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Purpose: Chronic obstructive pulmonary disease (COPD), a prevalent obstructive airway 
disease, has become the third most common cause of death globally. Xuanbai Chengqi 
decoction (XBCQ) is a traditional Chinese medicine prescription for the acute exacerbation 
of COPD. Here, we aimed to reveal the therapeutic effects of XBCQ administration and its 
molecular mechanisms mediated by Th17/Treg balance and gut microbiota.
Methods: We determined the counts of Th17 and Treg cells in the serum of 15 COPD and 10 
healthy subjects. Then, cigarette smoke extract-induced COPD mice were gavaged with low, 
middle, and high doses of XBCQ, respectively. Weight loss, pulmonary function and inflamma-
tion, Th17/Treg ratio, and gut microbiota were measured to evaluate the efficacy of XBCQ on 
COPD.
Results: COPD patients had a higher Th17/Treg ratio in the serum than healthy controls, which 
was consistent with the results in the lung and colon of COPD mice. The middle dose of XBCQ 
(M-XBCQ) significantly decreased the weight loss and improved the pulmonary function 
(FEV0.2/FVC) in COPD mice. Moreover, M-XBCQ alleviated lung inflammation by rectifying 
the Th17/Treg imbalance, reducing the expressions of TNF-α, IL-1β, and MMP-9, and suppres-
sing inflammatory cells infiltration. Meanwhile, M-XBCQ greatly improved the microbial 
homeostasis in COPD mice by accumulating probiotic Gordonibacter and Akkermansia but 
inhibiting the growth of pathogenic Streptococcus, which showed significant correlations with 
pulmonary injury.
Conclusion: Oral M-XBCQ could alleviate COPD exacerbations by reshaping the gut 
microbiota and improving the Th17/Treg balance, which aids in elucidating the mechanism 
through which XBCQ as a therapy for COPD.
Keywords: XBCQ, COPD, intestinal microbiota, Th17/Treg, pulmonary inflammation

Introduction
COPD is an obstructive airway disease clinically characterized by emphysema and/or 
persistent bronchitis, leading to non-reversible airway obstruction, pulmonary inflam-
mation, and lung injury. COPD has become the third most common cause of death 
globally, and its main risk factors can be attributed to cigarette smoking and air 
pollution.1,2 At present, long-acting bronchodilators primarily including long-acting 
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β2-agonists muscarinic antagonists, usually in combination 
with glucocorticoids, have been widely employed in the 
treatment of COPD.3 However, these therapies are limited 
in targeting the underlying disease process, reducing disease 
mortality, or reversing tissue damage, followed by unaccep-
table side effects.4 Further studies are needed to figure out 
the mechanism of pulmonary inflammation and lung injury 
in association with COPD and to develop new safe and 
efficient anti-inflammatory drugs.

Increasing evidence indicates that the Th17 and Treg 
balance plays vital roles in regulating the pathogenesis of 
COPD.5 Th17 cells are a subset of pro-inflammatory 
T helper cells responsible for producing IL-17A and IL- 
17F, which are closely linked to neutrophilic 
inflammation.6 However, Treg cells are a unique subset 
of regulatory T cells, defined as CD4+CD25+Foxp3+ 

T cells, which maintain immune homeostasis by secreting 
IL-10 and TGF-β.7 A previous study has proved that 
compared to control subjects, Th17-related cytokines are 
prominently increased in the bronchial mucosa of stable 
COPD patients.8 Meanwhile, these cytokines can induce 
epithelial cells to produce antimicrobial peptides, chemo-
kines, and granulocyte growth factors such as G-CSF and 
GM-CSF, thereby promoting the accumulation of 
neutrophils.9 Cigarette smokers with COPD exhibited 
fewer Treg cells, lower mRNA levels for Foxp3, and less 

IL-10 secretion in the whole lung than controls.10 At the 
same time, the density of Treg cells in COPD patients 
fluctuated in bronchoalveolar lavage or lung tissue.11 

Moreover, Cervilha et al demonstrated the critical role of 
Th17/Treg imbalance worsening the pulmonary inflamma-
tion using a cigarette smoke extract (CSE)-challenged 
COPD mice model.12

The gastrointestinal tract (GIT) harbors a complex and 
diverse microbial community that is paramount for sus-
taining the ecological equilibrium with the host immune 
system.1314 In the meantime, the dysbiosis of the gut 
microbiome is believed to be closely connected with 
a higher risk of diseases and infections.15 Different bacter-
ial species can induce distinct immune cell populations 
with pro- or anti-inflammatory effects, in which case 
a normal gut ecosystem contributes more to protecting 
against the susceptibility to inflammatory infections and 
diseases.16 In recent years, many studies have revealed 
that lung microbiome imbalance is another contributing 
factor to the progression of COPD.17,18 Along with the 
intimate relationship between GIT and the respiratory 
tract, the “gut-lung axis” might be very important for 
COPD pathogenesis.19 A novel study indicated that the 
gut microbiome and metabolome of COPD patients are 
significantly distinguished from those of healthy subjects.4 

Similar observations have also been replicated in cigarette 
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smoking-based murine models with COPD, again confirm-
ing the potential role of the gut microbiome in exacerbat-
ing lung inflammation.20,21 Therefore, the gut microbiota 
intervention would be a potential therapeutic approach for 
the prevention and treatment of COPD. Besides, accumu-
lating evidence has shown that the mucosal microbiota 
could regulate the Treg/Th17 balance by secreting func-
tional metabolites such as short-chain fatty acids, thus 
governing immune homeostasis.22,23 In this case, we 
hypothesized that this interaction between resident micro-
biota and Th17/Treg balance might be further involved in 
regulating the occurrence and exacerbation of COPD.

Xuanbai Chengqi decoction (XBCQ) is 
a representative Chinese medicine prescription in 
Systematized Identification of Warm Diseases written by 
Wu Jutong in the Qing dynasty. XBCQ has been widely 
used to treat a variety of common respiratory diseases in 
China, such as lung injury, lung fibrosis, and COPD.24–27 

XBCQ can serve as an effective remedy for resolving 
phlegm, expelling heat by purgation, as well as alleviating 
cough, wheezing, and chest congestion, with little adverse 
reactions,25,28 which is therefore generally prescribed for 
COPD. As well, a clinical study found that the XBCQ 
medication could produce a significant improvement in 
the oxidant/antioxidant imbalance, damaged lung func-
tion, and excessive inflammatory responses of COPD 
patients.25 This traditional remedy consists of four con-
stituents, namely, rhubarb, gypsum, apricot seed, and tri-
chosanthes rind.25 In addition, amygdalin from apricot 
seed has inhibitory activity during the epithelial- 
mesenchymal transitions process in COPD mice.29 

However, the underlying molecular mechanism by which 
XBCQ ameliorates pulmonary inflammation remains 
poorly understood.

