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Abstract: Highly active antiretroviral therapy (HAART) has had a profound impact on 

 improving the long-term prognosis for individuals infected with human immunodeficiency virus 

(HIV). HAART has been available for close to two decades, and now a significant number of 

patients with access to HAART are over the age of 50 years. Many clinical studies have indicated 

that HIV infection, as well as components of HAART, can increase the risk in these individuals 

to a variety of noninfectious complications, including a risk to bone health. There is a significant 

need for detailed mechanistic analysis of the aging, HIV-infected population regarding the risk 

of HIV infection and therapy in order to maintain bone health. Insights from basic mechanistic 

studies will help to shed light on the role of HIV infection and the components of HAART that 

impact bone health, and will help in identifying preventative countermeasures, particularly for 

individuals 50 years of age and older.
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Introduction
There has been little research into how human immunodeficiency virus (HIV) infec-

tion and the aging process together influence the health and well being of infected 

individuals, which poses many challenges for health care providers, as well as for 

policy makers.1 Given the advent of highly active antiretroviral therapy (HAART) 

about two decades ago, HIV-infected individuals have a significantly improved 

long-term survival, with many of those affected now aged 50 years and older. HIV 

infection and its treatment have increasingly led to concerns over comorbidities, 

such as  cardiovascular disease, cancer, depression, dementia, and bone mineral 

density loss. Such concerns parallel the general concerns regarding the health and 

well being in the aging population. In the US, data from the Centers for Disease 

Control have indicated that individuals aged 50 years and older represent 29% 

of those living with acquired immunodeficiency syndrome (AIDS), 24% of those 

living with HIV/AIDS, and 15% of new HIV/AIDS diagnoses.2 The rates among 

African-Americans and Hispanic-Americans are 12 times and five times greater, 

respectively. It has been estimated that by 2015, 50% of individuals living with 

HIV/AIDS will be 50 years of age or older.3 These epidemiologic data indicate that 

the HIV epidemic in the US and other countries with access to HAART will cause 

a change in the nature of HIV clinics, changing the focus from health concerns 

in younger patients to a broader age range, with an increasing focus on geriatric 

issues, including issues relating to bone health.
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Basic bone biology and pathology
Bone is a dynamic tissue in the body that is formed and 

maintained by two cell types, ie, osteoblasts (which form 

bone) and osteoclasts (which resorb bone). There is an 

extensive cell-signaling network between osteoblasts and 

osteoclasts required for maintaining the balance of activities 

of these two cell types that is crucial for bone remodeling 

and bone health. Direct signals between bone cells have 

recently been implicated as being important for regulating 

bone remodeling.4–6 For instance, osteoclasts can initiate 

bone formation via signaling to osteoblasts, independent 

of their ability to resorb bone.7,8 It has been demonstrated 

in patients with autosomal dominant osteopetrosis Type II 

that the number of osteoclasts, but not their activity, controls 

bone formation.9 In contrast, osteoblasts regulate osteoclast 

differentiation by expressing two factors that are necessary 

and sufficient for osteoclast formation, ie, M-CSF10 and 

RANKL.11

Measurement of bone health
Several different methods are used to measure bone density. 

These include dual-energy X-ray absorptiometry, quantita-

tive computed tomography, and quantitative ultrasound. 

While dual-energy X-ray absorptiometry is typically the 

most common method used and is considered the gold 

standard for measuring bone density, quantitative computed 

tomography and quantitative ultrasound can provide other 

useful information. Quantitative computed tomography 

provides measurements of cortical and trabecular volumetric 

bone mineral density, and studies have found using quan-

titative computed tomography that individual subregions 

of trabecular and cortical compartments are independent 

predictors of hip fracture and have differential responses 

to osteoporosis treatments.12,13 Quantitative ultrasound can 

provide further information on bone fragility and fracture 

risk, particularly in postmenopausal women.14–16 Both the 

spine and femur are common sites of analysis, and both 

regions contain cortical bone (dense outer shell) as well as 

trabecular bone (interconnecting sponge-like bony sheets), 

although the spine has relatively more cancellous bone, which 

can undergo the highest rate of bone turnover. Osteopenia 

and osteoporosis are diagnosed by comparing bone mineral 

density of an individual with expected normal values. The 

T score represents the number of standard deviation differ-

ences between an individual’s bone mineral density versus 

that of the mean of the population at peak bone mass. The T 

score creates a foundation for comparison of individuals as 

having osteopenia or osteoporosis, and can be of practical 

utility in predicting subsequent risk of fracture in men and 

women 50 years of age and older.

