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Background: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related 
mortality worldwide. HCC transcriptome has been extensively studied; however, the pro-
gress in disease mechanisms, prognosis, and treatment is still slow.
Methods: A rank-based module-centric workflow was introduced to analyze important 
modules associated with HCC development, prognosis, and drug resistance. The currently 
largest HCC cell line RNA-Seq dataset from the LIMORE database was used to construct the 
reference modules by weighted gene co-expression network analysis.
Results: Thirteen reference modules were identified with validated reproducibility. These 
modules were all associated with specific biological functions. Differentially expressed 
module analysis revealed the crucial modules during HCC development. Modules and hub 
genes are indicative of patient survival. Modules can differentiate patients in different HCC 
stages. Furthermore, drug resistance was revealed by drug-module association analysis. 
Based on differentially expressed modules and hub genes, six candidate drugs were screened. 
The hub genes of those modules merit further investigation.
Conclusion: We proposed a reference module-based analysis of the HCC transcriptome. 
The identified modules are associated with HCC development, survival, and drug resistance. 
M3 and M6 may play important roles during HCV to HCC development. M1, M3, M5, and 
M7 are associated with HCC survival. High M4, high M9, low M1, and low M3 may be 
associated with dasatinib, doxorubicin, CD532, and simvastatin resistance. Our analysis 
provides useful information for HCC diagnosis and treatment.
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Introduction
With the rapid development of high throughput technologies, large-scale transcrip-
tome analysis has become affordable. Systems biology analytical methods have 
been widely used to utilize those big data to investigate cancers.1,2 State-of-the-art 
methods like network medicine have been applied in disease diagnosis, treatment, 
and drug discovery.3,4 Gene co-expression network (GCN) analysis is an exten-
sively used approach in analyzing omics data.5 GCN assumes that genes with 
similar expression patterns will involve in a common pathway or biological pro-
cess. GCN uses correlation and module detection algorithms to find biologically 
meaningful gene sets.5,6 Search in Google Scholar with WGCNA, a widely used 
GCN algorithm, will return about 14,600 publications about it at the time of this 
article. WGCNA represents weighted gene correlation network analysis. It mainly 
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produces gene module assignment, gene connectivity, and 
module-level expression information from the transcrip-
tome. However, current applications of WGCNA are 
notoriously dominated by its reproducibility in hub genes.

WGCNA has been applied in hepatocellular carcinoma 
(HCC) transcriptome many times. Hundreds of publications 
claimed that they identified important hub genes associated 
with HCC development according to Google Scholar in 2021. 
Unfortunately, we found these hub genes or signature genes 
show a low percentage of overlap after we collected some of 
that gene list and compared them (Table 1). However, the low 
overlap may be caused by the different datasets chosen, GCN 
parameter set, or data preprocessing. Thus, the establishment 
of a reproducible pipeline in modules or hub gene identifica-
tion is an urgent need. A recent publication used reference 
modules from cell lines, which bear clear genomic background 
than cancer tissue data that are profiled from a mix of cell 
components.7 Results showed that the analysis pipeline is 
vigorous. It has been proved that cell line models maintain 
molecular characteristics of HCC and could be used as 
a model for novel therapies.8 Therefore, cell lines would still 
be a good start for HCC transcriptome analysis.

Here, we first adopted the analysis pipeline to HCC and 
identified valid modules and hub genes associated with HCC 
development. The analysis workflow is displayed in Figure 1. 
The good point of the analysis is the use of rank which is 
dimensionless. Firstly, we used an HCC cell line dataset to 
construct the reference modules and found that a lower power 
was needed to achieve a scale-free network based on ranks 
rather than traditional expression intensity. Secondly, we used 
other datasets to validate that the reference modules are stable. 
Thirdly, we collected datasets and then projected them to the 
reference modules to identify important modules and hub 
genes that are associated with HCC development and drug 
resistance. Finally, we used the important genes as candidates 
for drug screening. Our analysis provided stable modules and 

important genes in HCC. The analysis pipeline can be 
extended to other kinds of diseases.