In the present study, we for the first time compared the 
difference in the Th17/Treg balance between clinical sub-
jects with or without COPD. Then, we explored the effi-
cacy of XBCQ on pulmonary inflammation and lung 
injury using an experimental murine model of COPD. 
The mechanisms by which XBCQ improved the deteriora-
tion of COPD mediated by Th17/Treg balance and gut 
microbiota were also disclosed. Cigarettes are considered 
as one of the most prevalent risk factors for clinical 
COPD,30,31 which are therefore the most commonly used 
harmful gas to mimic COPD. Extensive investigations 
have applied the exposure of cigarette smoke (CS) com-
bined with LPS to generate a COPD murine model.32–34 

This kind of COPD model can effectively reproduce the 

airway phenotype of clinical patients with COPD and 
induce a significant rise in the secretion of pro- 
inflammatory cytokines, such as TNF-α and IL-1β.33 

Besides, compared with the simple CS-induced COPD 
models, the combination of CS and LPS can obtain more 
similar pathological features to human COPD and also 
exhibit a shorter modeling time. Therefore, based on 
these previous studies, our study finally selected and estab-
lished the COPD model by the nasal inhalation with CSE 
combined with LPS. The findings of this study will facil-
itate the exploration of new therapeutic biomarkers and 
adjuvant medication for patients with COPD.

Materials and Methods
Human Participants and Specimen 
Collection
A total of 15 COPD patients and 10 healthy subjects were 
recruited from Dongzhimen Hospital, Beijing University 
of Chinese Medicine (Beijing, China). Inclusion criteria 
for COPD participants: (1) Meet the diagnostic criteria of 
the guidelines from the Global Initiative for Chronic 
Obstructive Lung Disease (GOLD 2020); (2) FEV1/FVC 
< 70% after inhaling bronchodilators, except for other 
pulmonary diseases; (3) Aged 18 to 75 years old, but the 
gender was not limited; (4) Signed informed consent was 
provided. Inclusion criteria for healthy subjects: (1) 
Healthy body without chronic wasting diseases; (2) 
Without chronic respiratory diseases; (3) Aged 18 to 75 
years old, but the gender was not limited; (4) Signed 
informed consent was provided. Besides, we excluded 
participants who had received antibiotic or prednisone 
treatments during the last two months or had a prior his-
tory of gastrointestinal disease. Serum samples from all 
participants were collected and stored at −80 °C until 
measurement. This study was performed according to the 
principles of the Declaration of Helsinki and was approved 
by local human research ethics committees. All subjects 
were provided written informed consent, and all protocols 
were approved by the Ethics Committee of Dongzhimen 
Hospital Affiliated with Beijing University of Chinese 
Medicine (reference 2020DZMEC-093-02).

Preparation of XBCQ and CSE
The constitution of XBCQ is shown in Table 1. Four herbs 
were purchased from Beijing Tong-Ren-Tang (Beijing, 
China). All herbs were boiled twice, 10 min with high 
heat and then 20 min with gentle heat after soaking for 30 
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min. The decoction was filtered with two-layer gauze to 
remove residue and then heated to a concentration of 1.15 
g/mL.26 The decoction was aliquoted and stored at −80 °C. 
The commercial non-filtered cigarettes were purchased 
from Zhongnanhai from the Beijing cigarette factory 
(Beijing, China). Each cigarette contained 10 mg of tar, 
0.9 mg of nicotine, and 10 mg of CO. CSE was prepared 
according to Su et al.35 Briefly, the mainstream smoke 
from 3 cigarettes was drawn by a vacuum pump using 
30 mL of pre-warmed PBS. The pH of the solution was 
adjusted to 7.2–7.4 and then filtered with a 70 μm sterile 
cell strainer after the smoke was sufficiently dissolved. All 
CSE was aliquoted and stored at −80 °C.

HPLC Analysis of XBCQ
We first performed the initial batch-to-batch consistency 
studies using high-performance liquid chromatography 
(HPLC) to characterize the main components in the 
XBCQ description. In brief, the XBCQ decoction was 
lyophilized to powder and then dissolved in the methanol. 
After filtration (0.22 μm), the samples were injected into 
the HPLC system and then separated on the chromato-
graphic column C18 (A6000100R046, Agilent, U.S.A). 
The following conditions were used for HPLC: flow 
phase: A: acetonitrile, B: 0.1% phosphoric acid water, 0– 
20 min, A: 4%-7%; 20–25 min, A: 7%-9%; 25–45 min, A: 
9%-11%; 45–55 min, A: 11%-14%; 55–80 min, A: 14%- 
18%; 80–120 min, A: 18%-52%; 120–130 min, A: 52%- 
70%; 130–135 min, A: 70%; 135–140 min, A: 70%-75%; 
detection wavelength: 0–40 min, 215 nm; 40–80 min, 25 
nm; 80–110 min, 320 nm; 110–140 min, 254 nm.

Experimental Mouse Model of COPD and 
Drug Administration
To reveal the mechanisms of XBCQ ameliorating COPD, 
we constructed a mouse model with COPD by the intranasal 
administration with CSE and LPS according to Amano et al 
with slight modifications.36 A total of 48 female C57BL/6 

mice at 6–8 weeks of age were purchased from Beijing Vital 
River Laboratory Animal Technology Company (Beijing, 
China). All mice had free access to pathogen-free food and 
water on a 12 hr light-dark cycle (25 °C). All animal experi-
ments were performed in the Animal Management Centre of 
Beijing University of Chinese Medicine with qualification 
certificate SYXK (Beijing) 2020–0033. All animal studies 
were approved by the Animal Ethics Committee of Beijing 
University of Chinese Medicine (BUCM-4-2018062901- 
2062) and performed according to the guidelines of the 
Beijing University of Chinese Medicine Animal Care and 
Use Committee.

