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Purpose: The prognostic value of an N6-methyladenosine (m6A) methylation-related 
immune gene signature for lung adenocarcinoma (LUAD) was investigated.
Patients and Methods: Gene expression and clinical phenotype data of LUAD patients 
were downloaded from The Cancer Genome Atlas database. A list of immune-related genes 
was retrieved from the InnateDB database. Correlation analysis, survival analysis, and 
univariate and multivariate Cox regression analyses were performed. After allocating 
patients into a high-risk or a low-risk group, the corresponding survival rates, immune 
microenvironment, expression of immune checkpoint genes, and modulation of Kyoto 
Encyclopedia of Genes and Genomes pathways were examined. Finally, the expression 
levels of prognostic biomarkers were assessed in the GSE126044 dataset.
Results: Seven m6A-related immune prognostic genes were identified. High expression of 
PSMD10P1, DIDO1, ABCA5, and CIITA was associated with high survival rates, while that 
of PRC1, ZWILCH, and ANLN was associated with low survival rates. The high- and low- 
risk groups showed significant differences in terms of the abundance of six tumor-infiltrating 
immune cell types and expression of 12 immune checkpoint genes. The risk group acted as 
an independent prognostic factor (hazard ratio = 0.398, 95% confidence interval = 0.217– 
0.729, P = 0.003). Finally, the developed nomogram could predict most efficiently the 1-, 2-, 
and 3-year survival probability of LUAD patients with a C-index of 0.833.
Conclusion: A seven-gene risk signature, associated with the immune microenvironment in 
LUAD, showed independent prognostic value.
Keywords: lung adenocarcinoma, N6-methyladenosine methylation, immune-related genes, 
immune microenvironment, prognostic signature

Introduction
Lung cancer poses a serious threat to human health: in fact, according to global cancer 
statistics, this cancer type was associated with 2.09 million new cases and 1.76 million 
deaths worldwide in 2018.1 Lung adenocarcinoma (LUAD) accounts for approximately 
50% of all lung cancer cases2 and entails a 5-year survival rate of less than 15%.3 

Recently, the development of immune checkpoint inhibitors has led to a breakthrough in 
LUAD immunotherapy, improving long-term survival in patients with advanced-stage 
disease; however, tremendous clinical challenges, such as the fact that only a small 
proportion of patients benefit from immunotherapy,4,5 must still be overcome.

N6-methyladenosine (m6A) methylation is the most conserved and frequent 
internal modification of nucleic acids, and is primarily found in mRNAs and 
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long noncoding RNAs. m6A methylation is involved in 
multiple fundamental cellular functions, such as 3′-end 
and microRNA processing, pre-mRNA splicing, and 
translation regulation.6 m6A methylation is dynamic 
and reversible: it is catalyzed by m6A methyltrans
ferases (also called “writers”) and reverted by demethy
lases (also called “erasers”), whereas m6A-binding 
proteins (also called “readers”) are responsible for 
recognizing m6A-methylated sites.7 The genes coding 
for these m6A methylation-related enzymes participate 
in the genesis and progression of various cancer types. 
For example, the m6A methyltransferase METTL3 
accelerates bladder cancer formation and progression 
by promoting the maturation of pri-microRNA-221/ 
222.8 Similarly, the m6A reader YTHDF2 contributes 
to tumor metastasis and the stem cell phenotype in liver 
cancer by mediating the expression of the pluripotency 
factor Oct4.9 Moreover, m6A methylation regulators 
have been reported to be involved in the malignant 
progression of LUAD; consistently, an m6A methylation 
regulator-based prognostic signature not only showed 
a strong association with clinicopathological features 
but also acted as an independent prognostic factor in 
LUAD.10

In addition, m6A methylation participates in the reg
ulation of the immune response and the tumor immune 
microenvironment (TME).11 In particular, inhibition of the 
m6A writers METTL3/METTL14 has been shown to 
enhance the response to anti-PD-1 therapy. In fact, tumors 
characterized by the loss of METTL3/METTL14 expres
sion showed elevated cytotoxic CD8+ T-cell infiltration 
and increased secretion of the chemokines CXCL9/10 
and interferon-γ in the TME.12 Furthermore, overexpres
sion of the m6A eraser ALKBH5 sensitized the tumors to 
anti-PD-1 therapy by mediating the accumulation of lac
tate and suppressive immune cells (ie, myeloid-derived 
suppressor cells and tumor-infiltrating T regulatory cells 
[Tregs]) in the TME.13 Nevertheless, the role of m6A 
methylation-related immune genes in LUAD has yet not 
been elucidated.