A recent report has described the use of the World 

Health Organization’s FRAX equation as a first-line screen-

ing of bone metabolism alteration in the HIV-infected 

population.17,18 FRAX is a computer-based algorithm that 

calculates the 10-year probability of fractures in men and 

women on the basis of classic risk factors alone or by inte-

gration with bone mineral density, which is measured by 

dual-energy X-ray absorptiometry. The FRAX algorithm 

has been proposed as a screening tool for HIV-positive 

individuals to identify those who have an increased clini-

cal risk of fractures and for where bone mineral density 

measurements are strongly recommended. In a study of a 

mostly male population, reduced bone mineral density was 

significantly associated with particular HAART regimens. 

FRAX analysis of the entire population indicated a 1.2% 

increased risk of hip fracture and a 5.4% increased risk for 

major osteoporotic  fracture.17 Further FRAX analysis indi-

cated that there were 22 of 139 patients in the study (15.8%) 

who had a 17.5% increased risk of major osteoporotic fracture 

and three patients (2.2%) who had a 120% increased risk of 

major fracture.

Perturbation in the function of either osteoblasts or osteo-

clasts can result in bone density loss, presenting clinically 

as osteopenia or osteoporosis. Osteoporosis occurs during 

aging and is commonly associated with women follow-

ing menopause (on average at age 51 years), where it is 

called postmenopausal osteoporosis, but it can also occur 

in men or anyone with certain hormonal disorders, other 

chronic diseases, or as a result of medications such as 

glucocorticoids.19–25

HIV infection as a risk factor  
for bone health
There is clearly a large body of literature implicating a number 

of general factors associated with low bone mineral density 

in the general population, in particular those aged 50 years 

and older.26–29 One in two women and one in five men over 

the age of 50 years are expected to suffer a bone fracture due 

to osteoporosis during their remaining lifetime.30 A current 

question that requires much more intensive investigation 

is whether HIV infection is a risk factor for low mineral 

density and the mechanisms involved. For HIV-infected 

individuals, HIV infection has been implicated as a risk 

factor for alteration of bone mineral density.31–34 Clearly, 

there are general effects of HIV infection that can be risk 

factors for low bone mineral density. These include a low 
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body mass index, physical inactivity, malabsorption, and 

hypogonadism (Table 1). The HIV-infected population has 

been reported as having high rates of vitamin D deficiency, 

smoking, and drug and alcohol abuse, which are general risk 

factors for osteoporosis (Table 1).35 Immune cells may also 

influence bone mineral density.36 The loss of both immuno-

competence and bone mineral density are common during 

aging. Importantly, both are associated with HIV infection 

and AIDS pathogenesis, and in some respects can resemble 

accelerated aging.37 It is plausible that HIV infection could 

therefore accelerate the aging process.38

Mechanistic details regarding how HIV infection may 

reduce bone mineral density are quite limited, with minimal 

follow-up and demonstration of clearly identified  mechanisms. 

However, the limited literature would support the general 

model that HIV infection could impact the immune system, 

which would then influence the skeletal system.

During aging, the reduction in T cell renewal along with 

the progressive enrichment of terminally differentiated 

T cells results in a general decline of the immune system, 

leading to immunosenescence. Inflammation is a clear hall-

mark of age-associated comorbidities, and immune activation 

is a well established hallmark of HIV infection.39 Constant 

stimulation of the immune system by HIV can activate the 

innate and adaptive immune system. This activation results 

in the release of the mediators of inflammation, eg, cytokines. 

HIV-mediated immune activation, along with lack of anti-

inflammatory responses, is a likely driver of accelerated aging 

as a result of HIV infection, even during HAART-suppressed 

HIV replication. Age-associated defects have been observed 

in the activation of cells in the innate immune system.40 

Aging is characterized by a constitutive proinflammatory 

environment in which persistent low-grade innate immune 

activation could enhance cellular, tissue, and organ damage 

by HIV infection, including that of the skeletal system.

