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Purpose: Hypoxia and immune cell infiltration play an important role in the progression and 
metastasis of gastric cancer. However, the molecular classification of gastric cancer com-
bined with hypoxia and immune cell infiltration remains unknown.
Materials and Methods: ssGSEA was used to evaluate the hypoxic state and immune cell 
infiltration of 1059 gastric cancer samples collected from the GEO and TCGA database. 
Based on the results, unsupervised clustering was performed to obtain different gastric cancer 
subtypes. The differentially expressed genes related to OS between these subtypes were 
utilized for LASSO analysis to construct a prognostic signature (HIscore). Subsequently, 
small-molecule drugs were predicted using the Connectivity Map (CMAP) database.
Results: We obtained three hypoxic-immune infiltration patterns (HIcluster A-C) with different 
prognoses and classified them as low hypoxic/low immune, high hypoxic/high immune, and low 
hypoxic/high immune subtypes. Based on the differential genes between HIclusters, we have 
also obtained other three gastric cancer subtypes (genecluster A-C) and a 13-gene signature 
(HIscore). At the same time, we extensively explored the clinical and transcriptome traits in 
different clusters and groups with high or low HIscore. We proved that HIscore is an independent 
prognostic biomarker and an indicator of genome stability and EMT. Using the CMAP database, 
we found 96 small-molecule drugs that could reverse the poor prognosis and could serve as 
therapeutic drugs, especially for gastric cancer patients with high HIscore.
Conclusion: Our study evaluated the hypoxic state and immune cell infiltration in gastric 
tumors, and identified different gastric cancer subtypes. In addition, we established 
a hypoxia-immune signature to predict prognosis which is tightly linked to tumor EMT 
and genomic stability. Based on HIscore, we used the CMAP database to explore small- 
molecule drugs that may have the potential in serving as therapeutic drugs.
Keywords: hypoxia, tumor microenvironment, genome instability, microsatellites, mutation 
burden

Introduction
Gastric cancer is the fourth most common incident cancer and the third most common 
cause of cancer death.1 In addition, previous literature suggests that gastric cancer is 
a heterogeneous disease featuring many distinct histological and molecular subtypes.2 As 
an example, Lauren classification, proposed in 1965, has been recognized by both 
clinicians and pathologists and continues to be used. However, the limitations of 
Lauren classification as a prognostic predictor are also gradually unveiled. Currently, 
whether intestinal type gastric cancer patients have better prognosis in comparison with 
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diffuse-type patients remains controversial.3,4 Even more, 
Lauren classification could not be used as an independent 
prognostic factor on large population-based studies, calling 
into question their reliability.5,6

The exploration of gastric cancer subtypes used for diag-
nosis and treatment has never stopped in recent years. In 
2014, according to key DNA defects and molecular abnorm-
alities, The Cancer Genome Atlas Consortium (TCGA) 
group described four subtypes for gastric cancer including 
Epstein–Barr virus (EBV)-positive, microsatellite instability 
(MSI), gene stable (GS), and chromosome instability (CIN) 
types.7 Moreover, Oh et al indicated two different transcrip-
tomic subtypes in gastric cancer, MP and EP, where the MP 
subtype was closely linked to significantly poor survival and 
resistance to chemotherapy.8 So an in-depth exploration and 
development of tumor subtypes of gastric cancer is impera-
tive to improve therapeutic effects and prognosis.

Hypoxia is an important and common feature of solid 
tumors.9 The occurrence of this condition is generally consid-
ered to be caused by the unrestricted proliferation of the tumor 
and the hypertonicity and tortuosity of the vascular network in 
the tumor.10,11 The disturbance of immune cell infiltration in 
tumors caused by hypoxia has been widely discussed, such as 
myeloid-derived suppressor cells (MDSCs) and tumor- 
associated macrophages (TAMs) which are important compo-
nents in TME. Tumor-associated macrophages (TAMs) 
derived from Macrophages were found to preferentially appear 
in hypoxic areas of tumors.12 In tumor-bearing mice, a quick 
increase of PD-L1 is observed in MDSCs, macrophages, den-
dritic cells, and tumor cells under hypoxia, and this phenom-
enon depends on an oxygen-regulated subunit HIF-1α. At the 
same time, Noman et al also found that T cell activation 
mediated by MDSCs can be significantly enhanced when PD- 
L1 is blocked under hypoxic conditions, which is evidence for 
the simultaneous inhibition of PD-L1 and HIF-1α can be 
utilized as novel immunotherapy.13

In previous literatures, it has received heightened attention 
that the heterogeneity of hypoxia or tumor immune cell infil-
tration can be used to guide the therapeutic strategy and 
predict the prognosis in different kinds of cancers.14–16 

However, most of the studies were based on only hypoxia or 
tumor immune cell infiltration. The research on identification 
of tumor subtypes by combining the characteristic of both 
hypoxia and immune cell infiltration is regrettably scarce.

In this study, we tried to utilize a large sample size of 
gastric cancer transcriptome data to describe the character-
istics of tumor hypoxia and immune-related cell infiltration. 
Combining these two characteristics, we attempt to develop 

hypoxia-immune classifiers to identify gastric cancer sub-
types with different biological features and outcome.

Materials and Methods
Retrieval, Downloading, and Processing of 
Gene Expression Profiles in Patients with 
Gastric Cancer
Cohorts with patient survival information or relatively com-
plete clinical information were retrieved from the Gene- 
Expression Omnibus (GEO) and the Cancer Genome Atlas 
(TCGA) database. We selected several qualified cohorts and 
downloaded all their expression profiles and corresponding 
clinical information (including GSE15459, GSE34942, 
GSE57303, GSE62254/ACRG, GSE84437, GSE26253, and 
TCGA-STAD) (Supplementary Table 1).17,18 The above data 
were all downloaded from the website https://portal.gdc.can 
cer.gov/ and https://www.ncbi.nlm.nih.gov/geo/. In the TCGA 
database, we also obtained somatic mutation data of patients 
with gastric cancer.

We converted high-throughput sequencing data (FPKM) 
from TCGA-STAD to transcripts per kilobase million (TPM) 
values.19 R software and the “ComBat” algorithm are used to 
remove batch effects and then we merge five of the cohorts 
(GSE15459, GSE34942, GSE57303, GSE62254 (ACRG), 
GSE84437) into one GC (gastric cancer) metadata for further 
analysis (n=1059).20 We also downloaded the transcriptome 
data and clinical information of GSE13911, including the 
patient’s microsatellite status information.

We download GSE114083 as another validated data 
set, which contains mRNA and lncRNA data of gastric 
cancer cell lines treated with hypoxia (n=4) and nor-
moxia (n=4).

Unsupervised Clustering for Hypoxic and 
Immune-Related Characteristic Gene 
Sets
We extracted a total of 23 different immune cell marker 
gene sets from Charoentong P’s research,21 and we 
searched and selected 13 gene sets that up-regulated with 
Hypoxic in the Molecular Signatures Database.22,23 These 
36 gene sets in total are shown in Supplementary Table 2.