Materials and Methods
Datasets Selection and Transcriptome 
Data Preparation
RNA-Seq data was collected from public repositories. RNA 
expression in 34 liver cancer cell lines was retrieved from the 
Liver Cancer Cell lines Database (LCCL).9 Gene expression 
profiles of 81 cell lines were downloaded from LIVER 
CANCER MODEL REPOSITORY (LIMORE).10,11 RNA- 
Seq data of 27 liver cancer cell lines were downloaded from 
Cancer Cell Line Encyclopedia (CCLE).12 Drug response 
data in LIMORE and LCCL databases were also downloaded 
from corresponding repositories. The HCC tissue RNA-Seq 
data of 423 samples were downloaded from TCGA through 
GDC Data Portal (https://portal.gdc.cancer.gov/). Microarray 
datasets were downloaded from the National Center for 
Biotechnology Information Gene Expression Omnibus 
(NCBI GEO) database under the accession numbers 
GSE14323, GSE102079, and GSE107170. GSE14323 con-
tains expression data for 115 liver samples from subjects with 
HCV, HCV-HCC, or normal liver.13 GSE102079 consists of 
257 samples of HCC, adjacent and normal liver.14 Gene 
expression of 18 hepatocyte samples from HCV HCC 
patients was retrieved from GSE107170.15 LIMORE dataset 
including 81 RNA-Seq profiles of HCC cell lines, was used 
for reference module construction. LCCL and CCLE were 
used for validation and drug resistance analysis. Cell line 
doubling time data was downloaded from the Cellosaurus 
database.16 Due to the open access to transcriptome and 
clinical data in TCGA and GEO, additional approval from 
local ethics committee was not needed for this study.

Weighted Gene Co-Expression Network 
Analysis (WGCNA)
All data analysis was performed in the R software (v3.3.1) 
with the Bioconductor WGCNA package (v1.63).5 Genes 
were filtered if FPKM < 10. According to the previous 
publication,7 FPKM values were transformed to ranks with 
rank function in the R “base” package (v3.3.1). High expres-
sion gene has a high-rank value after transformation.17 Finally, 
9334 genes were retained for downstream signed co- 
expression networks construction. Briefly, the pairwise 
Pearson correlation coefficient is calculated for each gene in 
the gene expression rank matrix, and then an adjacency matrix 
is derived by raising the correlation matrix to a proper power.18 

Table 1 Some Gene Signatures for Hepatocellular Carcinoma 
Extracted from Literature

Gene Signature PMID

DAO, PCK2, HAO1 33133125

RPL19, RPL35A, RPL27A, RPS12 34350180
MTIF2 33129983

CD163, EHHADH, KIAA0101, SLC16A2, SPP1, THBS4 33753986

YWHAB, PPAT, NOL10 33102213
GINS4 33842367
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The power of 12 was chosen, which meets the scale-free 
network standard. The weighted network was transformed 
into a network of topological overlap (TO)—a metric that 
defines the relationship of two genes accounting for their 
correlation and shared neighborhood.18 Genes were hierarchi-
cally clustered based on their TO. Finally, co-expression gene 
modules were identified by the Dynamic Tree Cut algorithm.19 

As genes in a module are highly correlated, module genes can 
be reduced to a module eigengene (ME) by singular value 
decomposition. ME represents the first principal component of 
module expression profiles.18 Therefore, ME explains the 
maximum amount of variation of the module expression 
levels. WGCNA also provides gene connectivity information, 
which is the sum of correlations of a gene with all other genes 
in the module or network. Hub gene in a co-expression module 
tends to have high connectivity.5 For network module valida-
tion, the expression matrix was first intersected with reference 
dataset, and then its values were transformed to ranks before 
module projection.

Switch Genes Identification
Switch genes are crucial genes that work during the transition 
from one condition to another condition in a biological net-
work. SWIM is a MATLAB-based free software coupling 
with a Graphical User Interface (GUI). SWIM has been used 
to mine switch genes in gene co-expression networks.20 

GSE14323 HCV and HCC samples were used for switch 
gene identification. As the original intensities have been 
log2 transformed, SWIM parameter for fold change was set 
to 1.01, the P value was set at 0.01, iterations for each 
replicate were set to 30. Other parameters were set as default.