After one-week adaptation feeding, mice were randomly 
divided into six groups (n = 4-8 mice/group): Negative 
control group, COPD group, COPD with low, middle, and 
high doses of XBCQ groups (L-XBCQ, M-XBCQ, and 
H-XBCQ), and positive control group with dexamethasone 
(DEX). Except for the negative control group, experimental 
COPD was induced in all the other treatments. In brief, on 
0–4 and 7–11 days at the beginning of this trial, mice were 
intranasally administered with CSE (25 μL/mouse) and LPS 
(25 μL/mouse, Sigma-Aldrich Co.Ltd) after isoflurane inha-
lation. On days 14–18 mice were given only CSE. Mice in 
the control group were administered with sterile PBS.

On days 21 to 27, four treatments with COPD were 
intragastrically gavaged by low (0.35 g/mL), middle (0.7 
g/mL), and high (1.4 g/mL) doses of XBCQ, as well as 
DEX (2 mg/kg, Shanghai Yuanye Bio-Technology Co., 
Ltd) once a day (200 μL/mouse), respectively. The middle 
dose of XBCQ was determined by calculating the clinical 
equivalent dose using a conversion coefficient from human 
to mouse based on body surface area, as instructed by 
multiple previous studies.37,38 The low- and high-dose of 
XBCQ were 1/2 or 2 times of the medium concentration, 
respectively. The detailed calculation formula based on the 
standard body weight of adults and mice is as follows:

“Clinical equivalent dose of one mouse (M-XBCQ, 
g/mL)

Table 1 Components of XBCQ Prescription

Component of XBCQ Chinese Name Origin Amount (g)

Rheum officinale Baill Sheng Da Huang Dried roots and rhizomes 9
Gypsum Fibrosum Sheng Shi Gao Mineral gypsum 15

Prunus armeniaca L. Ku Xing Ren Dried mature seed 6

Trichosanthes kirilowii Maxim Gua Lou Pi Dried ripe peel 4.5
Total 34.5
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= (clinical dose × conversion coefficient × body weight 
of mice)/gavage volume

= (34.5 g/60 kg × 12.3×0.02 kg)/0.2 mL = 0.7 g/mL.”
Mice in another two groups were administered with sterile 

PBS. All the mice were euthanized at 28 days by intraper-
itoneal injection with 100 mg/kg sodium pentobarbital, and 
colonic digesta and lung tissues were collected for further 
analysis. The timeline of this test is shown in Figure 1.

Assessment of Pulmonary Function
We next measured the pulmonary function of CSE and LPS- 
treated mice to determine the occurrence of airway inflam-
mation. The AniRes 2005 lung system (Bestlab, AniRes 
2005, version 2.0, China) was used to detect pulmonary 
function before the execution with all operations performed 
according to the manufacturer’s instructions. Mice were 
anesthetized by pentobarbital sodium and connected to 
a computer-controlled animal ventilator through a tracheal 
cannula. The respiratory rate and the time ratio of expiration/ 
inspiration were preset at 95/min and 1.5:1, respectively. 
Data were recorded, and the FEV0.2/FVC ratio used as the 
criterion for determining the lung function33 was analyzed 
by the software provided by the AniRes 2005 lung system.

Pulmonary Histopathological Examination
Lung tissues were washed in phosphate buffer and fixed in 
4% formaldehyde at room temperature, dehydrated in the 
graded concentration of ethanol, and then embedded in 
paraffin. Tissue sections of 4 μm thickness were stained 
with hematoxylin and eosin (H&E) for the histopathological 
examination. Digital images of pulmonary morphology at 
200× magnification were obtained using a light microscope.

Immunohistochemistry Analysis of Lung 
Tissues
Immunohistochemistry (IHC) was used to detect the 
expression of matrix metalloproteinases-9 (MMP-9) 
which is critical to the process of lung inflammation. 
Following deparaffinization and rehydration, lung sections 
were incubated with 0.01 M citrate buffer for 15 min in 95 
°C water and rinsed with PBS three times for 5 min. 
Tissue sections were incubated with primary antibody 
incubation anti-mouse MMP-9 antibody (BioLegend, 
Inc., U.S.A) overnight at 4 °C and then rinsed 5 min 
three times with PBS. The next day, Horseradish 
Peroxidase-labeled secondary antibody (Zsbio Commerce 
Store, China) was incubated with sections for 20 min at 37 
°C and rinsed with PBS for 5 min three times. Ten visual 
fields at 200× magnification were randomly selected for 
each sample, and their integral optical density (IOD) was 
measured using Image-Pro software.

RNA Isolation, cDNA Synthesis, and 
Real-Time Quantitative PCR
Total RNA from lung tissues was extracted using Trizol 
reagent (Sigma-Aldrich, Germany). RNA was quantified by 
a Nanodrop ND-1000 Spectrophotometer (Thermo Fisher 
Scientific, U.S.A) and then reverse transcribed into cDNA 
using QuantiNova Reverse Transcription Kit (Qiagen Ltd., 
Germany). RT-qPCR was performed in a QuantStudio6 Flex 
system (Life Technologies, U.S.A) with miScript SYBR 
Green PCR Kit (Qiagen Ltd., Germany). The mRNA expres-
sions of targeted genes were normalized using a housekeeping 
control (GAPDH) and calculated by the 2−ΔΔCt method. 
Specific primers used in this study were as follows: 5ʹ- 

Control

d -7

CSE+LPS i.n.Adaptation

d 0 d 4 d 11 d 14 d 18d 7

CSE+LPS i.n. CSE i.n.

d 21 d 28 (Scarifice)

DEX i.g.

CSE+LPS i.n.Adaptation CSE+LPS i.n. CSE i.n. Low XBCQ i.g.

CSE+LPS i.n.Adaptation CSE+LPS i.n. CSE i.n. Middle XBCQ i.g.

CSE+LPS i.n.Adaptation CSE+LPS i.n. CSE i.n. High XBCQ i.g.

CSE+LPS i.n.Adaptation CSE+LPS i.n. CSE i.n. PBS i.g.

Adaptation PBS i.g.

COPD

COPD+L-XBCQ

COPD+M-XBCQ

COPD+H-XBCQ

COPD+DEX

PBS i.n. PBS i.n. PBS i.n.