We capitalized on the ssGSEA (single-sample gene-set 
enrichment analysis) algorithm in the “GSVA” R packages 
to measure the enrichment scores of these 36 gene sets in 
each patient of the GC metadata.24 These enrichment 
scores were considered to represent the infiltration of 
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immune cells and the intensity of hypoxia in tumors. By 
integrating the enrichment scores of these 36 gene sets, we 
put the Consensus ClusterPlus package into service to 
complete unsupervised clustering analysis and identified 
different hypoxic-immune patterns in gastric cancer 
patients. The above algorithm ran repeatedly 1000 times 
to ensure the stability of the results.25

ESTIMATE algorithm was used to predict tumor purity, 
and the presence of infiltrating stromal/immune cells in 
tumor tissues in different clusters, and output stromal 
score, immune score, and estimate score (Supplementary 
Table 3).26 In addition to the ssgsea algorithm, we also 
used CIBERSORT analysis to calculate the 22 types of 
immune cell proportions in the tumor, and select samples 
with P<0.05 for the next step to verify (n=974) the accuracy 
of the hypoxic-immune patterns and further analysis.27

Determination of Differential Genes 
Between Hypoxic-Immune Patterns and 
Construction of Hypoxic-Immune Gene 
Signature
Based on differences in immune cell infiltration and hypoxia 
pathway enrichment, we divide gastric cancer patients into 
three hypoxic-immune patterns. To obtain differentially 
expressed genes (DEGs) related to different hypoxic- 
immune types, limma R package was utilized in every two 
patterns. We set the screening criteria to “FDR < 0.05”.28 

A web-based portal, Metascape, was utilized to conduct 
biological functional enrichment analysis of these DEGs 
and we considered p < 0.01 statistically significant.29

Univariate Cox proportional hazard regression analysis 
was utilized to extract prognosis-related genes in ACRG 
samples, with p < 0.05 as the criteria.

With the above prognostic-related genes, we performed 
unsupervised clustering in the ARCG data set and we 
classified patients into several clusters for the next analy-
sis. We used R package, glmnet, to perform the least 
absolute shrinkage and selection operator (Lasso) Cox 
regression analysis, and selected the potential prognostic 
genes to construct a prognostic model. According to the 
median score of this model (HIscore), gastric cancer 
patients were divided into high-HIscore groups and low- 
HIscore groups.

HIscore ¼ ∑n
i¼1Coefi � xi 

The Coefi means the coefficients, and xi is the TPM of 
each gene included in the model.

Identification of candidate small-molecule drugs for 
gastric cancer patients with high HIscore.

The CMAP database (https://portals.broadinstitute.org/ 
cmap/), composed of 7056 gene expression profiles 
induced by 1309 small molecules, is widely applied to 
explore the potential unknown roles of existing drugs on 
diseases.30

The R package “limma” was utilized to identify DEGs 
in the high and low HIscore samples in ACRG and TCGA 
cohorts, respectively. The criteria for DEG screening were 
as follows: false discovery rate (FDR) <0.01. The top 
quarter DEGs with largest |log2 (fold change)| were 
extracted from the up-regulated and down-regulated 
DEGs, respectively. We take the intersection of The top 
quarter up-regulated and down-regulated DEGs in ACRG 
and TCGA, respectively, and the result obtained is used as 
the input file of the CMAP database. Then, we obtained 
the potential small drug molecules, and P < 0.05 was 
regarded as the cut-off criteria.

Acquisition of Biological Processes
We obtained 21 biological processes from previous studies 
and the KEGG database,31 shown in Supplementary Table 4, 
including EMT1, EMT2, angiogenesis, antigen processing 
and presentation, antigen processing machinery, CD8 
T effector, immune checkpoint, base excision repair, cell 
cycle, DNA damage repair, DNA replication, mismatch 
repair, ECM–receptor interaction, JAK-STAT signaling path-
way, MAPK signaling pathway, NF-kappa B signaling path-
way, nucleotide excision repair, Pan-F-TBRS, PI3K-Akt 
signaling pathway, TGF-beta signaling pathway, Wnt signal-
ing pathway. We not only calculated and compared their 
enrichment scores in different patient clusters but also 
obtained the correlation between them and hypoxic- 
immune scores (HIscore) through Pearson’s correlation ana-
lysis (Supplementary Table 5).32

Tumor Mutation Burden, Microsatellite 
Status, Genomic Instability
We downloaded the somatic mutation data of gastric cancer 
patients in TCGA and calculated the number of mutation 
events/million bases as tumor mutation burden (TMB). Non- 
coding alterations were excluded from TMB calculation.33 

Microsatellite instability information was downloaded from 
The Cancer Immunome Atlas (https://tcia.at/) including MSS 
(microsatellite stability, n=229), MSI-H (microsatellite 
instability-high, n=59), MSI-L (microsatellite instability-low, 
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n=49). In the TCGA cohort, we also developed a framework 
for evaluating genome stability. Sorting the patients according 
to the accumulated number of somatic mutation genes from 
high to low, the first 25% were considered to be the group 
genome unstable (GU), and the last 25% were considered to be 
the group genome stable (GS).34

Gene Set Enrichment Analysis
GSEA was performed between hypoxia and normoxia 
gastric cancer cell lines in GSE114083. The number of 
random sample permutations was set at 1000, and NOM 
p-value <0.05, FDR q-value <0.25, and | NES | > 1 were 
set as the significance threshold.35

Statistical Analysis
Correlations were assessed using Pearson’s coefficients. 
A Kruskal–Wallis test was used in the comparison 
between three or more groups and a Wilcox test was 
used in the comparison between two groups. We used the 
median value of HIscore in ACRG as the cutoff value, and 
with the cut-off, we divided the gastric cancer patients into 
the corresponding data set into high and low HIscore 
groups. Kaplan–Meier method was adopted to generate 
survival curves, Log rank tests were utilized to determine 
whether there is a significant difference in prognosis 
between high and low groups.36 The hazard ratios (HR) 
of genes related to patient classification are obtained from 
univariate Cox regression analysis. Whether it is an inde-
pendent prognostic factor is judged by multivariable Cox 
regression analysis.37 Multivariable Cox regression analy-
sis was only used for gastric cancer patient data sets with 
detailed clinical information (ACRG and TCGA-STAD). 
The results of multivariable Cox regression analysis were 
visualized by the forest plot. The R package timeROC was 
used to generate the receiver operating characteristic, and 
the AUC was also calculated to evaluate the specificity 
and sensitivity of the HIscore. A combined nomogram was 
established as a quantitative tool for predicting the like-
lihood to die of each patient using the “regplot” 
R package. The concordance index (C-index) was calcu-
lated to assess the consistency between model prediction 
and actual clinical outcomes of patients. The calibration 
plot was established to evaluate the accuracy of the pre-
diction for 1-, 3-, and 5-year overall survival using this 
nomogram by the “rms” R package.

The somatic mutation landscape between high and low 
HIscore groups was obtained from TCGA-STAD, and the 
R package maftools were used for visualization.38 In all 

the above statistical processes, p < 0.05 means statistical 
significance. We utilized R software for data processing 
and analysis, version 4.0.4.

Results
Hypoxic-Immune Infiltration Patterns
We merged GSE15459, GSE34942, GSE57303, 
GSE62254, and GSE84437, and then we obtained a large 
sample size meta-cohort with complete patient survival 
information. With the R package Consensus ClusterPlus, 
we divided patients in meta-cohort into different subtypes 
based on the enrichment scores of 23 immune cell-related 
gene sets and 13 hypoxia-related gene sets. Based on such 
unsupervised two-dimensional hierarchical clustering, we 
identified three distinct HIclusters (hypoxic-immune clus-
ter) with different immune infiltration and hypoxic states 
(Figure S1A), including 416 cases in HIcluster A, 372 
cases in HIcluster B, and 271 cases in HIcluster 
C (Figure 1A). Kaplan–Meier analysis pointed out that 
there are significant differences in OS among the three 
subgroups (Figure S1B). The median survival time of 
patients in HIcluster C was 10.30 years, and the median 
survival time of HIcluster A and HIcluster B was 7.13 
years and 4.80 years, respectively. HIcluster C has the best 
5-year survival rate of 51.7%, while the 5-year survival 
rates of HIcluster A and HIcluster B are 45.5% and 39.8%, 
respectively. This implies that gastric cancer patients with 
low hypoxia and high immune characteristics may have 
a better prognosis.