Functional Annotation of the Modules
The gProfileR package was used for enrichment analysis 
of reference modules. It maps genes to known functional 
information sources such as Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Reactome 
Pathway Database (REAC), Human Phenotype Ontology 

Figure 1 A workflow diagram for the analysis. The LIMORE dataset was to build a reference network and identify modules. The preservation of identified modules was 
validated in two independent datasets LCCL and CCLE. These modules were used as references, to which new datasets can be projected. The derived module eigengene 
(ME) can be used in differential module identification, survival analysis, patient classification, and in silico drug-resistant analysis.

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S336729                                                                                                                                                                                                                       

DovePress                                                                                                                       
9335

Dovepress                                                                                                                                                                Ye et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


(HPO) and detects statistically significantly enriched 
terms.21 The overrepresentation of a term is defined as 
a P value with an adjustment for multiple testing. An 
ontology-focused multiple testing correction method 
called g:SCS was used for P value adjustment.21 Genes 
with high connectivity in each module were submitted to 
a network-based web tool called MIENTURNET (http:// 
userver.bio.uniroma1.it/apps/mienturnet/) for extracting 
the microRNAs that could target a list of genes provided 
as input.22

Module Validation
The reproducibility of the reference modules was exam-
ined internally and externally. Firstly, half sampling was 
used to calculate the connectivity and correlate it with the 
original connectivity. The above process was repeated 
1000 times for every module. The resulting correlation 
data were presented as mean ± sd. Secondly, module 
preservation analysis was performed for the original data 
without rank transformation and rank transformed data. 
The above process was performed by the 
ModulePreservation function with 100 permutations and 
parallel calculation.23 Resulting Zsummary is a measure 
for distinguishing preserved from non-preserved 
modules.23 The Zsummary threshold was set at 2 regard-
ing the preservation of a module in the rank transformed 
data. The analysis was conducted according to the manual 
of module preservation analysis.23 Thirdly, two other data-
sets (LCCL and CCLE) were used to run the module 
preservation analysis.

Analysis of Relationships Between 
Modules, Survival, and Drugs
We correlated module eigengene with survival, and drugs. 
Survival analysis was performed in R survival and surv-
miner packages. For TCGA, a Log rank test was used to 
analyze survival differences between patient groups with 
high/low module expression or hub gene expression. In 
drug-module association analysis, the MEs matrix was 
correlated to drug IC50 data by Spearman correlation. 
Then the data was visualized by heatmap with heatmap.2 
function in gplots package.

Connectivity Map Analysis
The candidate drugs associated with HCV and HCC were 
screened by the hub genes of modules that had good AUC. 
The top hub gene in each module was extracted as up- 

regulated or down-regulated gene lists and then submitted 
to the CMap tool at https://portals.broadinstitute.org/ 
cmap.4 Significant results were retrieved at the level of 
0.01. The top 3 drugs for HCV or HCC were recorded.

Statistical Analysis
One-way ANOVA was used when comparing means 
between multiple groups. Student’s t-test was used to 
compare the means of two groups. Statistical significance 
was set at 0.01 unless otherwise specified. When multiple 
comparisons were performed, P values were adjusted 
using the Bonferroni method. AUC of ROC was calculated 
in the ROCR package.

Results
Thirteen Reference Modules Were 
Identified in the HCC Cell Lines
To construct a map of reference modules, expression pro-
files of 81 HCC cell lines from LIMORE were used for 
WGCNA. Both the log2 transformed FPKM values of 
gene expression and the ranks of gene expression were 
used to construct scale-free networks. Compared to the 
network constructed by log2 transformed FPKM, the rank- 
based network required a lower power parameter to 
achieve a scale-free network (Figure 2A and B). A total 
of 13 co-expressed gene modules were identified 
(Figure 2C–F). The top hub gene with high connectivity 
for each module was also provided (Table 2). Functional 
annotation shows that these modules were associated with 
transcription factors, mitochondrion, lipid metabolism, cell 
cycle, and N-Glycan biosynthesis (Table 2). Table S1 
provides detailed information for all the analyzed genes, 
including module assignment and connectivity.