Based on the gene expression and clinical phenotype 
data of LUAD patients included in The Cancer Genome 
Atlas (TCGA) database, we identified several immune 
prognostic signature genes whose expression was corre
lated with that of multiple m6A-related genes. These genes 
were used to establish a prognostic risk signature, whose 
correlations with clinical factors, the immune microenvir
onment, response to immune checkpoint inhibitors, and 

prognosis were further investigated to construct a risk 
model (Figure 1). The results of this study thus highlight 
novel potential therapeutic targets and prognostic markers 
for LUAD treatment.

Materials and Methods
Data Collection and Processing
RNA sequencing (RNA-seq) data in FPKM format and clin
ical phenotype data of LUAD in TCGA database (TCGA- 
LUAD) were downloaded from UCSC Xena browser 
(https://gdc.xenahubs.net). The data of a total of 572 samples 
were obtained, including those of 59 control cases and 513 
LUAD cases (Table 1). Genes were annotated to convert 
each Ensembl_ID into the corresponding Symbol_ID based 
on the reference genome hg38 (V 22) from the GENCODE 
database.14 The mean expression value was used as the 
reference expression value when referring multiple 
Ensembl_IDs to the same Symbol_ID. Genes with an expres
sion value of 0 in more than 80% of the samples were 
excluded from the analysis. The data from TCGA is publicly 
available. Thus, the present study was exempted from the 
approval of local ethics committees. The current research 
follows the TCGA data access policies and publication 
guidelines. All data submitted to the TCGA database has 
been ethically approved. The TCGA data citation guidelines 
and licenses have been followed.

Screening of m6A-Associated Immune 
Genes
The expression values of m6A methylation genes (ie, 
the genes coding for the methyltransferases METTL3, 
METTL14, METTL15, WTAP, VIRMA, RBM15, 
RBM15B, KIAA1429, and ZC3H13; the demethylases 
FTO and ALKBH5; and the m6A effectors RBMX, 
YTHDC1, YTHDC2, IGF2BP1, IGF2BP2, IGF2BP3, 
YTHDF1, YTHDF2, YTHDF3, HNRNPA2B1, and 
HNRNPC) were obtained from the TCGA-LUAD 
tumor sample dataset. The list of immune genes avail
able in ImmPort was downloaded from InnateDB;15 the 
expression values of the genes included therein were 
similarly retrieved from the TCGA-LUAD tumor sample 
dataset. Pearson correlation coefficients were calculated 
by correlation analysis using the cor test in R to screen 
for m6A-associated immune genes considering the fol
lowing cut-off values: |correlation coefficient| > 0.5 and 
P < 0.001.
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Evaluation of the Prognostic Value of 
m6A-Associated Immune Genes
Samples relative to patients with a survival time of less than 30 
days were removed, and the remaining 503 samples were 
retained (Table 2). According to the median expression value 
of each m6A-associated immune gene, patients were divided 
into high-expression and low-expression groups, in order to 
carry out stratified survival analysis via Log rank test and the 
Kaplan–Meier (KM) method. In addition, patients were ran
domly separated into a training set (n = 251) and a validation 
set (n = 252). In the training set, univariate Cox regression 
analysis was performed for genes displaying P < 0.05 in the 
KM survival analysis to further evaluate their prognostic value, 
and genes exhibiting P < 0.05 in the Log rank test were 
included in the subsequent multivariate Cox regression analy
sis. Genes with an independent prognostic value were revealed 
based on a log-rank P value lower than 0.05, and used for the 
subsequent analyses.

Gene Set Enrichment Analysis
Genes that were significantly related to prognosis as deter
mined by univariate Cox regression analysis were used for 
enrichment analysis. The R package ClusterProfiler ver
sion 3.2.1114 was used to perform Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway16 and Gene 
Ontology (GO) enrichment analyses.17 P < 0.05 was 
used as the significance threshold.