Osteoimmunology is an interdisciplinary research area 

that studies the interface and cross-talk between the skeletal 

and immune systems.41,42 In particular, osteoimmunology 

focuses on the shared components and mechanisms between 

the two systems, which include ligands, receptors,  signaling 

molecules, and transcription factors. Bone marrow is impor-

tant for the proper development of the immune system, and 

has important stem cells that maintain the immune system. 

Cytokines produced by immune cells (eg, RANKL, mac-

rophage colony-stimulating factor, tumor necrosis factor 

alpha [TNF-α], interleukins, and interferons) can also have 

important effects on regulating bone homeostasis. The bal-

ance between bone modeling and remodeling can be per-

turbed during chronic inflammation, which can lead to bone 

metabolic disorders as well as bone pain.

Some of the available literature shows a preliminary con-

nection between HIV infection and osteoimmunology. For 

example, it has been suggested that there is an association 

between chronic inflammatory conditions and osteoporosis, 

and that RANKL is produced by activated T cells, although 

no studies have provided mechanistic details to support this 

suggestion.43 During the asymptomatic phase of HIV infec-

tion, levels of inflammatory cytokines, such as interleukin-1, 

interleukin-6, and TNF-α are increased, and these cytokines 

can also stimulate bone resorption.43 RANKL levels have 

been found to be higher in HIV-infected men and correlated 

with lower bone mineral density,44 although another study 

found that bone mineral density was not associated with 

soluble TNF receptor 2 levels.45 Well-controlled studies 

have not been performed to date to demonstrate a connection 

between altered expression of cytokines due to HIV infec-

tion and changes in bone mineral density. Such studies, 

particularly using well-defined animal models, would be 

important studies to perform in order to provide clear evi-

dence in support of a cytokine-HIV infection-bone mineral 

density connection. In Figure 1, a general model is proposed 

for how HIV infection is connected to bone mineral density 

loss via cell signaling. Future experiments are needed to test 

and refine this model.

A few other reports provide connections, the underlying 

mechanisms of which remain unclear and a model to associate 

viral infection with bone mineral density loss is not obvious. 

First, an older report suggested reduced bone formation and 

turnover in iliac crest biopsies,46 but no follow-up on these 

studies has confirmed these observations. Further studies 

suggest other possible interactions between HIV infection, 

TNF-α, and bone mineral density. In one report, TNF-α has 

been reported to mediate apoptosis of human osteoblasts 

in response to HIV gp120.47 If confirmed, this observation 

could be an important connection between HIV infection 

and osteoblasts. Another observation found that vitamin D 

Table 1 General risk factors associated with human 
immunodeficiency virus infection to bone mineral density loss

General risk factors
Low body mass index
Physical inactivity
Malabsorption
Hypogonadism
Vitamin D deficiency
Smoking
Drug and alcohol abuse
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deficiency is common among HIV-infected individuals, and 

a suggestion is that inhibition of 1-alpha-hydroxylase by 

TNF-α may have contributed to this.48

In summary, imbalances in growth factors and cytokines 

could contribute to bone mineral density loss by increas-

ing bone resorption, as indicated in the model proposed in 

the Figure. However, it is clear that most of these data are 

 suggestive and correlative, and there remains a strong need 

for very careful examination of potential mechanisms that can 

directly link HIV infection to bone mineral density loss.49 The 

study of osteoimmunology in the context of HIV infection 

provides fertile ground for enhancing our understanding of 

the fundamental mechanisms that may connect HIV infection 

with bone metabolism.

HAART as a risk to bone health
Several of the drug classes that comprise HAART have 