Figure 1 The timeline of the animal test. 
Abbreviations: COPD, chronic obstructive pulmonary disease; CSE, cigarette smoke extract; L-XBCQ, the low dose of XBCQ; M-XBCQ, the middle dose of XBCQ; 
H-XBCQ, the high dose of XBCQ; DEX, dexamethasone.
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CTTCTCATTCCTGCTTGTGGC-3ʹ/5ʹ-CCACTTGGTGGT 
TTGTGAGTG-3ʹ for TNF-α; 5ʹ-CAGCAACAGCAAGG 
CGAAAA-3ʹ/5ʹ-CGCTTCCTGAGGCTGGATTC-3ʹ for IFN 
-γ; 5ʹ-AATGCCACCTTTTGACAGTGATG-3ʹ/5ʹ-CCTGC 
CTGAAGCTCTTGTTG-3ʹ for IL-1β.

Isolation of Human Peripheral Blood 
Mononuclear Cells (PBMCs) and 
Lymphocytes from Lung and Colonic 
Tissues
Venous blood was collected from all participants. PBMCs 
were isolated from the whole blood using Human PBMC 
Separation Medium (TBD Science, China), centrifuged 
(Eppendorf, Germany) following the manufacturer’s 
instruction (TBD Science, China), and resuspended in 
PBS with 0.5% BSA.

For the isolation of lymphocytes from the lung and 
colon, the single-cell suspension was obtained according 
to a previous study.39 Fresh lung tissues were minced and 
incubated with 1 mg/mL collagenase IV (Worthington, 
USA) and 50 μg/mL DNase I (Roche, Switzerland) in 
RPMI-1640 media (Biological Industries, Israel) before 
being mashed through 70 μm cell strainers. After remov-
ing adherent fat tissue and Peyer’s patches, the colon was 
washed twice with 20 mL HBSS medium containing 5 
mM EDTA and 1 mM DTT to remove epithelial cells. 
Next, 2 mg/mL collagenase type III (Worthington, USA) 
and 50 μg/mL DNase I (Roche, Switzerland) in RPMI- 
1640 media were used to digest colon tissues. The digested 
tissues were filtered through 70 μm cell strainers to obtain 
cell suspension and enriched with a 40% Percoll gradient 
after red blood cells were lysed. PBMCs and single-cell 
suspensions from all tissues were used for subsequent flow 
cytometry staining.

Flow Cytometry Analysis for Th17 and 
Treg Cells
Isolated human PBMCs suspension was separated into two 
parts to be stained. All staining of molecules with fluores-
cently labeled antibodies was performed in the dark. All 
antibodies were purchased from Biolegend Ltd., 
U. S. A. For the Treg staining, cells were stained with 
APC anti-human CD3, FITC-conjugated anti-human CD4, 
AF700 anti-human CD8, and BV421 anti-human Foxp3 
for 30 min in 4 °C, followed by using Invitrogen Fixation/ 
Permeabilization Concentrate (eBioscience, U.S.A) to fix 
and permeabilize cells. Then, cells were stained with PE 

anti-human CD25. For the Th17 staining, cells were trea-
ted with Cell Stimulation Cocktail for 6 h at 37 °C before 
being stained with APC anti-human CD3, FITC- 
conjugated anti-human CD4, AF700 anti-human CD8 for 
30 min in 4 °C, followed by using BD Cytofix/Cytoperm 
buffer (BD Biosciences, U.S.A) to fix and permeabilize 
cells. Next, cells were stained with BV421 anti-human IL- 
17A, PE-conjugated anti-human IFN-γ, and PECY7 anti- 
human IL-4.

Isolated lymphocytes from the lung and colon were 
preincubated with anti-mouse CD16/32 to block Fc 
receptors and washed before staining. Surface antibodies 
in this experiment included FITC-conjugated anti-CD4, 
APC-CY7 anti-mouse CD3, and PercPCy5.5 conjugated 
anti-CD25. The 7-AAD staining was used to identify 
dead cells. For intracellular cytokine staining, cells 
were stimulated with Cell Stimulation Cocktail 
(eBioscience, U.S.A) and incubated for 5 h at 37°C, 
followed by using BD Cytofix/Cytoperm buffer to fix 
and permeabilize cells. Cells were then stained with PE- 
conjugated IL-17A. For the detection of transcription 
factors, cells were fixed and permeabilized with the 
Foxp3/Transcription Factor Staining Buffer Set 
(eBioscience, U.S.A) according to the manufacturer’s 
instructions and stained with the antibody APC-Foxp3. 
Cells were detected by FACSCantoTM (BD Biosciences, 
U.S.A) and analyzed by FlowJo software.

DNA Extraction, 16S rRNA Gene 
Amplification and Sequencing, and Raw 
Data Analysis
Fecal DNA was extracted using the QIAamp DNA Stool 
Mini Kit (Qiagen Ltd., Germany) following the manu-
facturer’s protocol. The V3-V4 region of the 16S rRNA 
gene was amplified using universal primers 338F 
(ACTCCTACGGGAGGCAGCAG) and 806R 
(GGACTACHVGGGTWTCTAAT). After purification 
and quantification, the PCR products were pooled into 
equimolar amounts and sequenced on the Illumina 
MiSeq sequencer to generate paired-end reads of 
300 bp.

Raw FASTQ files were de-multiplexed and quality- 
filtered using QIIME (version 1.9). In brief, low-quality 
sequences with a length of < 220 nt or > 500 nt, an average 
quality score of < 20, and sequences containing > 3 nitro-
genous bases were removed. The remaining high-quality 
reads were then clustered into operational taxonomic units 
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(OTUs) at a 97% similarity cutoff using UPARSE (version 
7.1) and chimeric sequences were removed using 
UCHIME. Taxonomy assignment of OTUs was conducted 
using the RDP classifier against the SILVA 16S rRNA 
gene database (Release 132) with a confidence threshold 
of 0.70.

Alpha diversity was determined via sobs and Shannon 
indexes calculated by QIIME (version 1.9). Bar plots were 
obtained using the “vegan” package in R (version 3.3.1). 
Principal coordinates analysis (PCoA) was carried out 
based on Bray-Curtis and Jaccard distances using QIIME 
(version 1.9) to evaluate beta diversities. Besides, permu-
tational multivariate analysis of variance (PERMANOVA, 
with 1,000 Monte Carlo permutations) was conducted 
based on the above distance matrices to compare the 
similarity of community structures between groups using 
the Adonis function available in the “vegan” package of 
R (version 3.3.1). The differentially abundant bacterial 
taxa among groups were identified using discriminant 
analysis (LDA) effect size (LEfSe) analysis. Only taxa 
with an average relative abundance greater than 0.01% 
were considered.