Construction of a Prognostic Risk Model
In order to evaluate the prognostic value of the selected 
genes, a prognostic risk model was developed using the 
following formula:

Risk score = ∑Coef immune genes × Exp immune 
genes

where Coef represents the β coefficient in multivariate Cox 
regression, and Exp represents the expression value of each 
immune gene. After calculating the risk scores, patients were 

Figure 1 Flow chart.
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separated into different risk groups, based on which a survival 
analysis was then performed.

Clinical Characteristics of Patients in the 
High-Risk and Low-Risk Groups
Differences in the clinical characteristics, including clinical 
TNM stage, response to treatment, age, and sex, between 
high-risk and low-risk patients were evaluated using the 
package ggstatsplot version 0.5.0 in R software, and a chi- 
square test was used to calculate P values.

Screening of Independent Prognostic 
Factors
Prognosis-associated factors, including clinical character
istics and risk score, were examined using univariate Cox 

regression analysis, after which factors characterized by 
a log-rank P lower than 0.05 were further analyzed by 
multivariate Cox regression analysis. Next, factors with 
a log-rank P lower than 0.05 were selected as independent 
prognostic factors. A nomogram was established based on 
such independent prognostic factors, and its predictive 
performance was evaluated through the calculation of the 
C-index.

Status of the Immune Microenvironment 
and Expression of Immune Checkpoint 
Genes in the High-Risk and Low-Risk 
Groups
The abundance of 22 tumor-infiltrating immune cell types 
[ie, naïve B cells, memory B cells, plasma cells, CD8+ 
T cells, naïve CD4+ T cells, resting memory CD4+ T cells, 

Table 1 Clinical Characteristics of All Subjects Included in the 
Study

Cancer (N=513) Control (N=59) P-value

Gender

Female 276 (53.8%) 34.0 (57.6%) 0.674

Male 237 (46.2%) 25.0 (42.4%)

Age (years)

<60 140 (27.3%) 17.0 (28.8%) 0.996
≥60 363 (70.8%) 42.0 (71.2%)

Missing 10.0 (1.9%) 0 (0%)

Stage

Stage I 280 (54.6%) 30.0 (50.8%) 0.62
Stage II 120 (23.4%) 13.0 (22.0%)

Stage III 80.0 (15.6%) 13.0 (22.0%)

Stage IV 25.0 (4.9%) 2.00 (3.4%)
Missing 8.00 (1.6%) 1.00 (1.7%)

T
T1 171 (33.3%) 19.0 (32.2%) 0.349

T2 275 (53.6%) 37.0 (62.7%)

T3 46.0 (9.0%) 2.00 (3.4%)
T4 18.0 (3.5%) 1.00 (1.7%)

Missing 3.00 (0.6%) 0 (0%)

N

N0 335 (65.3%) 30.0 (50.8%) 0.182

N1 94.0 (18.3%) 12.0 (20.3%)
N2 69.0 (13.5%) 13.0 (22.0%)

N3 2.00 (0.4%) 0 (0%)

Missing 13.0 (2.5%) 4.00 (6.8%)

M

M0 342 (66.7%) 40.0 (67.8%) 0.906
M1 24.0 (4.7%) 2.00 (3.4%)

Missing 147 (28.7%) 17.0 (28.8%)

Table 2 Clinical Characteristics of Subjects Included in the 
Prognosis Study

High Risk 
(N=310)

Low Risk (N=193) P-value

Gender

Female 154 (49.7%) 114 (59.1%) 0.0499

Male 156 (50.3%) 79.0 (40.9%)

Age (years)

<60 91.0 (29.4%) 45.0 (23.3%) 0.152

≥60 212 (68.4%) 145 (75.1%)

Missing 7.00 (2.3%) 3.00 (1.6%)

Stage

Stage I 165 (53.2%) 110 (57.0%) 0.721

Stage II 71.0 (22.9%) 45.0 (23.3%)

Stage III 52.0 (16.8%) 27.0 (14.0%)

Stage IV 17.0 (5.5%) 8.00 (4.1%)

Missing 5.00 (1.6%) 3.00 (1.6%)

T

T1 87.0 (28.1%) 80.0 (41.5%) 0.00907

T2 184 (59.4%) 87.0 (45.1%)

T3 29.0 (9.4%) 15.0 (7.8%)

T4 10.0 (3.2%) 8.00 (4.1%)

Missing 0 (0%) 3.00 (1.6%)

N

N0 198 (63.9%) 130 (67.4%) 0.182

N1 61.0 (19.7%) 31.0 (16.1%)