been implicated as risk factors for low bone mineral density 

(Table 2). Several of the HIV protease inhibitors have been 

shown to alter bone mineral density.50 Recent gene expres-

sion profiling has indicated that exposure of osteoblastic 

cells to nelfinavir and ritonavir increases gene expression 

of the inflammatory cytokines, MCP-1, and  interleukin-8.51 

Protease inhibitors have also been suggested to inhibit 

1-alpha-hydroxylase, as well as to reduce 1,25(OH)
2
D 

levels, which could reduce bone mineral density.45 LRP5, a 

positive regulator of bone formation, is inhibited by protease 

inhibitors.51,52

Reverse transcriptase inhibitors are another class of 

anti-HIV drugs that have been implicated in bone metabo-

lism. For example, azidothymidine, a nucleoside reverse 

transcriptase inhibitor, has been suggested to stimulate 

osteoclastogenesis in vitro and reduce bone mineral density 

in mice.53 Some nucleoside reverse transcriptase inhibitors 

have been implicated in causing mitochondrial damage and 

dysfunction due to their cross-inhibition of mitochondrial 

DNA polymerase.51,53 This could be responsible for the raised 

lactate levels observed in some HIV-infected individuals who 

are on HAART, which has been associated with increased 

bone resorption.54 Efavirenz, a non-nucleoside reverse tran-

scriptase inhibitor, has been reported to reduce vitamin D 

levels by inducing hepatic enzymes.55

Some of the strongest data in support of the components 

of HAART being associated with bone mineral density 

reductions have been observed with tenofovir, a nucleotide 

reverse transcriptase inhibitor, and been reported in human 

adults.56 Increased bone resorption could cause a compensa-

HIV infection

IL-17

activated
T-cell

RANKL

osteoblast

RANKL

osteoclast
precursor

osteoclast

bone resorption

macrophage

inflammatory cytokines
(eg, IL-1, IL-6, TNF alpha)

Figure 1 Proposed model for how human immunodeficiency virus (HIV) infection 
is associated with bone mineral density loss. HIV can infect both activated T cells 
and macrophages. HIV-infected T cells express interleukin (IL)-17, which stimulates 
HIV-infected macrophages to produce inflammatory cytokines, including IL-1, IL-6, 
and tumor necrosis factor (TNF). The inflammatory cytokines can stimulate both 
osteoblasts and osteoclasts. HIV-infected activated T cells and osteoblasts produce 
rAnKL, which further stimulates osteoclastogenesis. Overproduction of osteoclast 
activity results in an imbalance in bone remodeling and increases bone resorption.

Table 2 Drug classes in highly active antiretroviral therapy that 
have been implicated as risk factors for bone mineral density

Drug type
Protease inhibitors
nucleoside/nucleotide reverse transcriptase inhibitors
non-nucleoside reverse transcriptase inhibitors
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tory increase in osteoblast activity, which would be revealed 

by increased serum alkaline phosphatase levels.57 Tenofovir 

treatment decreased bone mineral density, as well as increased 

urinary calcium excretion. Previous studies in macaques have 

demonstrated adverse effects on bone mineral density from 

the administration of tenofovir.58–60 Simian immunodeficiency 

virus infection of macaques was also implicated in decreas-

ing bone mineral density. Histomorphometric analysis in one 

of these studies revealed an increase in tibial osteoid seam 

width, which can result in bone softening and can develop 

into osteomalacia.58 The increase in osteoid seam width is 

likely to be associated with reduced activity in osteoblasts.

The gene expression profile of primary osteoclasts and 

osteoblasts has been evaluated ex vivo following tenofovir 

exposure.61,62 Specific downregulation of Gnas, Got2, and 

Snord32a was observed in osteoclasts. The downregulation 

of Gnas gene expression may result in less mitogen-activated 

protein kinase/extracellular signal-regulated kinase signal-

ing and ultimately a reduction in osteoclast proliferation 

and actin filament formation, resulting in decreased bone 

resorption. Got2 is a mitochondrial enzyme involved in 

energy transduction, specifically amino acid metabolism as 

well as the urea and tricarboxylic acid cycles. Perturbation 

of amino acid metabolism following exposure to tenofovir in 

both osteoblasts and osteoclasts suggests alteration in bone 

homeostasis. Over 70 genes had their gene expression altered 

in primary osteoblasts following tenofovir exposure. The 

changes in gene expression profiles involved in cell signaling, 

cell cycle, and amino acid metabolism, would likely impact 

osteoblast function in bone formation.

