructed in this study included four hypoxia-related 
genes (TKTL1, SLC2A3, ALDOB, and ENO3), and all 
of them were significantly upregulated in the high-risk 
group. As a gene that could be overexpressed by hypoxia 
and HIF-1α in the tumor microenvironment, TKTL1 pro-
moted a more malignant phenotype. Besides, tumor cells 
acquired the ability of chemoresistance and radioresistance 
through the overexpression of TKTL1. Moreover, the 
knockdown of TKTL1 augmented the apoptosis of tumor 
cells by elevating intracellular ROS level.19 SLC2A3, also 
known as GLUT3, could affect tumor aggressiveness 
under hypoxic conditions.20 ALDOB was also known as 
fructose-bisphosphate aldolase, and its downregulation 
was associated with the poor prognosis of patients with 
gastric cancer.21 ENO3, a key enzyme in the glycolytic 
pathway, was confirmed to be correlated with the prog-
nosis of COAD patients.22

Substantial studies indicated that hypoxia might lead to 
immunosuppression in the tumor microenvironment.23 

Hypoxia suppressed the immune response through multiple 
pathways: some negatively regulatory factors might affect 
the differentiation and survival of dendritic cells, inhibit the 

Figure 4 Identifying hypoxia-related signaling pathways with GSEA. (A–E) Signaling pathways including hypoxia, EMT, angiogenesis, KRAS, and NF-kB, were significantly 
activated in the high-risk group.
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activation of effector T cells, such as VEGF;24 IL-4 and IL- 
10 that were induced by hypoxia could convert TAMs to M2 
type, and this process contributed to the immune evasion 
and tumor progression;25 regulatory T cells (rested dendritic 
cell, rested NK cell, neutrophils) that were known to sup-
press immune response increased, and effector T cells (M1- 

like macrophage, activated NK cell, activated CD4 T cell) 
that were known to enhance the anti-tumor immune 
response decreases.23 Consistent with this evidence, our 
results indicated that immunosuppressive cells or cytokines 
were significantly higher in the high-hypoxia-risk group, 
such as rested NK cells, neutrophils, VEGF and IL-10.

Figure 5 The high hypoxia risk score was correlated with an immunosuppressive microenvironment. (A) The infiltration of 22 immune cells in the tumor microenviron-
ment; (B and C) the rested NK cell and neutrophils have a significantly higher infiltration degree in COAD patients with high hypoxia risk score; (D and E) the expression of 
immune genes related to the rested NK cell and neutrophils in two groups; (F) the expression of negatively regulatory genes for immune cells in two groups. *Represents 
P < 0.05; **Represents P < 0.01; ***Represents P < 0.001.
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Immune checkpoints (PD1, PD-L1, CTLA-4, TIGIT, 
TIM-3) sufficiently inhibited T cells’ activation, thereby 
resulting in immunosuppression of the tumor 
microenvironment.26,27 Existed evidence verified that the 
expression of PD-L1 on macrophages and MDSCs was 
upregulated to protect tumor cells from the attack by acti-
vated immune cells.28,29 In our study, immune checkpoints, 

including PD-1, PD-L1, CTLA4, and TIM-3, were also 
upregulated in the high-hypoxia-risk group. Besides, 
hypoxia played a crucial role in radioresistance and che-
moresistance by enhancing the expression of HIF-1.30,31 On 
the one hand, HIF-1 might upregulate the downstream 
genes, which were involved in the proliferation, angiogen-
esis and metabolism of cancer cells; on the other hand, 

Figure 6 The expression of immune checkpoints (CTLA4, PD-1, PD-L1, and TIM-3) was correlated with the risk score in two groups. (A and B) CTLA4 was significantly 
upregulated in the high-risk group and its overexpression was positively correlated with the hypoxia risk score; (C and D) PD-1 was significantly upregulated in the high-risk 
group and its overexpression was positively correlated with the hypoxia risk score; (E and F) PD-L1 was significantly upregulated in the high-risk group and its 
overexpression was positively correlated with the hypoxia risk score; (G and H) TIM-3 was significantly upregulated in the high-risk group and its overexpression was 
positively correlated with the hypoxia risk score.

https://doi.org/10.2147/IJGM.S343216                                                                                                                                                                                                                                 

DovePress                                                                                                                                   

International Journal of General Medicine 2021:14 9860

He et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


tumor cells might evade apoptosis by the upregulation of 
MDM2 (a negative regulator of p53) mediated by HIF-1 
under hypoxic conditions.32,33

In this study, we established a hypoxia risk model that 
effectively predicted the prognosis of COAD patients with 
high reliability. Hence, the model could be utilized to help 
clinicians provide individualized treatment for COAD 
patients. However, our study still has some limitations: 
Firstly, more independent cohorts should be involved to 
further confirm the results; Secondly, some functional 
experiments and hypoxia mice model should also be con-
ducted to make our results more reliable; Finally, more 
relevant research need to be carried out to better elucidate 
the role of hypoxia-related genes in cancer progression.

Conclusion
This study constructed a hypoxia risk model with four 
hypoxia-associated genes, including TKTL1, SLC2A3, 
ALDOB and ENO3, that could assess the tumor immune 
microenvironment and predict the overall survival of COAD 
patients. The high hypoxia risk score was correlated with 
tumor microenvironment immunosuppression and the poor 
prognosis of COAD patients. Given the adverse effect of the 
hypoxic microenvironment on the prognosis, we may develop 
hypoxia-target drugs for COAD patients based on the four 
hypoxia genes screened out in this study.
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