N2 45.0 (14.5%) 23.0 (11.9%)

N3 0 (0%) 2.00 (1.0%)

Missing 6.00 (1.9%) 7.00 (3.6%)

M

M0 215 (69.4%) 119 (61.7%) 0.675

M1 17.0 (5.5%) 7.00 (3.6%)

Missing 78.0 (25.2%) 67.0 (34.7%)
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activated memory CD4+ T cells, follicular helper T cells, 
Tregs, gamma delta T cells, resting natural killer (NK) 
cells, activated NK cells, monocytes, M0 macrophages, 
M1 macrophages, M2 macrophages, resting dendritic 
cells, activated dendritic cells, resting mast cells, activated 
mast cells, eosinophils, and neutrophils] in samples from 
high-risk and low-risk patients was evaluated using the 
CIBERSORT algorithm with the following parameters: 
number of permutation = 100 and quantile normalization 
of input mixture = false. P < 0.05 was used as the thresh
old for statistical significance to indicate immune cell 
types exhibiting significant differences in infiltrating abun
dance between the two groups. In addition, differences in 
the expression levels of immune checkpoint genes, includ
ing PD-1 (PDCD1), PD-L1 (CD274), CTLA-4, CD278 
(ICOS), Tim-3 (HAVCR2), LAG3, CD73, CD47, BTLA, 
TIGIT, MYD-1 (SIRPA), OX40 (TNFRSF4), 4–1BB 
(TNFRSF9), and B7-H4 (VTCN1), were also examined.

Finally, gene set variation analysis (GSVA)18 was car
ried out to investigate differences in the activity of the 
KEGG pathways between the high-risk and the low-risk 
group. In brief, based on the enrichment background (c2. 
cp.kegg.v7.2.symbols.gmt) reported in the MSigDB data
base version 7.2, enrichment scores of the KEGG path
ways were calculated for all samples to obtain a scoring 
matrix using the R package GSVA version 1.36.2; next, 
differential analysis for the activity status of each KEGG 
pathway in the high-risk and low-risk groups was carried 
out using the R package Limma. P < 0.05 was used as the 
threshold for statistical significance.

Validation of m6A-Associated Immune 
Genes in the GEO Database
The dataset GSE116959, including gene expression data 
from 57 LUAD samples and 11 healthy peritumoral lung 
tissues, was downloaded from the GEO database. Gene 
expression data were generated on a GPL17077 Agilent- 
039494 SurePrint G3 Human GE v2 8×60K Microarray 
039381 (Probe Name version). The original expression 
matrix and corresponding probe annotation information 
were extracted after standardized processing. After con
verting probes into gene symbols, gene expression values 
were defined as the average expression values of different 
probes in case the latter mapped to the same gene.

The expression values of m6A methylation-related genes 
were obtained from the GSE116959 dataset. The list of 
immune genes available in ImmPort was downloaded from 

InnateDB.15 Pearson correlation coefficients were calculated 
by correlation analysis using the cor test in R to screen for 
m6A-associated immune genes considering the following 
cut-off values: |correlation coefficient| > 0.5 and P < 0.001.

Results
Screening of m6A-Related Immune 
Prognostic Genes
After data preprocessing, expression data relative to 
3879 immune genes were obtained. A total of 856 co- 
expressing pairs with |correlation coefficient| > 0.6 and 
P < 0.001 were screened by correlation analysis, result
ing in the identification of 441 immune genes and 21 
m6A-related genes. Survival analysis was then carried 
out for these 441 immune genes, out of which 90 were 
found to correlate with the survival of LUAD patients 
(Table S1). Subsequently, these 90 immune genes were 
analyzed by univariate Cox regression, and 66 genes 
were found to be associated with the prognosis of 
LUAD patients (Table S2). Further multivariate Cox 
regression analysis showed that 7 out of these 90 
immune genes, namely those encoding protein regulator 
of cytokinesis 1 (PRC1), anillin actin binding protein 
(ANLN), death inducer-obliterator 1 (DIDO1), protea
some 26S subunit, non-ATPase, 10 pseudogene 1 
(PSMD10P1), class II major histocompatibility complex 
transactivator (CIITA), zwilch kinetochore protein 
(ZWILCH), and ATP binding cassette subfamily 
A member 5 (ABCA5), possessed independent prognos
tic value for LUAD patients (Figure 2A, Table S3).