The expression level of gene HIF1A in HIcluster 
B was significantly higher than HIcluster A and 
HIcluster C (Figure S1C). We scaled and compared the 
enrichment scores of 23 immune-related gene sets and 13 
hypoxia-related gene sets in different HIclusters involved 
in unsupervised clustering (Figure S1D and E). The 
enrichment scores of all hypoxia-related gene sets in 
HIcluster B were significantly higher than HIcluster 
A and HIcluster C. The trend of the enrichment scores 
of CD56dim natural killer cell and neutrophil in 
HIclusters was similar to that of hypoxia-related gene 
sets, both of which were that HIcluster B is significantly 
higher than other groups. The enrichment scores of other 
immune cell infiltration-related gene sets were the highest 
in HIcluster C, the lowest in HIcluster A, and the middle 
level in HIcluster B. The stromal score obtained by the 
ESTIMATE algorithm was significantly lower in 
HIcluster A than the other two groups, while there was 
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no difference in stromal scores between HIcluster B and 
C (Figure 1B). The immune score and estimate score 
were the lowest in HIcluster A and the highest in 
HIcluster C (Figure 1C and D). The differences between 
the three groups are statistically significant. By 
CIBERSORT analysis, 22 types of immune cell 

proportions in different clusters are shown in Figure 1E. 
The median expression of immune checkpoint genes 
PDL1 and CLTA4 was the lowest in HIcluster A, and 
that of CLTA4 was the highest in HIcluster C. There was 
no significant difference in the median expression of 
PDL1 between HIcluster B and C (Figure 1F and G).

Figure 1 Gastric cancer subtypes with different immune cell infiltration and hypoxia status. (A) Unsupervised clustering of 36 gene sets related to hypoxia or Immune cell 
infiltration in GC metacohort including the 5 independent stomach cancer cohorts. Each column represented patients and each row represented the enrichment scores for 
these gene sets. The clinical information collated serves as the patient’s annotation. Differences in stromal scores (B), immune score (C) and estimate score (D) between 
different HIcluster. The Kruskal–Wallis test was used to compare the statistical difference between HIcluster. (E) The component differences of immune cells among the 
three HIcluster analyzed by CIBERSORT. Differences in PD-L1 (F) and CTLA4 expression (G) among three HIclusters in GC metadata. The Kruskal–Wallis test was used to 
compare the statistical difference. (***p < 0.001.).
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Combining the above results, HIcluster A was classi-
fied as low hypoxic/low immune subtype, HIcluster B was 
classified as high hypoxic/high immune subtype and 
HIcluster C was classified as low hypoxic/high immune 
subtype.

Construction of Hypoxic-Immune 
Signatures and Functional Annotation
Because the ACRG cohort has more comprehensive clin-
ical information on the 300 gastric cancer patients, we 
extracted the ACRG cohort from the meta-cohort to 
study the clinical and biological characteristics in the 
ACRG cohort that may be closely linked to different 
hypoxic-immune infiltration patterns. Similar to the clus-
tering results of meta-cohort, ACRG cohort also found 
three different hypoxic-immune infiltration patterns 
(Figure S2A and B). Through the limma R package, we 
obtained 5607 differentially expressed genes between 
HIcluster A and B, 7770 differentially expressed genes 
between HIcluster A and C,2776 differentially expressed 
genes between HIcluster B and C. Taking the intersection 
of these genes, we obtained a total of 880 DEGs that were 
significantly differentially expressed in the three clusters 
(Figure S2C). A web-based portal, Metascape, was utilized 
to conduct biological functional enrichment analysis of the 
DEGs. When P < 0.01 is considered statistically signifi-
cant, we obtained a total of 1907 enriched biological 
processes (Supplementary Table 6). The top 20 enrichment 
results with the smallest p-value are shown in Figure S2D. 
Many results were related to activation of an immune 
response, immune cell recruitment, such as GO:0046649 
(lymphocyte activation), GO:0002366 (leukocyte activa-
tion involved in immune response), and GO:0050900 (leu-
kocyte migration). The largest number of DEGs (133) was 
enriched in lymphocyte activation, and its p-value was the 
smallest (Log10 P=−60.86).

With univariate Cox regression analysis, we selected 
293 OS-related genes from the ACRG cohort of 880 DEGs 
(p<0.05), and they are shown in Supplementary Table 7.

Based on these 293 genes, unsupervised clustering 
analyses were performed in the ARCG cohort to classify 
patients into different subtypes. Similar to the results of 
clustering based on immune infiltration and hypoxia gene 
sets, we obtained three different genomic phenotypes 
(HIgenecluster A–C) (Figure 2A and B; Supplementary 
Table 8). It implied that three different hypoxia-immune 
infiltration patterns do exist. The median survival time of 

HIgenecluster B–C was 7.453 and 1.970 years, and the 
5-year survival rates of HIgenecluster A–C were 56%, 
58.5%, 28.8%, respectively (Figure 2C).

In the Lauren classification of gastric cancer obtained in 
the ACRG cohort, we found that the diffuse subtype occu-
pies the largest proportion in genecluster C, and the intest-
inal subtype occupies the largest proportion in genecluster 
A. In geneclusters A–C, the proportion of diffuse subtypes 
gradually increased, and the proportion of intestinal sub-
types gradually decreased (Table 1, Figure 3A). 
Interestingly, tumor patients with EMT molecular subtypes 
have an absolute advantage in HIgenecluster C, while gen-
ecluster C does not include MSI molecular subtype, tumor 
patients. In genecluster, the proportion of patients with 
molecular subtypes MSS/TP53+ or MSS/TP53- is less 
than that of geneclusters A and B. The molecular subtypes 
of gene clusters A and B are the same (Table 1, Figure 3B). 
In addition, we also compared the proportion of patients 
with EMT subtypes in different tumor stages and T stages 
with HIgeneclusters, and found that they were much smaller 
than that in the HIgenecluster C group (Figure 3C and D).

Characteristics of Transcriptome Traits in 
Different Hypoxic-Immune-Related 
Genecluster (HIgenecluster)
We have collated and obtained 21 biological processes 
from previous studies and the KEGG database. The 
sources of these biological processes, the genes involved 
in these processes, and the enrichment scores of each 
sample in ACRG were shown in (Figure 3E).

The processes EMT1 and EMT2 have the highest 
enrichment scores in HIgenecluster C, which was 
mutually corroborated the fact that the EMT subtype 
(molecular subtypes in ACRG cohort) in HIgenecluster 
C accounts for a large proportion. And the enrichment 
scores of EMT1 and EMT2 in HIgeneclusterB were 
higher than that of HIgenecluster A. Immune-related bio-
logical processes, such as Antigen processing and presen-
tation, CD8 T effector, etc were enriched more in 
HIgenecluster B. Surprisingly, for some pathways that 
related to genome stability, such as Nucleotide excision 
repair, base excision repair, DNA damage repair, DNA 
replication Mismatch repair, etc, all revealed a low 
enrichment in HIgenecluster C. Other signal pathways 
closely related to the occurrence and development of 
tumors also had significant differences between different 
geneclusters.
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Based on the enrichment results of these biological 
processes in different HIgeneclusters, we classified 
HIgenecluster B as an immune-activation group, and 
HIgenecluster C classified as EMT-Genomic stability 
group. Combined with classification and previous 
research, the poor prognosis of gastric cancer patients in 
HIgenecluster C has been explained to a certain extent.

Construction of the Hypoxic-Immune- 
Related Signature
Based on the previously obtained 293 Hypoxic-immune infil-
trations phenotype-related DEGs, unsupervised clustering 
allowed us to identify a part of patients with poor prognosis 
(HIgenecluster C). In order to dig deeper into their prognostic 
value, we constructed a hypoxic-immune-related signature. 
With ACRG cohort as the training set, the Lasso Cox 
Regression Analysis was utilized to construct the hypoxic- 
immune-related signature, and 13 hypoxic-immune-related 
signatures were built for predicting the overall survival of 

cular sugastric carcinoma patients (Figure S3A and D). 
Based on the TPM value and related coefficients of these 13 
signatures, we obtained the risk scores (HI score) of each 
patient.