Statistical Analysis
Data were analyzed using SPSS 22.0 (SPSS Inc., USA). 
All parametric data were analyzed using unpaired one-way 
ANOVA with Tukey’s post hoc test. All nonparametric 
data were analyzed using the Kruskal–Wallis test and 
P values for multiple comparisons were adjusted with 
a false discovery rate (FDR) according to Benjamini and 
Hochberg.40 All corrected P values less than 0.05 were 
considered statistically significant. Data were expressed as 
means and standard error of the mean (SEM). Correlations 
between different bacterial taxa and inflammatory cyto-
kines were evaluated using Spearman correlation analysis 
with the “pheatmap” package in R (version 3.3.1).

Results
COPD Patients Have a Higher Th17/Treg 
Ratio Than Healthy Subjects
Since inflammatory cells, especially T cells, play an 
important role in the progress of COPD, we enrolled 
a total of 25 subjects including 15 COPD patients and 10 
healthy subjects to determine the difference of Th17 and 
Treg cells between the two groups. Baseline characteristics 
of COPD and healthy subjects are summarized in Table 2. 
Compared with healthy controls, these COPD clinical 

patients showed a higher level of Th17 cells (P < 0.01, 
Figure 2A and C) but a lower proportion of Treg cells (P < 
0.01, Figure 2B and D) in the PBMCs than healthy con-
trols. In terms of the Th17/Treg ratio, it showed 
a significant increase in the COPD group in comparison 
with healthy subjects (P < 0.001, Figure 2E). These results 
suggested the important role of the Th17/Treg imbalance 
during the COPD exacerbations, which contributes to 
further exploration of the drug therapy for lung inflamma-
tion by modulating these two cell subtypes and other 
factors using a murine model suffering from COPD.

XBCQ Administration Reduces the 
Weight Loss of COPD Mice
XBCQ is a representative Chinese medicine prescription 
and has a powerful adjunctive efficacy in alleviating clin-
ical COPD.25 Therefore, we subsequently explored the 
efficacy of XBCQ attenuating the exacerbation of COPD 
using an experimental mouse model induced by CSE 
combining with LPS. Firstly, we parsed predominant che-
mical constituents in XBCQ using the HPLC fingerprint. 
As shown in Figure 3, seven major compounds were 
identified including amygdalin, rutin, isoquercitrin, aloe- 
emodin, rhein, emodin, and chrysophanol.

Compared with the control, the stimulation of LPS and 
CSE significantly and persistently decreased the body 
weight of mice from day 15 of modeling (Figure 4A, 
P < 0.05). However, the weight loss of COPD mice was 
effectively reduced after the introduction of L-XBCQ and 
M-XBCQ treatments, and the change of the latter was 
more obvious (P < 0.05, Figure 4A). Interestingly, the 
usage of DEX further aggravated the weight loss in the 
COPD group (P < 0.05, Figure 4A). No significant 
changes were observed in the H-XBCQ treatment (P > 
0.05, Figure 4A). Therefore, the M-XBCQ treatment was 
more beneficial to reduce the weight loss of CSE and LPS- 
induced COPD mice relative to other groups.

XBCQ Administration Improves the Lung 
Function of COPD Mice
We subsequently determined the changes in the pulmonary 
function of COPD mice. Compared with the untreated 
COPD group, FEV0.2/FVC was remarkably increased in 
COPD mice receiving M-XBCQ and DEX administration 
(P < 0.05, Figure 4B), indicating the mitigation of airway 
inflammation of these two groups. Besides, the H&E stain-
ing of lung tissue sections showed an inflammatory cell 
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infiltrate around the bronchus, thickened mucosal epithe-
lium, and alveolar enlargement in the non-treated COPD 
group (Figure 4C). However, M-XBCQ and H-XBCQ 
therapies significantly ameliorated these adverse altera-
tions and the changes of the DEX treatment were similar 
to the M-XBCQ treatment (Figure 4C). No significant 
change was appeared in the L-XBCQ group (Figure 4C). 
These outcomes suggested that XBCQ treatments, espe-
cially M-XBCQ, improved the lung function of CSE and 
LPS-induced COPD mice. Based on these above results, 
we chose the middle dose of XBCQ as the best treatment 
dosage for subsequent exploration.

XBCQ Administration Alleviates the 
Pulmonary Inflammation of COPD Mice
Next, we measured the mRNA expression of proinflam-
matory biomarkers in lung tissues using qPCR to evaluate 
the inflammatory responses of mice. The mRNA expres-
sions of TNF-α and IL-1β were extremely up-regulated in 
the lung tissues of COPD mice while M-XBCQ and DEX 
treatments significantly suppressed these increases (P < 
0.05, Figure 5A). Similarly, the IHC assay demonstrated 
that the protein expression of MMP-9, which mediates the 

process of pulmonary inflammation, was significantly 
higher in the lung tissues of COPD mice than that of the 
control (P < 0.01, Figure 5B and C). On the contrary, 
M-XBCQ treatment also significantly inhibited this up- 
regulation (P < 0.05, Figure 5B and C). These findings 
indicated that XBCQ and DEX contributed to alleviating 
the pulmonary inflammatory responses in COPD mice.

XBCQ Administration Inhibits the Th17/ 
Treg Imbalance in the Lung and Colon of 
COPD Mice
We then performed the flow cytometry analysis to detect 
the distribution of Th17 and Treg cells in the lung and 
colon of COPD mice. As shown in Figure 6, compared 
with the control, IL-17A+Th17 cells were significantly 
enriched but the proportion of Foxp3+Treg cells were 
remarkably decreased in the lung and colon of the COPD 
group (Figure 6A and B). Thus, COPD mice showed 
higher Th17/Treg ratios were presented in both the lung 
and colon (P < 0.05, Figure 6C). As expected, M-XBCQ 
treatments distinctly recovered the balance of Th17 and 
Treg cells in COPD mice (P < 0.05, Figure 6C) by inhibit-
ing the accumulation of Th17 cells and rectifying the 
deficiency of Treg cells (Figure 6A and B). These data 
suggested that M-XBCQ administration served as an 
effective damper on the Th17/Treg imbalance in the lung 
and colon of COPD mice.