A correlation heatmap showed that the expression of these 
seven immune prognostic genes was correlated with that of 
m6A-related genes (Figure 2B). In particular, DIDO1 expres
sion showed strong positive correlation with that of the m6A 
reader-encoding genes YTHDC1 and YTHDF1 but was nega
tively correlated with that of the m6A reader-encoding gene 
HNRNPC. Also, PSMD10P1 expression was positively corre
lated with that of the m6A writer-encoding gene RBM15. We 
performed a similar analysis in the GEO database, from which 
3934 m6A-related immune genes were obtained. After corre
lation analysis, a total of 117 co-expressing pairs including 111 
immune genes and 17 m6A-related genes were obtained. The 
seven m6A-related immune prognostic genes identified in 
TCGA database matched with 6 (ie, PRC1, ANLN, DIDO1, 
CIITA, ZWILCH, and ABCA5) of the abovementioned 117 
genes (Figure 2C).
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Survival analysis for these seven genes showed that 
patients displaying high expression of PSMD10P1, 
DIDO1, ABCA5, and CIITA were characterized by longer 
survival times. Conversely, high expression of PRC1, 
ZWILCH, and ANLN were associated with lower survival 
rates (Figure 3).

Results of Enrichment Analysis
A total of 66 prognostic genes were used for enrichment 
analysis. Considering a threshold of P < 0.05, genes 
involved in 12 KEGG pathways, 123 biological processes, 
32 cellular components, and 12 molecular functions were 
found to be enriched in the test dataset; only the top 10 

Figure 2 Identification of seven m6A-related immune prognostic genes. (A) Forest plot showing the results of multivariate Cox regression analysis for the seven reported 
genes; (B) correlation heatmap showing the correlations between the expression levels of seven immune genes and those of m6A-related genes based on data from The 
Cancer Genome Atlas database; (C) correlation heatmap showing the correlations between the expression levels of six immune genes and those of m6A-related genes 
based on data from the GEO database. Negative correlations are depicted in blue while positive correlations are depicted in red; *Indicates statistical significance P<0.05; 
**Indicates statistical significance P<0.01.

Figure 3 Survival analysis of seven m6A-related immune prognostic genes. Kaplan–Meier survival curves showing the prognostic value of PSMD10P1, DIDO1, ABCA5, CIITA, 
PRC1, ZWILCH, and ANLN.
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enriched categories are shown in Figure 4. These genes 
were mainly implied in pathways related to the cell cycle 
and oocyte meiosis (Figure 4A). Moreover, GO analysis 
revealed that these genes were mainly involved in orga
nelle fission (Figure 4B), chromosome condensation 
(Figure 4C), and DNA polymerase binding (Figure 4D).

Construction of a Prognostic Risk 
Signature
The seven aforementioned genes were used to establish 
a prognostic risk model, according to which risk scores 
were calculated. For each dataset, patients were divided 
into a high-risk and a low-risk group based on their 
median risk scores; survival analysis was then performed. 
In the training set, patients in the high-risk group had 
poorer prognosis compared to that of patients in the low- 
risk group (Figure 5A). Similar results were observed in 
the validation set (Figure 5B) and the whole set 
(Figure 5C).

Clinical Factors in the High-Risk and 
Low-Risk Groups
In order to investigate the association between the clinical 
factors and the risk score, differences in clinical factors 
between the high-risk and the low-risk group were exam
ined (Figure 6). Age (Figure 6A, P = 0.074), tumor stage 
(Figure 6C, P = 0.087), pathologic T (Figure 6D, P = 
0.566), pathologic N (Figure 6E, P = 0.854), and patholo
gic M (Figure 6F, P = 0.262) did not differ significantly 
between the high-risk and the low-risk group. However, 
the high-risk group had a higher proportion of male 
patients than the low-risk group (Figures 6B, 56% vs 
38%, P = 0.012). In addition, the low-risk group included 
more patients that successfully responded to treatment 
than the high-risk group (Figures 6G, 70% vs 55%, P = 
0.027). This might provide a partial explanation for the 
poor prognosis observed in the high-risk group.