HIscore = (BEX4*0.060280828757125) + (BTN 
3A2*0.0480478080183311) + (CCDC50*0.22180382374 
9138) + (CLIP4*0.0185094741736464) + (COL4A1*0.0 
245555436398619+CPE*0.0137755467630004) + (HLA. 
DRB6*-0.0326550077240013) + (JAZF1*0.02820453927 
26293) + (LMO2*0.0299067833201967)+(PSMB10* - 
0.120416260002512) + (RASGRP2*0.01625571862 
87523) + (MXD1*-0.007241171408135) + (ZNF326* - 
0.114149705889599).

According to the median value (1.61406348) of HI-score 
in the ACRG cohort, patients were divided into high HIscore 
group (n=150) and low HIscore group (n=150). Kaplan–Meier 
survival curves depicted the specifically remarkable survival 
advantage in the high HIscore group (P<0.0001) (Figure S3B). 
The median survival time of the high HIscore group (2.3556 

Figure 2 Identify different genomic subtypes in ACRG cohort. (A) Consensus matrices of the ACRG cohort for k = 3. (B) Unsupervised clustering of overlapping hypoxia- 
immune-related genes in ACRG cohorts to classify patients into different genomic subtypes (genecluster A–C). The geneclusters, HIclusters, molecular subtypes, stage, 
gender, survival status and age were utilized as patient annotations. (C) Survival analyses for the three geneclusters in ACRG cohort including 132 cases in gencluster A, 116 
cases in genecluster B, and 52 cases in genecluster C. Kaplan–Meier curves with Log rank p value< 0.001 showed a significant survival difference among three geneclusters. 
Genecluster C showed significantly worse OS than the other two genclusters.
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years) was worse than that of the low HIscore group (>7.133 
years). The 5-year survival rates of the low HIscore group 
were better than that of the high HIscore group (66.6% VS 
36.5%). ROC curves indicated that HI-score ability to predict 
OS is extraordinary in the ACRG cohort (3-year AUC = 0.72, 
5-year AUC = 0.73, 8-year AUC = 0.74; Figure S3C).

We utilized the same formula to obtain the HIscore of 
each gastric cancer patient in the TCGA cohort and 
made the median value of the HIscore (1.61406348) in 
the ACRG cohort as the cut-off to classify the patients 
into a high HIscore group (n=70) and a low HIscore 
group (n=267). ACRG cohort was utilized as 

Table 1 Clinicopathological Characteristics in Relation to Different HIgeneclusters in ARCG Cohorts

Characteristics HIgenecluster 
A (N=132)

HIgenecluster 
B (N=116)

HIgenecluster 
C (N=52)

HIgenecluster Total 
(N=300)

p value FDR

Gender 4.10E-03 0.02

Female 33 (11.00%) 42 (14.00%) 26 (8.67%) 101 (33.67%)

Male 99 (33.00%) 74 (24.67%) 26 (8.67%) 199 (66.33%)

Age 0.01 0.04

<64 53 (17.67%) 63 (21.00%) 32 (10.67%) 148 (49.33%)
≥64 79 (26.33%) 53 (17.67%) 20 (6.67%) 152 (50.67%)

T 1.50E-08 1.00E-07

T2 101 (33.67%) 73 (24.33%) 14 (4.67%) 188 (62.67%)

T3 22 (7.33%) 36 (12.00%) 33 (11.00%) 91 (30.33%)
T4 9 (3.00%) 7 (2.33%) 5 (1.67%) 21 (7.00%)

N 0.13 0.13
N0 19 (6.33%) 14 (4.67%) 5 (1.67%) 38 (12.67%)

N1 66 (22.00%) 47 (15.67%) 18 (6.00%) 131 (43.67%)

N2 25 (8.33%) 38 (12.67%) 17 (5.67%) 80 (26.67%)
N3 22 (7.33%) 17 (5.67%) 12 (4.00%) 51 (17.00%)

M 0.02 0.04
M0 127 (42.33%) 101 (33.67%) 45 (15.00%) 273 (91.00%)

M1 5 (1.67%) 15 (5.00%) 7 (2.33%) 27 (9.00%)

Stage 4.40E-04 2.20E-03

I 16 (5.33%) 13 (4.33%) 1 (0.33%) 30 (10.00%)

II 56 (18.67%) 33 (11.00%) 8 (2.67%) 97 (32.33%)
III 30 (10.00%) 43 (14.33%) 23 (7.67%) 96 (32.00%)

IV 30 (10.00%) 27 (9.00%) 20 (6.67%) 77 (25.67%)

Status 1.70E-04 1.00E-03

Alive 72 (24.00%) 64 (21.33%) 12 (4.00%) 148 (49.33%)

Dead 60 (20.00%) 52 (17.33%) 40 (13.33%) 152 (50.67%)

Mol. Subtype 1.60E-35 1.50E-34

EMT 1 (0.33%) 6 (2.00%) 39 (13.00%) 46 (15.33%)
MSI 38 (12.67%) 30 (10.00%) 0 (0.0e+0%) 68 (22.67%)

MSS/TP53+ 36 (12.00%) 38 (12.67%) 5 (1.67%) 79 (26.33%)

MSS/TP53- 57 (19.00%) 42 (14.00%) 8 (2.67%) 107 (35.67%)

Lauren 
classification

1.30E-10 1.10E-09

Diffuse 31 (10.33%) 62 (20.67%) 42 (14.00%) 135 (45.00%)

Indeterminate 2 (0.67%) 0 (0.0e+0%) 0 (0.0e+0%) 2 (0.67%)

Intestinal 91 (30.33%) 47 (15.67%) 8 (2.67%) 146 (48.67%)
Mixed 8 (2.67%) 7 (2.33%) 2 (0.67%) 17 (5.67%)

Note: The p-value comes from the Chi-square test.
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a validation set to test the robustness and stability of 
hypoxic-immune-related signatures. The K–M survival 
curves attested to the higher HIscore were related to 
the better OS (Figure S3E). The median survival time 
of the high HIscore group (1.663 years) was worse than 
that of the low HIscore group (3.1589 years). The 3-year 
survival rates of the low HIscore group were better than 
that of the high HIscore group (53.1% VS 31.9%). The 
ROC analysis indicated that the AUC of predicting 
5-year OS in the TCGA cohort was 0.7 (Figure S3F).

Including the factors of age, sex, TNM status, tumor 
stage, and grade (only TCGA cohort), multivariate Cox 

regression analysis was utilized to prove that HIscore can 
be an independent prognostic biomarker for gastric cancer 
patients in both ACRG (HR 3.710 (2.659–5.178); Figure 
S3G) or TCGA (HR 2.026 (1.163–3.529); Figure S3H).

To establish a quantitative tool for predicting the prog-
nosis of gastric cancer patients in the ACRG cohort, 
a nomogram was generated by integrating clinicopatholo-
gical factors and HIscore based on the multivariable Cox 
proportional hazards model (Figure S3I). The point scale 
in the nomogram was used to generate point to these 
variables, and the risk of death of each patient was eval-
uated by accumulating total points of all variables. The 

Figure 3 The proportion of Lauren-classifications (A) and ACRG molecular subtypes (B) in the three geneclusters. The proportion of ACRG molecular subtypes in 
different T stages (C) and tumor stages (D). (E) Difference in the expression of 21 known biological processes related to tumor progression among three geneclusters. The 
upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The asterisks 
represented the statistical p value (****P < 0.0001).
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HIscore had the most excellent weight among all these 
variables, which was consistent with the result of the 
previous multivariable Cox regression analysis. The cali-
bration plots confirmed the significant consistency 
between predicted and observed actual clinical outcomes 
of gastric cancer patients (Figure S3J).