To examine the module reproducibility, we calculated 
the correlation between the original connectivity and that of 
1000 samplings for each module. All the modules had 
average connectivity larger than 0.8 (Figure 3A). The ori-
ginal dataset with log2 transformed values was mapped to 
the reference modules to check the module stability. The 
result shows that these modules were well reproducible in 
the original intensity dataset (Figure 3B). All of the modules 
have a Zsummary.pres statistic larger than 10, indicating 
very strong preservation of modules. Two other HCC cell 
line datasets CCLE and LCCL were also used in the same 
analysis for reproducibility check. Although the sample size 
is small for the two datasets (LCCL: 34 and CCLE: 28), 
most of the modules were preserved (Figure 3C and D). M6 
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has a marginal preservation metric, which may be due to the 
small size of overlap genes between the datasets CCLE and 
LIMORE (34 genes).

Differentially Expressed Modules (DEM) 
in HCC Development
To detect DEM in HCC development, we projected 
GSE107170 to the reference modules. Modules have dif-
ferent expression patterns in HCC development. Normal 
tissue has a distinct expression pattern (Figure 4A). The 
most significant module in HCC vs normal are M3 and M6. 
M3 is up-regulated and M6 is down-regulated (Figure 4B 
and C). The same directions are observed in HCV vs normal 
for M3 and M6, but more significant. In both HCC vs HCV 
and HCC vs HCC_cirrhosis, M9 is most significantly up- 
regulated (Figure 4D). The most significant down-regulated 
module is M3. All the DEMs in different HCC development 
stages are summarized in Table S2.

Liver adjacent non-tumor tissue is frequently biopsied 
in HCC differential expression analysis. However, the 

difference between normal liver and adjacent non-tumor 
tissue is not well understood. We projected GSE102079 to 
the reference modules and found that the two tissues show 
no significant difference in expression at the module level. 
Clustering analysis shows that the normal and adjacent 
tissue is un-separable (Figure 4E).

The hepatocyte is the major hepatic parenchymal cell. 
We also used the hepatocyte profiles in GSE107170 to 
validate the above differential modules. Four differential 
modules were identified, they were M4, M5, M7, and M9 
(Figure 5). All these modules also showed differences in 
the comparison of HCC vs normal (Table S2). M5 and M7 
are both associated with the cell cycle but with different 
expression patterns as they were identified as distinct 
modules. M5 may participate in G1/S phase transition, 
while M7 may participate in G2/M phase transition. The 
hub gene of M5 and M7 is associated with patient survi-
val, which will be presented in the following section.

We also used SWIM, a MatLab-based tool that identifies 
switch genes from gene correlation networks. Switch genes 

Figure 2 Gene co-expression modules identified in LIMORE HCC cell line dataset. (A) Scale-free topology model fit R2 versus power selection using FPKM; (B) scale-free 
topology model fit R2 versus power selection using rank; (C) the log-log plot shows an R2 of 0.95 when power set at 12, indicating the network follows the scale-free 
topology criterion; (D) mean connectivity versus power selection, showing the connectivity is stable at power 12; (E) thirteen modules were identified according to the 
dendrogram produced by hierarchical clustering of LIMORE genes based on a topological overlap matrix (TOM). The modules were assigned colors as indicated in the 
horizontal bar; (F) multidimensional scaling plots in two dimensions (color-coded as in E) depict the relative size of the modules.
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are defined as genes that are important during the transition 
between two conditions. We examined the overlap of hub 
genes and switch genes. Four hundred and eighty-four switch 
genes were identified, although only M11 TAOK2 over-
lapped with the hub gene. Further checking if these switch 

genes rank top 10 in each module, we found that 13 genes 
meet this criterion. Switch genes were enriched within the 
top 10 genes in each module (Hypergeometric test P < 0.01). 
They were SNAPC4, AXL, HNF1A, HNF4A, NCAPG, 
XAB2, TARS2, MED27, TAOK2, CD2BP2, ZNF768, 

Table 2 Functional Annotation and Hub Gene of the 13 Identified Modules in Hepatocellular Carcinoma Cell Line

Module (No. Gene) Funtional Annotation (P value) Hub Gene

1 (2564) Factor: hdac2 (7E-132), nuclear (2E-125) LUC7L3
2 (823) Factor: hdac2 (1E-52), mitochondrion (6E-15) ENDOG

3 (668) Focal adhesion (2E-35) ITGA3

4 (445) Lipid metabolism (1E-22) METTL7B
5 (237) Cell cycle (9E-64), G1/S phase transition (7E-19) TPX2