The association of tenofovir with mitochondrial dysfunc-

tion has been investigated. In general, no mitochondrial dys-

function was observed with tenofovir.63–66 Other studies have 

reported a lowering of mitochondrial dysfunction when drug 

regimens were changed and nucleoside reverse transcriptase 

inhibitors were replaced with tenofovir.67–69 Potential mecha-

nisms for tenofovir-associated bone loss include preferential 

uptake by osteoclasts (altering gene expression resulting in 

increased bone resorption), uptake by osteoblasts (altering 

gene expression decreasing bone formation), and uptake by 

both osteoclasts and osteoblasts (altering gene expression 

of both cells types and ultimately the balance between bone 

resorption and bone formation, resulting in bone loss).70 

The loss of bone density due to tenofovir exposure could 

also be associated with tenofovir-induced renal dysfunc-

tion, particularly renal proximal tubule dysfunction.17,57,71–79 

The failure of renal proximal tubular cells to reabsorb 

filtered bicarbonate from urine would result in urinary 

bicarbonate wasting and subsequent acidemia and a more 

general dysfunction of the proximal tubular cell, a clinical 

condition called Fanconi syndrome. Commonly observed 

clinical features in Fanconi syndrome include aminoaciduria, 

glycosuria, tubular proteinuria, and uricosuria. Importantly, 

the main pathology observed in Fanconi syndrome is bone 

demineralization (osteomalacia or rickets) due to phosphate 

wasting. Therefore, tenofovir-associated bone density loss 

may be an outcome of renal dysfunction.

Treatment of bone mineral density 
loss from HIV infection and HAART
The treatment of low bone mineral density requires a 

complete investigation into its etiology. Secondary causes 

and complications, particularly relevant for individuals 

50 years of age and older, including chronic liver disease, 

chronic malnutrition, hyperthyroidism, hypogonadism, and 

Type 1  diabetes, require identification and treatment where 

possible.80–82 Low vitamin D levels should be followed up by 

analysis of parathyroid hormone, with the goal of attempt-

ing to normalize vitamin D and parathyroid hormone levels. 

Diagnosis of osteoporosis, which would typically be estab-

lished by a T score , 2.5 for those 50 years of age and older, 

would warrant treatment with bisphosphonates in conjunction 

with vitamin D, calcium supplementation, and strategies 

geared towards trying to minimize the risk of falls.

Bisphosphonates are synthetic analogs of inorganic 

pyrophosphate.83–85 They inhibit bone resorption by increas-

ing the apoptosis of osteoclasts. To date, preliminary data 

suggest that the use of bisphosphonates is effective in increas-

ing bone mineral density in the presence of HAART.86–88 The 

bisphosphonates, including alendronate (Fosamax®), iban-

dronate (Boniva®), risedronate (Actonel®), and zoledronate 

(Aclasta®, Zometa®) are all available as options for use in the 

treatment of bone mineral density loss.83–85 There are concerns 

regarding the use of bisphosphonates in the treatment of bone 

mineral density loss that occurs in HIV-infected individuals. 

One major concern is that the oral administration of bispho-

sphonates requires a very complex dosing regimen, ie, the 

bisphosphonate must be taken fasting, with the individual 

sitting or standing, with a large glass of water, and then 

the individual must remain upright for 30–60 minutes after 

taking the medication, without eating or drinking or taking 

other medications during that time. Another concern is the 

long-term administration of bisphosphonates in the context 

of HIV infection and HAART. To date, alendronate has been 

the most extensively used bisphosphonate in the treatment of 

bone mineral density loss in the context of HIV infection.89,90 
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However, there has not been enough statistical power in the 

relevant research to conclude that fracture rates are lowered. 

This should be a priority of future clinical studies.

Conclusion
The specific role(s) of HIV infection in bone mineral loss 

remains poorly characterized, and further studies are needed 

to identify the underlying mechanisms. The use of appropriate 

animal models would be highly desirable in this regard. The 

role of specific HAART regimens in increased risk of bone 

mineral density loss has been suggested but not fully analyzed, 

particularly in the context of many of the newly approved anti-

HIV drugs available. Further studies are needed to investigate 

whether declines in bone mineral density are greater in indi-

viduals over 50 years of age receiving HAART compared with 

the non-HIV-infected population to aid further in identifying 

potential risk factors.91 The rate of bone mineral density loss 

is an important parameter to determine in the identification of 

possible treatments using bisphosphonates. A relatively slow 

decline in bone mineral density loss could allow for bisphos-

phonates, such as zoledronate, to be used as an adjuvant therapy 

along with HAART. Given that the HIV-infected population 

is aging and many patients are now reaching the age of 50 

years, there needs to be serious consideration of the impact 

of HIV infection and HAART on the health of those affected, 

particularly in the area of bone health.
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