Characteristics of Transcriptome Traits in 
High and Low HIscore Groups
We evaluated the 23 TME immune cells infiltrating tumors 
in the high- and low-risk groups, and found that most of 
the TME immune cells have significant differences 
between the two groups. activated CD4 T cell, activated 
dendritic cell and neutrophil had higher enrichment scores 
in the low HIscore group, while other immune cell enrich-
ment scores had higher enrichment scores in the high 
HIscore group (Figure 4A). The expression levels of 
some genes related to tumor hypoxia status were also 
significantly differentially expressed in high and low 
HIscore groups. Among the hypoxia genes with statisti-
cally significant differences in the Kruskal–Wallis test, 
except for VKORC1 and HIF1A, which is highly expressed 
in the high HIscore group, the others were highly 
expressed in the low HIscore group (Figure 4B).

The vast majority of patients with EMT subtypes were 
classified as HIgenecluster C, and all patients in 
HIgenecluster C carried high HIscore. Kruskal–Wallis 
test indicates that HIscore has a significant difference 
between HIgenecluster A–C. HIgenecluster A had the low-
est median HIscore and HIgenecluster C had the highest 
median HIscore (Figure 4C), which indicates that HIscore 
may serve as a signature of EMT-Genomic stability. More 
clearly in ACRG cohort, the median HIscore of EMT mole 
type was significantly higher than other.

The median HIscore of MSI molecular subtypes was 
higher than that of MSS subtypes, and whether TP53 is 
mutated will not significantly affect the HIscore of MSS 
subtypes (Figure 4D).

To legitimately decipher the characteristics of HIscore, 
we calculated the correlation between HIscore and the 
signatures of some biological processes (Figure 4E; 
Supplementary Table 5), and the enrichment scores of 
these biological processes between the high and low 
HIscore groups were shown in Figure 4F. Pan-F-TBRS 
was the pathway was the most positively related to 
HIscore (R = 0.706, P < 0.001), and TGF-beta signaling 
pathway is also closely related to HIscore (R = 0.629, P < 

0.001). Echoing the results of the previous alluvial dia-
gram, two signatures related to epithelial-mesenchymal 
transition also showed a strong positive correlation with 
HIscore (EMT1, R = 0.593, P < 0.001; EMT2, R = 0.550, 
P < 0.001) and their median enrichment scores were higher 
in the high HIscore group. It was striking that the biolo-
gical process signatures related to the maintenance of 
genome stability are strongly negatively correlated with 
HIscore, such as base excision repair (R = −0.739, P < 
0.001), DNA replication (R = −0.659, P < 0.001), cell 
cycle (R = −0.630, P < 0.001), DNA damage repair (R = 
−0.577, P < 0.001), nucleotide excision repair (R =−0.568, 
P < 0.001) and mismatch repair (R = −0.564, P < 0.001). 
The median enrichment scores of genome stability-related 
biological processes are lower in the high HIscore group.

The Role of HIscore in Assessing 
Genome Instability
In the TCGA cohort, based on the prognostic model we 
constructed, we obtained the HIscore of all gastric cancer 
patients and utilized 1.61406348 (the median value of HI- 
score in ACRG cohort) as the cut-off to divide the 
patients into high and low HIscore groups. Pearson cor-
relation analysis indicated that a high HIscore could be 
closely linked to high TMB (R =−0.46, P < 0.001; 
Figure 5A). We divided the patients into high or low 
TMB groups based on the median value of TMB and 
the high TMB group had a lower median HIscore 
(Figure 5B). We found that both high and low HIscore 
groups accounted for a large proportion of patients with 
MSS, but the low HIscore group accounted for the higher 
proportion of MSI-L (16% VS 9%) and MSI-H patients 
(21% VS 6%) than that in high HIscore group 
(Figure 5D). Kruskal–Wallis test revealed that patients 
with different Micro satellite status in the TCGA cohort 
had significantly different median HIscore (Figure 5E). 
MSS patients had the highest median HIscore, and MSI-H 
patients had the lowest median HIscore. Taking the upper 
quartile and lower quartile of the total number of somatic 
mutation genes as cut-off, we obtained the genome 
unstable (GU) group (n=81) and the group genome stable 
(GS) group (n=87) in the TCGA cohort, and we extracted 
these 168 patients and combined their HIscore. In the low 
HIscore group, genome unstable patients accounted for 
a larger proportion (Figure 5G). Not only that the median 
HIscore in the genome unstable group was lower than that 
in the genome stable group (P<0.0001, Figure 5H). We 
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also evaluated the expression levels of all genes that 
constitute the prognostic model in different TMB, Micro 
Satellite, and genome stability states (Figure 5C, F, and I). 
In the TCGA cohort, the high TMB, the MSI, and the 
genome unstable (GU) group all showed low expressions 

of BEX4, CCDC50, CLIP4, CPE, JAZF1, LMO2, and 
RASGRP2, while PSMB10 was highly expressed in 
these groups.

In order to verify our inference that HIscore is related 
to genome instability, we also evaluated the expression of 

Figure 4 Immune cell infiltration characteristics and transcriptome traits in different group with high or low HIscore. (A) The abundance of each TME infiltrating cell in high 
and low HIscore groups. (B) Difference in the expression of 18 hypoxia gene signatures between high and low HIscore groups. The asterisks represented the statistical 
p value (Wilcox test, *P < 0.05; **P < 0.01; ***P < 0.001). (C) Differences in HIscore among three geneclusters in ACRG cohort. The Kruskal–Wallis test was used to 
compare the statistical difference between three geneclusters (P < 0.0001). (D) Differences in HIscore between different ACRG molecular subtypes. The Kruskal–Wallis test 
was used to compare the statistical difference between four ACRG molecular subtypes (p < 0.0001). (E) Correlations between HIscore and the known gene signatures in 
ACRG cohort using Pearson's analysis. Negative correlation was marked with blue and positive correlation with red. (F) Difference in the expression of 21 known biological 
processes related to tumor progression between high and low HIscore groups. The upper and lower ends of the boxes represented interquartile range of values. The lines in 
the boxes represented median value, and black dots showed outliers. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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these common differentially expressed genes in another 
GSE13911 containing Micro satellite information of gas-
tric cancer patients. Because the Micro satellite status in 
GSE13911 only included MSS (n=20) and MSI (n=20), 
the difference of these genes between the MSI-L and the 
MSI-H group could not be observed. Wilcox test revealed 
that except for LMO2, PSMB10, and RASGRP2, the 

median gene expression levels of other genes in the MSI 
group were significantly lower than those in the MSS 
group (P<0.05), which was consistent with the phenom-
enon we found in the TCGA cohort (Figure S4). The 
median expression of LMO2 was lower in the MSI 
group, although the P-value was not less than 0.05 
(Wilcox test, P=0.07).

Figure 5 The close relationship between HIscore and TMB, microsatellite status, genomic instability. (A) Correlation between the TMB and HIscore in the TCGA cohort. 
(Pearson correlation analysis, R=−0.46, P < 0.0001) (B) Difference in the HIscore of patients between high and low TMB group. (C) Difference in the expression of 13 
members of the hypoxia-immune signature between high and low TMB group. (D) The proportion of MSS, MSI-L and MSI-H patients in the high and low HIscore groups. (E) 
Difference in the HIscore of patients among MSS, MSI-L and MSI-H groups. (F) Difference in the expression of 13 members of the hypoxia-immune signature among MSS, 
MSI-L and MSI-H groups. (G) The proportion of genome unstable and genome stable patients in the high and low HIscore groups. (GU: genome unstable patient; GS: 
genome stable patient) (H) Difference in the HIscore of patients between GU and GS group. (I) Difference in the expression of 13 members of the hypoxia-immune 
signature between GU and GS group. The Kruskal–Wallis test was used to compare the statistical difference (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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Identification of Candidate Small 
Molecule Drugs for Gastric Cancer 
Patients with High HIscore
In total, we identified 546 up-regulated genes and 337 
down-regulated genes in high HIscore groups of both 
ACRG and TCGA cohort (Supplementary Table 9). By 
using the CMAP database we obtained total 96 potential 
small drug molecules, and P < 0.05 was regarded as the 
cut-off criteria (Table 2). The enrichment scores (− 1 to +  
1) that could assess the similarity between genes and drugs 
were calculated. Specifically, enrichment score <0 revealed 
molecules had potential antagonistic effects to biological 
processes closely linked to high HIscore, indicating they 
could reverse the poor prognosis and could serve as ther-
apeutic drugs, especially for gastric cancer patients with 
high HIscore. In our research, the enrichment scores of 
adiphenine (−0.939), isoflupredone (−0.929), vinblastine 
(−0.916), and viomycin (−0.907) are all lower than −0.9. 
They are the four small drug molecules with the enrich-
ment score closest to −1. This showed that they have great 
potential in reversing the poor prognosis and serving as 
therapeutic drugs.