6 (227) Mitochondrial inner membrane (2E-9) LUZP6

7 (213) Cell cycle (6E-50), G2/M phase transition (5E-10) KIF11
8 (209) Factor: ZF5 (7E-19), ribonucleoprotein complex (2E-9) SGTA

9 (122) Factor: ELF4 (0.001), nuclear (6E-6) FLAD1
10 (118) Factor: hdac2 (1E-9), N-Glycan biosynthesis (0.001) MRPS2

11 (81) Factor: NRF-1 (5E-5), hsa-miR-877-3p (0.008) TAOK2

12 (65) Factor: TF3C-beta (1E-6), AP-2 (1E-6) C16orf91
13 (39) Factor: EHF (3E-6), ELK-1 (4E-6) PUF60

Figure 3 The identified thirteen modules are reproducible. (A) Bar plots showing the intramodule connectivity correlation of each module by half-sampling 1000 times with 
the original one (mean ±SD); (B) preservation of modules in a network constructed by FPKM compared to that constructed by rank. (C) preservation of modules in CCLE 
network compared to that in LIMORE; (D) preservation of modules in LCCL network compared to that in LIMORE. Dashed green and blue lines represent the Zsummary 
threshold for strong (Z>10) and weak–moderate (2<Z<10) module preservation. Numbers along with colored dots represent the identified modules.
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PGP, and NARFL. With top-ranking intramodule connectiv-
ity, these switch genes may play important roles in HCC 
development (Table S3). MIENTURNET tool identified 
that these switch genes may be regulated by miR-98-5p (P 
= 0.02) and miR-484 (P = 0.03).

Modules and Hub Genes are Correlated 
with Patient Survival
To check if these modules were associated with patient survi-
val, we performed a univariate analysis with the TCGA HCC 

dataset. Kaplan–Meier plot showed that patients can be sepa-
rated into two groups with different overall survival rates. It 
showed that M4 and M5 were indicative of overall survival 
(OS) (Figure 6A). M3 and hub genes of M5 TPX2 were 
marginally indicative of OS. Hub genes TPX2, LUC7L3, 
KIF11, and modules M4, M5, M7 were indicative of disease- 
specific survival (DSS) (Figure 6B). ITGA3, TPX2, LUC7L3, 
KIF11, and modules M4, M5, M7 were indicative of disease- 
free survival (DFS) (Figure 6C). ITGA3 is the hub gene of M3 
which has not been reported to be associated with HCC. TPX2 

Figure 4 Differentially expressed modules (DEM) in HCC development. (A) Clustering analysis of the thirteen modules in HCC development. In the left sample bar, green, 
blue, yellow, and red denotes normal, HCV, HCC_cirrhosis, and HCC samples; (B) Box plot showing the M3 expression; (C) Box plot showing the M6 expression; (D) Box 
plot showing the M9 expression; (E) clustering analysis of the thirteen modules in normal, adjacent and HCC tissues. In the left sample bar, green, yellow and red denotes 
normal, adjacent, and HCC samples.

Figure 5 Box plot showing the differentially expressed modules M4 (A), M5 (B), M7 (C), and M9 (D) in malignant hepatocytes compared to non-malignant hepatocytes in 
the human liver.
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and M5 may play important roles in HCC survival. These hub 
genes are crucial in HCC development. The top 100 connec-
tions of M1, M3, M5, and M7 were visualized (Figure 7). 
Besides, several other highly connected genes are important in 
HCC. M1 SF3B1 is only recently reported to be associated 
with aggressiveness and survival of HCC.24 M3 CAV1 pro-
motes HCC progression and metastasis.25 M5 CCNB1 is an 
important cell cycle regulator in HCC.26 M7 ZWILCH is an 
essential gene in chromosome segregation.27 We also down-
loaded cell line doubling time data from the Cellosaurus 
database, and correlated MEs with doubling time. M3 (focal 
adhesion) is the most significant module that is positively 
correlated with doubling time (R = 0.25, P < 0.01).

We validate hub genes TPX2 (M5), LUC7L3 (M1) and 
KIF11 (M7) were all unfavorable (P < 0.001) in liver 
cancer according to the Human Protein Atlas.28 

Immunohistochemical staining also confirms that these 
proteins are up-regulated in HCC (Figure 8).