XBCQ Administration Alleviates the Gut 
Dysbiosis of COPD Mice
Since the gut microbiota plays a key role in the progres-
sion of COPD, we further examined the effects of XBCQ 
intervention on gut microbiota composition in experimen-
tal COPD mice. A total of 749,170 high-quality sequences 
were generated with an average of 62,430 reads in each 
sample. Subsequently, we randomly rarefied each sample 
to 27,617 reads for downstream analysis to minimize the 
impacts of sequencing depth. Based on 97% sequence 
similarity, these remaining reads were clustered and clas-
sified into 9 phyla, 17 classes, 23 orders, 33 families, and 
86 genera.

At the community level, we observed that COPD mice 
had a remarkably lower sobs index in the colonic micro-
biota than controls (P < 0.05, Figure 7A), indicating 
a lower microbial richness. However, the M-XBCQ 
administration induced an increasing trend in the sobs 
index of this group (P < 0.10, Figure 7A). The overall 

Table 2 Baseline Characteristics of Participants

Characteristic Control COPD

Number (male/female) 10 (2/8) 15 (12/3)

Age 47.20 ± 4.49 73.20 ± 2.12

Body mass index (kg/m2) 21.44 ± 1.17 26.40 ± 1.17

Smoking history 0 12

Smoking index (SI)
SI = 0 10 3

400 ≤ SI ≤ 500 N/A 3

800 ≤ SI ≤ 900 N/A 5
1,000 ≤ SI N/A 4

Comorbidities
Allergic rhinitis 0 2

Blood routine examination (109/L)
Leukocytes 5.48 ± 0.36 6.38 ± 0.34

Neutrophils 3.52 ± 0.26 4.19 ± 0.32

Eosinophils 0.20 ± 0.07 0.18 ± 0.03

Pulmonary function

FEV1 (%) N/A 72.30 ± 3.38
FEV1/FVC (%) N/A 68.86 ± 2.55

Note: Smoking index, cigarettes smoked per day × years of smoking.
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composition of the colonic microbiota was significantly 
different among the three groups (Figure 7B–D). PCoA 
plots based upon Bray-Curtis distances and Jaccard dis-
tances further confirmed the dramatic separation of colonic 
samples among different groups (Figure 7E). 
PERMONOVA based on these distances also showed 
that the microbiota structures were strongly influenced by 
CSE and XBCQ administration (Bray-Curtis distance, R2 

= 0.485, P = 0.001; Jaccard distances, R2 = 0.405, P = 
0.001).

Next, we performed the LEfSe analysis to identify differ-
entially abundant microbes contributing to the distinction 
among three groups of mice. As indicated in Figure 8A and 
B, four genera were enriched in the colon of COPD mice but 
15 genera presented lower abundances than the control 
group. Of note, Gordonibacter, Allobaculum, Tyzzerela_3, 
Akkermansia, and Subdoligranulum were less abundant in 
COPD mice than controls, whereas they were significantly 
enriched upon the M-XBCQ administration. Besides, com-
pared with the control group, Bifidobacteria, Roseburia, 

Helicobacter, Prevotellaceae_Ga6A1_group, Staphyl 
ococcus, Ruminiclostridium_5, Coprococcus_1, and 
Faecalibaculum were also less abundant in COPD mice. 
On the contrary, Streptococcus, Marvinbryantia, 
Candidatus_Stoquefichus, and Coriobacteriaceae_UCG- 
002 exhibited higher relative proportions in the colon of 
COPD mice compared to the control group. However, the 
M-XBCQ treatment remarkably inhibited the accumulation 
of Streptococcus and Marvinbryantia. These results showed 
an imbalanced state of the gut microbiota in COPD mice and 
the M-XBCQ administration had the potential to ameliorate 
this gut dysbiosis to a certain extent.

Specific Microbes Affected by XBCQ are 
Significantly Correlated to the Lung 
Inflammation
A Spearman correlation matrix was generated to determine 
the associations between the bacterial genera and inflam-
matory parameters that were dramatically affected by 

Figure 2 Flow cytometry of Th17 and Treg cells in the serum of COPD patients and healthy subjects. The representative plots of Th17 cells gated by CD3+CD4+IL17+ (A). 
The representative plots of Treg cells gated by CD3+ CD4+CD25+ Foxp3+ (B). The level of Th17 cells (C). The level of Treg cells (D). The Th17/Treg ratio (E). Data were 
expressed as mean ± SEM. ***P < 0.001, **P < 0.01, compared with healthy controls.
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experimental COPD. As suggested in Figure 9, significant 
correlations were identified between gut microbiota and 
lung inflammatory responses. In particular, several genera 
having lower abundances in COPD mice, including 
Allobaculum, Tyzzerela_3, Prevotellaceae_Ga6A1_group, 
Helicobacter, Faecalibaculum, and Subdoligranulum, 
were positively correlated to body weight and lung func-
tion, but negatively associated with the Th17/Treg ratio 
and proinflammatory cytokines in the lung. Additionally, 
Gordonibacter and Akkermansia showed similar signifi-
cant trends to correlate with the above parameters. By 
contrast, Candidatus_Stoquefichus, Streptococcus, and 
Marvinbryantia, enriched in COPD mice, presented 
strongly negative association coefficients with body 
weight and lung function but positive correlations to the 
Th17/Treg balance and proinflammatory cytokines. 
Therefore, the changes in the lung inflammatory status of 
COPD mice might be partly modulated by their intestinal 
microbiota.