Verify the Accuracy of the Hypoxia 
Pathway Gene Set Included in the Study
To determine the correctness of the 13 hypoxia-related 
gene sets involved in unsupervised clustering in this 
study, we performed GSEA between hypoxia and nor-
moxia gastric cancer cell lines in GSE114083. The genes 
of gastric cancer cell lines in the hypoxic group were 
significantly enriched in 13 hypoxia-related gene sets we 
used (Figure S5 and Supplementary Table 10).

Discussion
Previous researches have forced us to get to the deeper 
issue of the biological and molecular subtypes of gastric 
cancer. However, relevant classifiers are still in great 
demand for guiding clinical treatment or predicting prog-
nosis. Hypoxia, a kind of tumor microenvironmental stress 
related to poor prognosis of patients, is a hallmark of solid 
tumors,39 and immune cell infiltration characterizations are 
also a research hotspot in many solid tumors.40 Most 
classifications focus on a single biological and molecular 
feature and in this study, a new classifier was developed by 
combining the hypoxic state and immune cell infiltration 
of gastric cancer.41,42

Due to the complexity of immune activity and hypoxia 
in the tumor micro environment, few transcriptome-based 
biomarkers could evaluate hypoxia and immune status, so 
we took advantage of ssGSEA to calculate the enrichment 
scores of related immune and hypoxia gene sets as our 
evaluation index.43,44 Of course, the gene sets of these 
hypoxia-related processes have been verified in 
GSE114083 and the results show that they can represent 
tumor hypoxia traits in gastric cancer cell lines. In the GC 
(gastric cancer) meta-cohort after removing the batch 
effect, the unsupervised clustering algorithm revealed 
that there are three markedly different gastric cancer sub-
types. Among the three subtypes, HIcluster A was classi-
fied as low hypoxic/low immune, HIcluster B was 
classified as high hypoxic/high immune, and HIcluster 
C was classified as low hypoxic/high immune. We utilized 
the expression of HIF1A to verify the correctness of our 
judgment of the three types of hypoxia, while the 
ImmuneScore, the expression of PDL1, and CLTA4 were 
used to verify the correctness of the immune cell infiltra-
tion type.

Firstly, we found that the median OS of HIcluster with 
high hypoxia levels was smaller than that with low 
hypoxia levels. This phenomenon was in line with our 
expectation. Hypoxia leads to increased glycolysis and 
lactate production.45 Glycolysis can reduce the production 
of reactive oxygen species (ROS), and the low concentra-
tions of ROS can contribute to tumor cell survival.46 In 
addition, lactate, generated during glycolysis, decreases 
the tumor environmental pH and an acidic pH distinctly 
impedes the function of normal immune cells, such as 
T-cell and tumor-infiltrating lymphocytes.47 Furthermore, 
the lactate-mediated enhancement of tumor cell motility is 
reported not only in single-cell motion but also in enforced 
bulk migration.48 Hyaluronan, synthesized by tumor- 
associated fibroblasts (TAF), increases around the carci-
noma regions at high lactate concentrations and 
encourages the growth and motility of cancer cells.49 

Moreover, hypoxia induces EMT and the formation of 
angiogenesis and lymphangiogenesis, which will allow 
tumor cells to escape the adverse microenvironment and 
disseminate into secondary sites.50,51 Taken together, these 
findings may at least partially explain the facilitation of 
tumor progression and the worse prognosis in the high 
hypoxia levels cluster as compared to the low hypoxia 
levels cluster.

Even for the same tumor subtype in which immune 
cells highly infiltrated (HIcluster B and C), different 
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Table 2 Identification of Candidate Small-Molecule Drugs for Gastric Cancer Patients with High HIscore Using the CMAP Database

Cmap Name Enrichment Score P-value Specificity Percent Non-Null

Adiphenine −0.939 0 0.0161 100
Isoflupredone −0.929 0.00054 0.0333 100

Vinblastine −0.916 0.00098 0.0305 100

Viomycin −0.907 0.0001 0.0144 100
Prestwick-1103 −0.874 0.00054 0 100

Penbutolol −0.874 0.00407 0 100

Tacrolimus −0.871 0.00423 0.0194 100
Vancomycin −0.862 0.00066 0 100

Amantadine −0.847 0.00101 0.0065 100
Prestwick-692 −0.84 0.00117 0.0068 100

Midodrine −0.835 0.00032 0.0075 100

Gly-His-Lys −0.824 0.01094 0.0522 100
Quinpirole −0.819 0.00203 0 100

Prestwick-1082 −0.819 0.0118 0.1148 100

Heptaminol −0.815 0.00054 0.0137 100
Thiamine −0.814 0.01272 0.0106 100

Timolol −0.812 0.00247 0.0149 100

Prestwick-983 −0.809 0.01384 0.0343 100
Podophyllotoxin −0.799 0.00316 0.0686 100

Prestwick-857 −0.799 0.00316 0 100

Pheneticillin −0.799 0.00318 0.0131 100
Guanadrel −0.796 0.00072 0 100

Nadolol −0.792 0.00378 0.0692 100

Nomegestrol −0.791 0.01841 0.0074 100
Biperiden −0.788 0.0008 0.0408 100

Gabexate −0.785 0.00432 0.0325 100

Terazosin −0.784 0.00434 0.0299 100
Ajmaline −0.782 0.02117 0.0709 100

Chenodeoxycholic acid −0.781 0.00465 0.0539 100

Cefamandole −0.78 0.00487 0.0083 100
Colistin −0.779 0.00489 0.0231 100

Ribavirin −0.779 0.00493 0.0461 100

Atractyloside −0.778 0.00096 0.0076 100
Prestwick-691 −0.777 0.02273 0.1316 100

Gentamicin −0.773 0.00543 0.0658 100

3-Acetamidocoumarin −0.772 0.00547 0.1104 100
Calcium folinate −0.769 0.00118 0.0153 100

Iodixanol −0.769 0.02548 0.04 100

Benzocaine −0.766 0.00599 0.0336 100
Etiocholanolone −0.765 0.00032 0.0065 100

Sulfadimethoxine −0.758 0.0015 0.0074 100

Fludrocortisone −0.755 0.00006 0 100
Tranexamic acid −0.755 0.00162 0.0336 100

Nystatin −0.743 0.03441 0.0504 66

Naringenin −0.742 0.00871 0.0403 75
Felbinac −0.735 0.00979 0.1348 75

Dapsone −0.734 0.00274 0.0076 80

Finasteride −0.72 0.00097 0.0305 83
Carbimazole −0.719 0.04591 0.1233 66

Atracurium besilate −0.718 0.04609 0.0791 66

Thiamphenicol −0.715 0.00411 0.0733 80

(Continued)
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hypoxia status still caused different infiltration patterns. 
For example, activated CD8+ T cells, activated B cells 
and immature B cells have a higher infiltration in 
HIcluster C. This phenomenon is consistent with the 

research of Akio Ohta et al, which indicated that lower 
tissue oxygenation decrease the extent of T cell 
activation.52 Previous studies have also pointed out that 
the narrow maturation process of dendritic cells under 

Table 2 (Continued). 