We further evaluated differences in the expression of 
the seven prognostic genes included in the prognostic risk 

Figure 4 KEGG and GO enrichment analyses. (A) KEGG results; (B) biological process; (C) cellular component; (D) molecular function.
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model between patients responding and not responding to 
anti-PD-1 treatment based on data from the GEO dataset 
GSE126044. With the exception of PSMD10P1, the 
expression of all prognostic genes was detected in the 
GSE126044 dataset. Significantly higher expression of 
CIITA and significantly lower expression of ZWILCH 
was observed in patients who responded to anti-PD-1 
treatment than in those who did not. Moreover, decreased 
expression of ANLN, ABCA5, and PRC1 was observed in 
patients who responded to anti-PD-1 treatment, but these 
differences were not statistically significant (Figure 7).

Evaluation of the Independent Prognostic 
Value of the Prognostic Risk Model
Univariate Cox regression analysis showed that follow-up 
treatment success, risk group, pathologic N, and patholo

gic T were associated with the prognosis of LUAD 
patients. These factors were included in a multivariate 
Cox regression analysis, and the results indicated that 
follow-up treatment success [hazard ratio (HR) = 6.097, 
95% confidence interval (CI) = 3.513–10.584, P < 0.0001), 
risk group (HR = 0.398, 95% CI = 0.217–0.729, P = 
0.003], and pathologic N (HR = 2.059, 95% CI = 1.137– 
3.728, P = 0.017) were independent prognostic factors 
(Figure 8A, Table 3).

These four prognostic factors were used to establish 
a nomogram, which showed optimal predictive perfor
mance for the 1-, 2-, and 3-year survival probability of 
LUAD patients with a C-index of 0.833 (Figure 8B, 
Table 4). The calibration curves for 1-, 2-, and 3-year 
overall survival indicated that the prediction was consis
tent with the actual results (Figure 8C).

Figure 5 Survival analysis in the high-risk and low-risk groups. Survival curves showing the prognostic value of the risk score calculated by the prognostic risk model in the 
training set (A), validation set (B), and whole set (C).

Figure 6 Clinical factors in the high-risk and low-risk groups. Histogram showing the proportion of patients in the high-risk and low-risk groups exhibiting differences in age 
(A), sex (B), tumor stage (C), pathologic T (D), pathologic N (E), pathologic M (F), and successful response to treatment (G).
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Differences in Immune Microenvironment 
and Expression of Immune Checkpoint 
Genes Between the High-Risk and the 
Low-Risk Group
To investigate differences in the immune microenviron
ment between high-risk and low-risk patients, the abun
dance of 22 tumor-infiltrating immune cell types was 
evaluated using the CIBERSORT algorithm. The results 
showed that the abundances of six infiltrating immune 
cell types differed significantly between the high-risk 
and the low-risk groups. In particular, the high-risk 
group was characterized by a high abundance of infil
trating naïve B cells, plasma cells, activated dendritic 
cells, and eosinophils, while the low-risk group dis
played a high abundance of infiltrating monocytes and 
M1 macrophages (Figure 9A). Additionally, the expres
sion of various immune checkpoint genes differed sig
nificantly between the two risk groups (Figure 9B). In 
fact, most of the immune checkpoint genes, including 
BTLA, CD47, CD274, CTLA4, HAVCR2, ICOS, LAG3, 
PDCD1, SIRPA, TIGIT, TNFRSF4, and TNFRSF9, 
showed decreased expression in the high-risk group 
relative to that in the low-risk group.

Differences in KEGG Pathway 
Enrichment Between the High-Risk and 
the Low-Risk Group
GSVA was performed to investigate differences in the enrich
ment for KEGG pathways between the two risk groups, and 
47 KEGG pathways characterized by a significantly different 
activation status between the two groups were identified. 
Most of these KEGG pathways (45 out of 47), such as the 
Notch/Wnt/MTOR/MAPK signaling pathways and various 
metabolic pathways, were upregulated in the high-risk group. 
Conversely, the pathways “neuroactive ligand receptor inter
action” and “primary immunodeficiency” were downregu
lated in the high-risk group (Figure 10, Table S4).