Modules Can Differentiate Patients in 
Different HCC Stages
To demonstrate the utility of the identified modules, we 
analyzed the ROC curves to evaluate their sensitivity and 

specificity in the diagnosis of HCC patients. The ROC 
curves showed that M5 and M7 can perfectly separate 
HCC and normal samples. M6 and M9 can well separate 
HCC and HCV samples (Figure 9). These results may 
indicate the importance of the two modules in HCC devel-
opment. Table 3 shows a full list of modules that have an 
AUC larger than 0.8.

Drug Resistance Analysis Based on 
Correlations Between Module Expression 
and IC50
Chemo drug response is different in patients. Mechanisms 
of drug resistance are important for personalized medicine. 
To screen potential drug-related modules, we used the 
drug response data in LIMORE and LCCL databases. 
The IC50 data was correlated with module MEs in the 
two datasets, respectively. A high correlation value may 
indicate possible drug mechanisms (Figure 10A). Drug- 
MEs heatmap showed that doxorubicin was highly corre-
lated with M9 (R = 0.58, Figure 10B). It has been revealed 
that knockdown of ELF4 significantly reduced the TERT 
expression and sphere-forming ability in HCC cells.29 

Figure 6 Modules and hub genes are indicative of patient survival. (A) Survival curves indicate that M4 and M5 expression can separate patients into two groups with 
different overall survival times; (B) survival curves indicate that TPX2, LUC7L3, KIF11, and modules M4, M5, M7 expression can separate patients into two groups with 
different disease-specific survival times; (C) survival curves indicate that ITGA3, TPX2, LUC7L3, KIF11, and modules M4, M5, M7 expression can separate patients into two 
groups with different disease-free survival times. Redline: low expression of genes or modules. Greenline: high expression of genes or modules.
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Thus, high M9 expression cancer cells may need a high 
concentration of doxorubicin to neutralize. We can infer 
that cell lines with high M9 expression are resistant. 
CD532, an Aurora A kinase inhibitor, was highly corre-
lated with M1 (R = −0.64, Figure 10B). It has been found 
that the expression of Aurora A kinase is positively regu-
lated by HDAC2. Thus, low M1 expression cancer cells 
may need a high concentration of CD532 to neutralize.30 

Simvastatin was highly correlated with M3 (R = −0.55, 
Figure 9). Simvastatin could disrupt cytoskeleton integrity 
and focal adhesion complex assembly.31 Sorafenib has 
a high correlation with M3 (R = 0.48, Figure 10B). 
Acquired sorafenib resistance is associated with activation 
of focal adhesion kinase.32 Dasatinib was highly correlated 
with M4 (R = 0.54, Figure 10C). It has been found that 
dasatinib might have positive as well as negative effects on 

the metabolism of glucose and lipids.33 All these correla-
tions were significant (P < 0.01). The drug-ME correlation 
matrix was provided in Tables S4 and S5.

Based on the drug-ME correlation information, we can 
also rank cell lines to find potential drug-resistant lines. 
A positive correlation indicates high ME cell lines are resis-
tant and a negative correlation indicates high ME cell lines 
are sensitive. For example, CCLE HepG2 has the highest 
expression of M4, while JHH6 has the lowest expression of 
M4. It has been reported that HepG2 is not sensitive to 
dasatinib. Sk-Hep1 was sensitive to dasatinib.34 In our ana-
lysis, Sk-Hep1 was among the most sensitive cell lines in our 
analysis. Another example is M3. In both CCLE and LCCL, 
JHH2, SNU-423, and SNU-387 cells have high expression of 
M3, and these cells are sorafenib-resistant.35 Interestingly, 
simvastatin could re-sensitize hepatocellular carcinoma cells 

Figure 7 Top 100 connections in modules M1, M3, M5, and M7 were visualized in Cytoscape (v3.7.0). Degree analysis shows that LUC7L3, ITGA3, TPX2, and KIF11 are the 
hub genes in the modules. These hub genes are yellow nodes in the networks.
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to sorafenib.36 In our analysis, we infer that M3 high expres-
sion cells are sorafenib-resistant but simvastatin-sensitive. 
The ME matrices for LIMORE, CCLE, and LCCL are pro-
vided in Tables S6–S8.