Cmap Name Enrichment Score P-value Specificity Percent Non-Null

Diphenhydramine −0.71 0.00441 0.0444 80

Tiletamine −0.698 0.01747 0.0341 75

Chloropyrazine −0.69 0.02001 0.026 75
Lasalocid −0.686 0.02109 0.1296 50

Lisuride −0.682 0.00743 0.1721 60

Sulfamonomethoxine −0.676 0.02445 0.0927 75
Lycorine −0.674 0.00867 0.18 60

Prestwick-642 −0.674 0.02536 0.1241 75

Rilmenidine −0.669 0.02697 0.0343 50
Eticlopride −0.669 0.02715 0.0833 50

Isometheptene −0.664 0.02863 0.1241 50

Trimethobenzamide −0.662 0.01057 0.0671 80
Nizatidine −0.662 0.02932 0.0452 50

PHA-00745360 −0.661 0.00066 0.0078 87

Levopropoxyphene −0.66 0.03046 0.0719 75
Guanabenz −0.659 0.01101 0.0846 80

Levomepromazine −0.656 0.03195 0.1308 75

Diloxanide −0.656 0.03219 0.1 75
Canadine −0.656 0.03241 0.1745 75

Indoprofen −0.652 0.03471 0.0933 75

Ambroxol −0.651 0.03481 0.1195 75
Loracarbef −0.649 0.03557 0.0419 50

Ceforanide −0.648 0.03648 0.0659 75

Mebhydrolin −0.645 0.0377 0.0588 50
Methyldopate −0.644 0.03853 0.1095 75

Pentoxifylline −0.642 0.01492 0.0896 80

Metronidazole −0.64 0.01538 0.0759 80
Isoxicam −0.638 0.01596 0.1487 80

CP-320650-01 −0.637 0.00128 0.0288 87

2-Aminobenzenesulfonamide −0.635 0.04323 0.1667 75
Leflunomide −0.627 0.04748 0.0963 75

Tolnaftate −0.625 0.01933 0.0719 60
Tetracycline −0.621 0.02059 0.0566 80

Alprostadil −0.618 0.00431 0.024 85

Ampyrone −0.617 0.02257 0.0278 80
Diethylstilbestrol −0.616 0.01043 0.0328 66

Iproniazid −0.613 0.02403 0.0602 80

Josamycin −0.612 0.02415 0.0467 60
Thioperamide −0.61 0.02545 0.1418 80

Khellin −0.606 0.02659 0.0685 80

Paclitaxel −0.591 0.01639 0.0585 66
Myosmine −0.582 0.01875 0.0553 83

Pirenperone −0.57 0.04426 0.0688 80

0317956-0000 −0.48 0.03279 0.1186 50
Naproxen −0.45 0.03561 0.1111 55
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lower local O2 tension may also reduce T cell activation.53 

HIFs (HIF-1, HIF-2, HIF-3) are involved in most biologi-
cal processes caused by hypoxia.54 Burrows et al gener-
ated a mouse with B cell-specific deficiency of VHL (an 
important protein that causes the dissociation of HIFs and 
indicated that HIFs activation results in immature B cell 
developmental arrest and peripheral B cell loss.55 The 
infiltration pattern of B cell especially activated B cell in 
HIcluster B and C also conforms to this rule.

We compared the median survival time between 
HIcluster B and C. Both of them are highly immune 
cells infiltrated, however, HIcluster C had a better prog-
nosis. We speculate that it is not only due to hypoxic 
effects but also closely related to the different infiltration 
characteristics of activated CD8+ T cells and B cells in 
tumors. Abnormal angiogenesis, desmoplasia, and inflam-
mation will all be promoted due to the oxygen supply 
obstacles in the tumor that proliferates unrestrictedly, 
which can cause tumor progression and drug 
resistance.56,57 Furthermore, activated HIF1a up- 
regulation of the activity of Snail and Twist, two transcrip-
tion factors that decrease E-cadherin expression and facil-
itate EMT.58 Previous studies have already shown that 
pancreatic cancer and bladder urothelial carcinoma 
patients with high densities of CD8+ T-cells have 
a better prognosis.59 Kim et al constructed B-cell depleted 
mice of which the tumor size is larger and the growth rate 
is higher than the control group. They further researched 
and found that the B-cell-specific gene expression is 
a prognostic biomarker of head-neck carcinoma.60 

Therefore, we speculate that hypoxia, CD8+ T cells, and 
B cells may also play a similar role in gastric cancer, 
resulting in the poor prognosis in HIcluster B. Immune 
checkpoint inhibitors therapy has developed rapidly in 
recent years, such as that target CTLA4 and PD1 pathway, 
but only a fraction of patients can benefit from it.61 The 
median expression of PDL1 and CLTA4 was the lowest in 
HIcluster A, and that of CLTA4 was the highest in 
HIcluster C. There was no significant difference in the 
median expression of PDL1 between HIcluster B and 
C. Plentiful researches in different cancer types have indi-
cated a positive correlation between PDL1 expression and 
ICI response and OS.62,63 The new classifier we created 
has the potential in guiding ICI treatment for patients with 
gastric cancer.

Furthermore, We explored the differences in transcrip-
tome traits between different HIclusters, and performed 
the enrichment analysis with the differentially expressed 

genes obtained. These biological processes are mainly 
concentrated on the activation and differentiation of 
immune cells, leukocyte migration, which is consistent 
with the characteristics of our classifier. In order to 
amplify the ability of the classifier, we created to classify 
the poor prognosis patients with gastric cancer. We 
selected genes with the prognostic value among the differ-
ential genes to perform unsupervised clustering again. We 
were surprised to isolate a genecluster C with 
a significantly poor prognosis. We evaluated the interac-
tion between other gastric cancer classification methods in 
ACRG cohort and genecluster, and we found that EMT 
subtype and diffuse subtype have an absolute advantage in 
genecluster C. Diffuse-type gastric cancer, a subtype with 
a poor prognosis, lacks effective and specialized treat-
ments and accounts for 30% of the total number of gastric 
cancer patients.64,65 As the early stage of tumor metastasis, 
EMT includes not only the dissolution of cell–cell junc-
tions but also loss of apico-basolateral polarity. 
Throughout the EMT, down-regulation of cellular adhe-
sion proteins and up-regulation of mesenchymal markers 
occur on gastric cancer cells.66 Clinically, EMT is closely 
linked to a poor prognosis.67 Therefore, we suppose that 
The epithelial-mesenchymal transition (EMT) is a pivotal 
characteristic of tumors in genecluster C, and it is also the 
basis for our classifier to classify patients with worse 
prognosis. In order to verify our ideas, we measured the 
expression levels of EMT-related genes in different gen-
eclusters, and found that the EMT-related gene set (EMT1, 
EMT2) obtained in the previous literature got the highest 
enrichments score in genecluster C. Similar to EMT1 and 
EMT2, other pathways and biological processes closely 
related to the EMT processes are also enriched in gen-
ecluster C, such as ECM–receptor interaction,68 MAPK 
signaling pathway,69 PI3K-Akt signaling pathway,70 TGF- 
beta signaling pathway and Wnt signaling pathway.71,72 

This supports our conjecture.
The pathways related to repairing DNA damage in 

genecluster A and B are more activated than genecluster 
C, such as nucleotide excision repair, base excision repair, 
and mismatch repair.73,74 This implies that geneclusters A 
and B (especially genecluster A) will undergo more pro-
cesses of detecting and removing bases, repairing modified 
bases, and removal of bulky adducts in DNA. Each of 
these DNA repair pathways resects a damaged region 
and inserts new bases to fill the gap. It implies that the 
stability of genomes in geneclusters A and B may have 
already been challenged.75,76 Cell cycle and DNA 
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replication have a negative correlation with genome stabi-
lity, so their lower enrichment in genecluster C supports 
our guess that genecluster C belongs to the subtype of 
genome stability.77,78