Discussion
m6A methylation-related genes have been reported to 
participate in the onset and progression of various 
tumors.19 They have also been reported to regulate the 
TME.20 In this study, we identified seven m6A-related 
immune prognostic genes (ie, PSMD10P1, DIDO1, 
ABCA5, CIITA, PRC1, ZWILCH, and ANLN) for LUAD 
based on their expression data in TCGA. High expression 
of PSMD10P1, DIDO1, ABCA5, and CIITA was 

Figure 7 Expression of prognostic genes in responders and non-responders to anti-PD-1 treatment in the GSE126044 dataset. *Indicates statistical significance P<0.05; 
**Indicates statistical significance P<0.01.
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associated with high survival rates, while high expression 
of PRC1, ZWILCH, and ANLN was associated with low 
survival rates in LUAD patients. The observed differ
ences in the immune microenvironment and immune 

gene expression likely affected such prognosis. 
Therefore, the seven m6A-related immune prognostic 
genes identified in this study could serve as independent 
predictors of LUAD prognosis.

Figure 8 Evaluation of the prognostic risk model. (A) Forest plot showing the results of multivariate Cox regression analysis for clinical factors and risk groups; (B) 
nomogram; and (C) calibration curves for the prediction of 1-, 2-, and 3-year overall survival of LUAD patients. *Indicates statistical significance P<0.05; **Indicates statistical 
significance P<0.01.

Table 3 Univariate and Multivariate Cox Regression Analyses for Clinical Factors

Clinical Characteristics Uni-Variables Cox Multi-Variables Cox

HR Lower.95 Upper.95 p-val HR Lower.95 Upper.95 p-value

Followup_treatment_success 6.3196458 3.6642597 10.899316 3.36E-11 6.0972025 3.512516 10.583832 1.32E-10

RiskGroup 0.3723584 0.2040861 0.6793738 0.0012818 0.3976044 0.2167263 0.7294422 0.0028927

Pathologic_N 2.1234124 1.1812657 3.8169908 0.0118453 2.0586594 1.1369259 3.7276644 0.0171447

Pathologic_T 2.0544975 1.0508784 4.0166018 0.035287 1.9726276 0.997503 3.9010005 0.050846

Pathologic_M 2.0133055 0.9630923 4.2087337 0.0628845

Gender 0.7862675 0.4917121 1.2572734 0.3153702

Age 1.1335861 0.6802409 1.8890624 0.6303657

Abbreviation: HR, hazard ratio.
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DIDO1 has been found to be involved in the pro
gression and metastasis of many cancers, such as 
melanoma21 and esophageal squamous cell 
carcinoma.22 Indeed, its expression is significantly cor
related with the invasion depth of tumors. On the other 
hand, CIITA might drive the expression of MHC class 
II molecules which could stimulate tumor-specific CD4 
+ T helper cells.23 MHC class II molecules are neces
sary elements for cell recognition by CD4+ T helper 
cells, and are generally not expressed in solid tumors. 
In turn, CD4+ T helper cells play a fundamental role in 
activating and sustaining the proliferation of immune 
effector cells that are required for eliminating tumor 
cells.24 Therefore, such anti-tumor effect might be 
enhanced by inducing CIITA expression in tumor 
cells. PRC1 encodes polycomb repressive complex 1, 
an important epigenetic regulator that also functions as 
a transcriptional activator during the onset of diseases 
and cancers.24 In particular, Su et al observed that 
PRC1-driven tumor metastasis in double-negative pros
tate cancer occurs via coordinated modulation of stem
ness, immune suppression, and neoangiogenesis.25 

Moreover, high expression of ANLN in LUAD may 
promote tumor metastasis by triggering epithelial– 
mesenchymal transformation, since patients displaying 
elevated ANLN expression present with metastasis 
more frequently than patients with low ANLN 
expression.26 Long et al suggested the predictive 
value of ANLN for both LUAD diagnosis and 
prognosis.27 Considering their important functional 
roles, we suggest that these genes can be considered 
novel therapeutic targets and potential prognostic bio
markers of LUAD. In addition, ABCA subfamily mem
bers are involved in lipid metabolism. In the mouse 
macrophage cell line RAW264.7, the expression of 
Abca5 can be strongly induced by the presence of 
cholesterol.28 In addition, increased expression of 
ABCA5 was found in the hippocampal neurons and 

amygdala neurons of patients with Alzheimer’s 
disease.29 However, a correlation between ABCA5 
expression and LUAD has not been previously 
reported. Using these seven genes, we constructed 
a prognostic risk model and distinguished LUAD 
patients into groups based on their risk score. Patients 
with high risk scores showed worse outcomes com
pared to those of patients with low risk scores. These 
results confirmed the prognostic value of this gene- 
based risk model.