Drugs Screening Based on the Hub Genes 
of Differentially Expressed Modules
To screen potential treatment drugs, we selected the top hub 
gene with high intramodule connectivity from interesting 
modules, then submitted it to the Connectivity Map. For 
HCV, M3 and M6 were selected. For HCC, M1, M5, M6, 
M7, M9, and M13 were selected as they have good AUC. 
Enrichment score and P value were returned by Connectivity 
Map. A positive Enrichment score indicates the database gene 
signatures have similar changes as the input query genes. 
A negative score indicates inversely related gene lists, and 
near-zero indicates unrelated gene lists.4 The top 3 drugs for 
HCC and HCV are listed in Table 4. Alsterpaullone is a CDK1/ 
2 inhibitor and is an antiviral agent in HIV treatment.37

Discussion
We observed that signatures identified in previous publica-
tions are hard to reproduce. As it is well known that 

complex human diseases such as cancers are rarely caused 
by a single molecular determinant but are more likely 
influenced by a network of interacting genes.7 Therefore, 
the reason behind the phenomenon is neither technical 
issues nor biological problems.38 A recent review also 
arise the concern about the gene signatures that lack 
reproducibility and cannot enter clinical applications.39 

Although state-of-the-art bioinformatics tools have been 
extensively applied to HCC to mine biomarkers, current 
analysis pipelines still focus on hub genes, ignoring the 
module-level information.40,41 We also observed that hub 
genes/signature genes are not so reliable. Thus, in this 
analysis, we used a module-centric strategy. To avoid 
interference from cells within the cancer microenviron-
ment, we start our module identification from a panel of 
81 HCC cell lines, excluding the influence of non- 
cancerous cells.42 Furthermore, we used a rank-based 
method, which has also been proposed to improve repro-
ducibility and accuracy in transcriptome analysis.43 Here, 
we proposed a new analysis workflow that enables mod-
ule-level comparisons. Furthermore, the analysis pipeline 
can be extended to analysis of transcriptome data from 
other kinds of diseases.

Figure 8 Representative images for immunohistochemical staining of the hub genes TPX2 (M5), LUC7L3 (M1), and KIF11 (M7), which were all up-regulated in liver cancer 
according to the Human Protein Atlas. The blue bar in the upper right denotes the cases with high, moderate, low, and not detected signals. 
Abbreviations: N, normal; T, tumor.
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In this study, we chose HCC cell line data to build 
reference modules. Further transcriptome analysis will 
always dock the reference modules. Derived ME matrix 
can be used for differential module expression analysis or 
associated with external information, such as drug 
response or survival data. Here, we identified several sig-
nificant modules that may participate in HCV, HCC, and 

drug resistance. Based on these valid modules, hub genes 
were then mined. Associations of modules and survival, 
drug response were analyzed.

We found that the difference between normal liver and 
HCC adjacent tissue is not significant. This would help 
investigators to choose proper control samples if normal 
tissue is not available. We also observed that normal tissue 

Figure 9 Modules M3, M5, M6, M7, and M9 have good performance in distinguishing normal liver, HCV, and HCC.

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S336729                                                                                                                                                                                                                       

DovePress                                                                                                                       
9343

Dovepress                                                                                                                                                                Ye et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


has a compact module expression range. The HCC tissue 
has the most variable module expression range. This infor-
mation may indicate that HCC is diverse. Thus, the gene- 
level analysis results may vary due to the inherent property 
of HCC. Module-level analysis may provide more stable 
results, as genes in a module may participate in a common 
biological process.

We also provided a pipeline for drug-module associa-
tion analysis based on the ME matrix and IC50 matrix. 
Associations between cell lines and drugs can be inferred 
from those matrices. Thus, ranking the cells according to 
ME values can provide information about drug resistance 
or sensitivity. Choosing a proper cell model is the first step 
in pharmacological mechanism research. However, cur-
rently, there is no comprehensive resource about drug 
resistance for many HCC cell lines. A cell line may be 
resistant to one drug but sensitive to another drug. The 
task needs tremendous hard work when considering drug 
combinations. Researchers can only choose a cell model 
empirically according to previous publications. Network 
pharmacology has advantages in predicting valid drug or 
drug combinations, which will greatly reduce the workload 
and time. We proposed module-based drug resistance and 
combination inference. In our analysis, we suggested that 
if a drug IC50 is positively correlated with a module 
expression, the cell line with high expression of that mod-
ule would have resistance potential. However, if another 

drug IC50 is negatively correlated with that module 
expression, the cell line with high expression of that mod-
ule would have sensitive potential. The combination of the 
two drugs may re-sensitize the resistant drug. A further 
strategy is the combination of drugs that target different 
modules and both should be sensitive. If we treat modules 
as hallmarks of cancer, drugs should be subscribed to 
maximize the effectiveness of the medicine by targeting 
different modules. Thus, our analysis may provide impor-
tant information.