Furthermore, we utilized lasso Cox regression analysis 
to screen out 13 differentially expressed genes among 
HIclusters to construct a hypoxic-immune-related signa-
ture (HIscore). According to the median value of HIscore, 
patients are divided into high- and low-risk groups. Gastric 
cancer patients in the high-HIscore group have a poorer 
prognosis. We utilized TCGA cohort as the validation set 
and found that HIscore is still robust in predicting prog-
nosis. Multivariate Cox regression analysis indicated that 
whether in ACRG or TCGA cohort, HIscore was an inde-
pendent risk factor for overall survival (ACRG (HR 3.710 
(2.659–5.178))); TCGA (HR 2.026 (1.163–3.529)). The 
accuracy of HIscore in ACRG cohort was evaluated by 
the AUC of receiver operating characteristic analysis and 
the AUC was 0.72 at 3 years, 0.73 at 5 years, and 0.74 at 8 
years, respectively. The AUC was 0.70 at 5 years in the 
TCGA cohort. This suggests that HIscore is clinically 
significant in predicting the long-term prognosis of 
patients. In addition, we found that whether the patient 
undergoes adjuvant chemotherapy or not, HIscore’s ability 
to predict the prognosis will not be diminished, which 
could make HIscore more widely used in clinical practice. 
In addition, we developed a nomogram to describe the risk 
of death of each gastric cancer patient and the calibration 
plots confirmed the significant consistency between pre-
dicted and observed actual clinical outcomes. This nomo-
gram is established by the combination of hypoxic- 
immune-related signature and clinical characteristics 
including TNM stage and Lauren classification. So that it 
showed considerable property for predicting the survival 
and can be more clinically applicable.

The vast majority of patients with EMT subtypes were 
classified as HIgenecluster C, and patients in 
HIgenecluster C carried higher HIscore. In ACRG cohort, 
the median HIscore of the EMT molecular subtype was 
significantly higher than other subtypes. This suggests that 
HIscore may be an indicator of the characteristics of 
genecluster C (EMT-genome stability type). Pearson cor-
relation analysis showed that EMT-related biological pro-
cesses are strongly positively correlated with HIscore, and 
DNA damage repair processes are strongly negatively 
correlated with HIscore. At the same time, the enrichment 
scores of EMT-related biological processes are higher in 
the high HIscore group, and the enrichment score of the 

DNA damage repair process was lower in the high HIscore 
group. Furthermore, we compared the HIscores between 
different TMB and microsatellite status, which is closely 
linked to genomic instability.79,80 The results are consis-
tent with our expectations that gastric cancer patients with 
high TMB and MSI have lower HIscore, and Pearson 
correlation analysis showed that HIscore is negatively 
correlated with TMB. We also ranked the total number 
of mutated genes from most to least. The first 25% were 
identified as genomically unstable patients, and the last 
25% were identified as genomically stable patients.34 In 
this new framework for evaluating the extent of genomic 
instability in gastric cancer, high HIscore is still a good 
indicator of genome stability.

We focused on the members that constitute hypoxic- 
immune-related signature (HIscore) and found that most of 
their expression levels are significantly different between 
genomic stability and instability group. BEX4 protein 
mainly localizes at centrosomes, contractile rings, and 
midbodies, and BEX4 contributes to the stabilization and 
elongation rates of microtubules. Moreover, BEX4 plays 
an important role in apoptosis and the adaptation to aneu-
ploidy induced by spindle damage or a mitotic checkpoint 
defect.81 CLIP4, one of the CLIP-170 family, connects 
microtubule with organelle by CAP-Gly which contributed 
to cell polarity maintenance, intracellular transport, cell 
migration, and oncogenesis.82,83 Multiple studies indicated 
that microtubule is altered in cancer cell divisions and 
linked to chromosomal instability, aneuploidy, and drug 
resistance.84 Parvin et al found that LMO2 expression is 
sufficient to increase genomic instability in DLBCL and 
T-ALL cell lines, leading to the accumulation of chromo-
somal rearrangements and phosphorylated H2AX 
(g-H2AX), a marker of DNA double-strand breaks 
(DSBs).85 Therefore, these genes may be the cornerstones 
of HIscore to predict the genome stability of gastric 
carcinoma.

In the TCGA cohort, BEX4, CCDC50, CLIP4, CPE, 
JAZF1, LMO2, and RASGRP2 all showed lower expres-
sions level in the high TMB group, the MSI group, and the 
genome unstable (GU) group, while PSMB10 was highly 
expressed in all these groups. We chose another indepen-
dent cohort (GSE13911) from the GEO database as the 
validation set. The expression trend of the majority in the 
validation set is similar to that in the TCGA cohort. The 
P-value of LMO2 is 0.07, which is close to 0.05, and we 
think it makes partial sense that the expression of LMO2 
was lower in the MSI group.86 The P-value of LMO2, 
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PSMB10, and RASGRP2 is greater than 0.05, which may 
be caused by insufficient sample size in the verification 
set.87 The results of the validation set further confirm that 
the HIscore we constructed is closely related to genome 
stability.

In short, in clinical practice, HIscore is not only an 
independent prognostic biomarker but also a forecast for 
clinicopathological features of patients with gastric cancer, 
such as EMT and genomic stability. This provides new 
insights into personalized treatment for some traditional 
chemotherapy drugs, such as cisplatin and gemcitabine 
that target DNA damage.88,89 At the same time, because 
of the significant differences in immune cell infiltration 
and TMB between patients with high and low HIscore, it 
may also have the potential to screen out patients who will 
benefit from immunotherapy.90 In addition, based on the 
fact that patients with high HIscore have a worse prog-
nosis, we used the CMAP database to screen 96 small- 
molecule drugs that had potential antagonistic effects to 
biological processes closely linked to high HIscore. 
Specially, in our study, adiphenine, isoflupredone, vinblas-
tine and viomycin have great potential in reversing the 
poor prognosis and serving as therapeutic drugs.

Our research provides new ideas and materials for the 
personalized clinical treatment plans for patients with gas-
tric cancer, although some limitations of this study should 
be acknowledged. Firstly, our study only included 
a bioinformatics analysis, lacking the validation of solid 
clinical specimens. Additionally, the research was con-
ducted with a retrospective design rather than 
a prospective one. However, our risk model was validated 
by multiple data cohorts; therefore, the result is still reli-
able and acceptable. Thus, future studies with prospective 
clinical trials and mechanistic exploration are warranted to 
further validate the present result.

Conclusion
In conclusion, our study evaluated the hypoxic state and 
immune cell infiltration in gastric tumors and identified 
different gastric cancer subtypes through the interaction of 
them. Subsequently, we obtained three subtypes with dif-
ferent prognosis: low hypoxic/low immune subtype, high 
hypoxic/high immune subtype, and low hypoxic/high 
immune subtype. Moreover, based on the DEGs between 
the above three subtypes, we can clearly identified another 
three sub-classification of patients with gastric cancer 
through unsupervised clustering including immune- 
activation subtype and EMT-Genomic stability subtype.

We extensively explored the differences in clinical and 
transcriptome traits among those cancer subtypes. Then, we 
constructed hypoxic-immune-related signature (HIscore) by 
LASSO regression. HIscore is an independent prognostic 
biomarker that could not be ignored to link to tumor EMT 
and genomic stability. Based on HIscore, we used the CMAP 
database to explore small-molecule drugs that may have the 
potential in serving as therapeutic drugs such as adiphenine, 
isoflupredone, vinblastine and viomycin. In addition, 
a nomogram was established by using the combination of 
HIscore and clinical characteristics to describe the risk of 
death of each gastric cancer patient.

This study proposes new insights on the molecular 
classification of gastric cancer and may contribute to the 
advancement of personalized treatment for gastric cancer. 
However, further experimental studies are needed to verify 
our proposal.
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