In addition, we further investigated the potential 
reasons for the poor survival outcome of high-risk 
patients by comparing clinical factors, the state of the 
immune microenvironment, and the expression of 
immune checkpoint genes between high-risk and low- 
risk patients. The overall survival of patients in the 
high-risk group was shorter than that of patients in 
the low-risk group. This difference prompted us to 
further explore the possible underlying mechanisms: 
we found that this phenomenon might depend on dif
ferences in the abundance of tumor-infiltrating immune 
cells and in the expression of immune checkpoint 
genes. In fact, the high-risk group was characterized 
by a high abundance of infiltrating naïve B cells, 
plasma cells, activated dendritic cells, and eosinophils, 
while the low-risk group displayed a high abundance of 
infiltrating monocytes and M1 macrophages. The mod
ulation of M1 and M2 macrophage polarization is 
important for tumor progression.30 In particular, anti- 
PD-1 treatment has been reported to inhibit lung 
metastasis by activating M1 macrophages and inhibit
ing M2 macrophages.30 In addition, dendritic cells play 
key roles in the TME, as they can trigger the activation 
of naïve T cells and induce the differentiation of effec
tor cells, and have been found to affect the progression 
of multiple tumors.31 Moreover, tumor-infiltrating acti
vated or mature dendritic cells are associated with 
immune activation and recruitment of immune effector 

Table 4 C-Index for Nomogram Model and Prognostic Factors

C_Index Lower.95 Upper.95 p-value

Nomogram_combined model 0.832929 0.77935579 0.886503 3.97E-34
Prognostic model 0.759351 0.63603309 0.882669 3.76E-05

Treatment 0.89351 0.83110241 0.955917 4.38E-35

N 0.74654 0.61251531 0.880565 0.000312
T 0.720142 0.56504663 0.875237 0.005403
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cells. Nevertheless, tumor cells can inhibit dendritic 
cell function or alter the TME to recruit immunosup
pressive dendritic cells.32 The majority of immune 
checkpoint genes, such as CTLA4, CD274 (PD-L1), 

and PDCD1 (PD-1), showed decreased expression in 
the high-risk group with respect to that in the low-risk 
group. Since the immune checkpoint genes CTLA4 and 
PD-1 are negative regulators of T-cell immune 

Figure 9 Status of the immune microenvironment and expression of immune checkpoint genes in the high-risk and low-risk groups. (A) Violin plot showing differences in 
the abundance of tumor-infiltrating immune cell types between the high-risk and the low-risk groups. The high-risk group is depicted in red and the low-risk group is 
depicted in blue. (B) Box plots showing differences in the expression of immune checkpoint genes between the high-risk and the low-risk groups. *Indicates statistical 
significance P<0.05.
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function, their inhibition could activate the immune 
response.33 Consistently, PD-1 or PD-L1 blockage has 
been approved as a therapy for multiple advanced 
tumors, and has been shown to improve the response 
and clinical outcomes of patients with advanced non- 
small-cell lung cancer.34 Altogether, the above consid
erations might partly explain the poor prognosis 
observed in the high-risk group.

Nevertheless, this study also presents are some limita
tions. Firstly, this study was based on bioinformatics meth
ods, and the actual clinical significance of the results 
remains to be verified experimentally. Secondly, as this 
was a retrospective study, a multi-center and large-sample 

prospective study will also be necessary in the future. 
However, this work provides promising directions for 
future clinical studies.

Conclusion
In conclusion, we identified seven m6A-related immune 
prognostic genes (PSMD10P1, DIDO1, ABCA5, CIITA, 
PRC1, ZWILCH, and ANLN) in LUAD. A prognostic 
risk model based on these seven genes could accurately 
predict the survival of LUAD patients; in particular, 
patients with high risk scores exhibited worse outcomes. 
Moreover, the risk score was associated with successful 
response to treatment and status of the immune 

Figure 10 Gene set variation analysis. Heatmap showing the KEGG pathways characterized by significant differences in their activation status between the high-risk and the 
low-risk groups.
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microenvironment, and can thus act as an independent 
prognostic factor for patients with LUAD. Further clin
ical studies are necessary to fill existing gaps in the 
present study and explore the mechanisms underlying 
the observed phenomena.
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