Using these modules, we also correlate them to survi-
val and doubling time. We for the first time found that M3, 
a focal adhesion module, is positively correlated with 
doubling time. It has been found that doubling time was 
correlated with constitutive activation of focal adhesion 
kinase.44 We found that higher expression of M3 indicates 
poor survival outcomes. M3 can perfectly classify HCV 
patients as it is elevated in HCV than normal tissue. We 
found that simvastatin may target M3. Simvastatin has 
been used to treat HCV clinically.45 Simvastatin is cyto-
toxic and could affect HCV infection in lipoprotein recep-
tor-deficient cell lines.46

Finally, using top hub genes in DME and Connectivity 
Map tool, we identified six drugs that merit further investiga-
tion. Some of the drugs have been reported in cancer treat-
ment. For HCV, doxorubicin has been used to treat advanced 
HCC for tens of years.47 Both GW-8510 and alsterpaullone 

Table 3 Sensitivity, Specificity, and Area Under ROC Curve (AUC)

Prediction Module AUC (95% CI) Sensitivity Specificity

HCC-Normal 1 0.819 (0.736–0.901) 0.612 0.929
5 0.992 (0.981–1) 0.987 1

6 0.986 (0.970–1) 0.967 1
7 0.992 (0.982–1) 0.980 1

9 0.987 (0.973–1) 0.961 1

13 0.830 (0.763–0.897) 0.743 0.929

HCC- HCC_cirrhosis 6 0.868 (0.772–0.965) 0.842 0.824
8 0.800 (0.669–0.931) 0.842 0.706

9 0.858 (0.760–0.955) 0.684 0.941

10 0.830 (0.712–0.947) 0.842 0.706
13 0.864 (0.760–0.968) 0.816 0.941

HCV-Normal 3 1 (1–1) 1 1

HCC-HCV 2 0.856 (0.771–0.940) 0.921 0.756
5 0.870 (0.792–0.948) 0.895 0.707
6 0.921 (0.858–0.984) 0.868 0.902

9 0.911 (0.842–0.979) 0.868 0.829

10 0.813 (0.720–0.906) 0.737 0.805
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are CDK inhibitors. Alsterpaullone was identified as the most 
potent inhibitor of HIV-1 among several drugs. For HCC, 
a derivative of digoxigenin has been proved to have antic-
ancer activities.48 Coralyne has synergistic effects on cell 
migration and proliferation of breast cancer cell lines with 
paclitaxel.49 These drugs merit further investigations.

Conclusion
In summary, we proposed a reference module-based ana-
lysis of HCC transcriptome and identify key modules that 
are associated with HCC development, survival, and drug 
resistance. M3 and M6 may play important roles during 

HCV to HCC development. M1, M3, M5, and M7 may 
play important roles in HCC survival. High M4, high M9, 
low M1, and low M3 may be associated with dasatinib, 
doxorubicin, CD532, and simvastatin resistance. Our ana-
lysis provides useful information for HCC diagnosis and 
treatment. The applications of the analysis pipeline can be 
expanded to the transcriptome data of other kinds of 
diseases.

Data Sharing Statement
The datasets analyzed in the study are available at the 
public database NCBI GEO (https://www.ncbi.nlm.nih. 

Figure 10 Correlations between module expression and IC50 reveal potential drug mechanisms of action and drug-resistant lines. (A) Workflow for drug-module 
association analysis; (B) drug-module correlation matrix for LCCL; (C) drug-module correlation matrix for LIMORE.
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gov/geo/), LIMORE (https://www.picb.ac.cn/limore/ 
batch), and LCCL (https://lccl.zucmanlab.com/hcc/down 
load). Codes to generate gene co-expression network is 
freely available at https://github.com/yhlaile/HCCnetwork.
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