Discussion
COPD is a clinically representative obstructive airway 
disease and has become the third most common cause of 
death worldwide.1,2 As a consequence, it is urgent to 
disclose the pathogenesis of COPD and explore novel 
prevention and treatment. XBCQ is a traditional Chinese 
medicine prescription responsible for alleviating the clin-
ical symptoms of patients with COPD.25 On this basis, the 
present research mainly focused on the Th17/Treg imbal-
ance and gut dysbiosis induced by COPD and investigated 
the efficacy and mechanisms of XBCQ treatment on the 
inflammatory process of COPD. To our knowledge, our 
findings show, for the first time, that the oral dosage of 
XBCQ, especially M-XBCQ, had protective effects 
against the lung inflammation caused by experimental 
COPD. This might be attributable to the maintenance of 
the Th17/Treg balance in the lung and colon and the 
improvement of their gut bacterial community by XBCQ 
administration.
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The homeostasis between Th17 and Treg cells has 
emerged as a highlighted factor in maintaining health 
and exacerbating autoimmunity.41 Th17 cells are an impor-
tant subset of effector T cells and excessive Th17 
responses are also correlated to various pathogenic states 
dependent on the production of pro-inflammatory cyto-
kines including IL-17A.42 Treg cells, generally defined as 
CD4+CD25+Foxp3+ T cells, have been predominantly 
recognized for their ability to suppress inflammation by 
producing anti-inflammatory cytokines such as IL-10.42 

Numerous studies support the imbalance between these 

two subsets leading to the development and progression 
of COPD.5–7,12 In our clinical trial, we reported that these 
COPD volunteers exhibited more IL-17A-secreting Th17 
cells but lower Foxp3+ Treg cells in their serum compared 
with normal controls. As a consequence, higher Th17/Treg 
ratios were appeared in these COPD patients, reflecting an 
abnormal state between these two subtypes. In agreement 
with our findings, several previous researches have also 
proved that COPD patients exhibit more Th17-related 
cytokines but lower Treg cells and lower mRNA levels 
for Foxp3 than control subjects.8,10,11 Herein, our 
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observations demonstrated again the vital role of the Th17/ 
Treg imbalance in mediating the pathogenesis of COPD. 
The regulation of Th17/Treg balance, therefore, might be 
considered a crucial target for the treatment of COPD.

As a Chinese classical prescription, XBCQ has been 
widely reported to treat COPD via inhibiting excessive 
inflammatory responses and recovering lung function 
with few adverse drug reactions.24–27 In the follow-up 
study, we established a mouse model with COPD by the 
intranasal inhalation of CSE and LPS,43 to investigate the 
mechanisms by which XBCQ alleviates pulmonary inflam-
mation. Most COPD patients have a loss of body weight 
related to COPD management.44 In consistent with our 
clinical results, the animal trial suggested again that the 
higher ratio of Th17 cells to Treg cells has also appeared 
in the lung and colon of COPD mice. Surprisingly, 
M-XBCQ remarkably inhibited the accumulation of Th17 
cells and the deficiency of Treg cells in both two kinds of 
tissues, resulting in a recovery of the balance between 
these two subsets. Herein, we demonstrated that the 
Th17/Treg balance acts as a crucial part of the treatment 
of lung inflammation by M-XBCQ administration.

Besides, we observed that CSE-treated mice with 
COPD presented an extremely lower body weight in com-
parison with the control group. However, the XBCQ 
administration, especially the middle dose of XBCQ 
(M-XBCQ) at a concentration of 0.7 g/mL, had 
a significant inhibitory effect on the weight loss of 

COPD mice. As we know, the broken lung function with 
the low FEV1/FVC ratio, as the gold standard for the 
COPD diagnosis, is also involved in its exacerbation.45 

In agreement with clinical COPD, the experimental 
COPD mice in this study also exhibited the destroyed 
lung function as reflected by the lower proportion for 
FEV0.2 to FVC. As expected, the M-XBCQ treatment 
had a great potential to improve the lung function of 
COPD mice, which is similar to a previous research 
using a clinical trial.25 These above outcomes reveal that 
M-XBCQ contributes more to the treatment of COPD by 
improving lung function and promoting the normalization 
of lung tissues.

Many previous studies have reported that several pri-
mary active ingredients in medicinal herbs comprising the 
XBCQ formula, such as rhein, emodin, and 
chrysophanol46–48 in Rheum officinale Baill, calcium sul-
fate in Gypsum Fibrosum, rutin and amygdalin49,50 in 
Prunus armeniaca L., and isoquercitrin51 in 
Trichosanthes kirilowii Maxim, are equipped with distinct 
anti-inflammatory activities. On this account, in this study, 
the expanded inflammatory cell infiltrations in the lung 
tissues of COPD mice, one of the major pathologic fea-
tures from COPD patients,52 were significantly suppressed 
by XBCQ treatments. On the other hand, a variety of pro- 
inflammatory cytokines, such as TNF-α and IL-1β, gener-
ally exhibits much higher levels in both sputum and serum 
during COPD exacerbations,25,53 which are similar to our 
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results in the lung tissues of COPD mice. Not unexpect-
edly, the concentrations of these above pro-inflammatory 
mediators in the M-XBCQ group were significantly lower 
than those in the model group.

As well, matrix metalloproteinases including MMP-9 
are a group of zinc-dependent endopeptidases that 
uniquely mediates lung inflammation through remodeling 
extracellular matrix turnover and activating of nonmatrix 
substrates including cytokines.54 Normal lungs do not 
contain MMP-9, but there is an increase of MMP-9 tran-
scription and expression under inflammatory conditions 
due to cell infiltration such as neutrophils. During the 
progress of COPD, bronchial epithelial cells and leuko-
cytes can produce MMP-9 in the lung.55,56 Another 
research has also identified that MMP-9 could be regarded 
as a biomarker for the severity of COPD.57 Our results 
also showed that the expression of MMP-9 was remark-
ably enhanced in the lung tissues of COPD mice. 
However, the M-XBCQ treatment significantly inhibited 

the expression of MMP-9. We speculated that these 
observed alterations might partly explain the improvement 
of the damages in alveolar walls and lung inflammatory 
cell infiltrates derived from COPD mice by the XBCQ 
administration. It is worth noting that the common dexa-
methasone treatment also improved lung function and 
alleviated lung inflammatory status. Nonetheless, com-
pared with the XBCQ administration, this management 
had no inhibitory impact on the MMP-9 expression in 
lung tissues and the Th17/Treg imbalance in the colon, 
as well as led to further weight loss. This implicated the 
adverse reactions of dexamethasone to some extent, which 
remains to be further studied. Based on these outcomes, 
we propose that M-XBCQ, as an adjuvant treatment, is 
conducive to alleviating the respiratory inflammatory 
responses during the process of COPD.

Apart from inflammatory cells and cytokines, the 
alterations in microbial composition and function in the 
respiratory tract and the intestine appear to be typical 
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gatekeepers resistant to the adherence by respiratory 
pathogens based on the “gut-lung axis”.19,58,59 

Bowerman et al have found that the gut microbiome and 
metabolome of COPD patients are significantly distin-
guished from healthy subjects,4 which are similar to the 
observation in cigarette smoking-treated murine models 
with COPD.20,21 In our study, we also identified the dis-
tinction of the colonic microbiome between healthy and 

COPD mice. As well, the colon of CSE-induced COPD 
mice harbored less abundant Gordonibacter and 
Allobaculum compared with normal controls. 
Gordonibacter, which was declined in long-term smokers 
with Crohn’s disease and DSS-induced colitis mice, is 
correlated to metabolize dietary polyphenols.60–62 

Allobaculum has been associated previously with human 
diseases such as enteritis, insulin resistance, and adipose 
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Figure 7 The alterations in the colonic microbiota structure of COPD mice. Shannon and sobs index (A). Abundant phyla (B), families (C), and genera (D) in the colonic 
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inflammation.63,64 Additionally, the proportions of 
Tyzzerela_3 within Lachnospiraceae and 
Subdoligranulum within Ruminicoccaceae were also 
decreased in COPD mice. Inhabitants belonging to these 
families were generally considered to be able to digest 
refractory carbohydrates to generate short-chain fatty 
acids,65 which can maintain barrier function, reduce 

inflammation in the intestine, and govern the Th17/Treg 
balance.66 Akkermansia muciniphila, the main member 
from Akkermansia spp., is a mucin-degrading organism, 
which has attracted increasing attention for its prominent 
health-promoting effects. Moreover, A. muciniphila has 
been previously associated with the production of T cell 
subtypes including Th17 and Treg cells, and therefore 
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effectively protects against airway inflammation.67,68 In 
this study, Akkermansia spp. was significantly reduced in 
CSE-induced COPD, suggesting its pivotal role in mediat-
ing anti-inflammatory effects within the lung. However, 
the M-XBCQ administration caused strong enrichments of 
these above-mentioned microorganisms in COPD mice. 
On the contrary, we found that M-XBCQ strongly inhib-
ited the excessive growth of the genera Streptococcus that 
was enriched in COPD mice. In line with us, the increased 
abundance of Streptococcus has also been widely observed 
in the gut and lung of COPD patients,4,18,69 which might 
be as an adverse character during the COPD exacerba-
tions. Altogether, our study is the first to highlight the 
protection of XBCQ against experimental COPD might 
be attributable to its beneficial effects on the intestinal 
microbiota.

On the other hand, along with the interaction between 
gut microbiota and host immunity, we further assessed the 
associations between microbes and inflammatory biomar-
kers impacted by XBCQ. Interestingly enough, we 
observed that Gordonibacter, Allobaculum, Tyzzerela_3, 
Subdoligranulum, and Akkermansia presented significant 
positive associations with body weight and lung function, 
but negative correlations with the Th17/Treg ratio and 
proinflammatory cytokines. Opposite results were seen in 
the relevance between Streptococcus and physiological 
parameters. These outcomes reinforced that there might 
be a close relationship between pulmonary immune 
mechanisms and the microbes that colonize the intestine.

In our follow-up research, the germ-free or antibiotic- 
treated animal models combined with the microbiota 

transplantation were urgently needed to further confirm 
the close interaction between Th17/Treg balance and gut 
microbiota. On the other hand, suppressing the polariza-
tion of Th17 cells would be another ideal manner to 
validate its mechanism mediating the curative effect of 
XBCQ on COPD. As well, the movement of metabolites 
derived from XBCQ-associated specific microbes along 
the “gut-lung axis” might be its underlying mechanism 
alleviating the pulmonary inflammation of COPD sub-
jects by the XBCQ medication. Significantly, XBCQ, as 
a classical prescription for the treatment of COPD, is 
still an unknown “black box” composed of extremely 
complex chemical substances, which increases the neces-
sity to understand the pharmacodynamic material basis. 
Further studies should also focus on the extraction and 
screening of key active compounds, followed by the 
verification tests in vivo and in vitro.

In terms of COPD modeling, we chose mice commonly 
used in many previous studies to establish experimental 
COPD models owing to their faster reproduction cycles, 
smaller sizes and easy to experiment, and better-studied 
genome sequences. However, mice lack a better similarity 
with human beings in the aspect of respiratory anatomies, 
such as the absence of goblet cells in the bronchi.70 

Besides, reliable evidence has shown that a significant 
difference in the damage degree existed between BALB/ 
cJ and C57BL/6J mice when exposed to COPD stimulus, 
indicating the instability of the replication of COPD 
among different mouse strains.71 In our study, we also 
observed that the body weight of COPD mice was fluctu-
ated greatly during modeling before the XBCQ 

Figure 9 Spearman correlation analysis between key genera and physiological parameters affected by experimental COPD. Cells are colored based on the Spearman 
correlation coefficient. The red indicates a positive correlation, and the blue indicates a negative correlation. Asterisks indicate statistically significant correlations, and hash 
signs indicate a significant correlation trend. ***P < 0.001, **P < 0.01, *P < 0.05, #P < 0.10.
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administration, suggesting that the ideal modeling cycle 
for mice might be much longer. In this case, we propose 
that the subsequent study in the future could attempt to 
develop other more human-like models with COPD, such 
as guinea pigs.

Conclusion
Taken together, our work suggests that clinical patients 
with COPD exhibit a systematically imbalanced state 
between Th17 and Treg cells relative to healthy controls. 
The middle dose of XBCQ (0.7 g/mL) causes a significant 
recovery of pulmonary function and inhibits the inflam-
matory infiltration in an experimental COPD murine 
model, which might be mediated via restoring the Th17/ 
Treg homeostasis and rectifying the gut dysbiosis. 
Meanwhile, the alterations of lung inflammatory status 
might be partly modulated by the intestinal microbiota as 
the significant associations exist between specific bacterial 
genera (eg Akkermansia and Streptococcus, etc) and 
inflammatory biomarkers (eg Th17/Treg, IL-1β, and 
MMP-9, etc) affected by XBCQ. Collectively, our inves-
tigation provides novel insights for elucidating the 
mechanism by which XBCQ as a therapy for COPD in 
a microbiota-dependent manner via the gut-lung axis. 
Future studies will focus on identifying the main active 
components in XBCQ decoction and uncover specific 
microbial biomarkers and their derived metabolites affect-
ing the immune responses in the process of COPD.
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