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Abstract: Mantle cell lymphoma (MCL) is a rare and aggressive subtype of lymphoma 

associated with a poor prognosis. Chemotherapy is the mainstay of frontline treatment for 

patients with this disease. Despite high response rates to combination chemotherapy regimens, 

the majority of patients relapse within a few years of treatment. Therefore, finding efficacious 

treatments for relapsed or refractory disease has become a growing area of clinical research. 

The mammalian target of rapamycin (mTOR) is responsible for integrating cell signals from 

growth factors, hormones, and nutrients and communicating energy status. Scientific research 

on aberrant molecular pathways in cancer has revealed that several proteins along the mTOR 

pathway may be upregulated in this and other types of lymphoma. Temsirolimus is the first 

mTOR inhibitor that has shown clinical efficacy in treating MCL that has relapsed after 

frontline treatments.
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Current practices in managing mantle  
cell lymphoma
Introduction
Mantle cell lymphoma (MCL) is an uncommon subtype of non-Hodgkin lymphoma 

(NHL). Despite having been identified as a clinically and morphologically unique 

type of lymphoma 20 years ago, MCL lacks a standard-of-care regimen in current 

treatment approaches. Although efficacious frontline treatments with combination 

chemotherapy regimens have been identified, the rate of relapse remains unacceptably 

high. A growing body of research suggests targeted therapies hold promise for patients 

with relapsed or refractory disease. Among these new targeted agents is a class of 

drugs called mammalian target of rapamycin (mTOR) inhibitors. Temsirolimus, the 

first drug in this class marketed as an anticancer agent, has shown in vitro and in vivo 

activity against MCL. This review of the literature will discuss the application and use 

of temsirolimus in relapsed or refractory MCL.

NHL is the most commonly seen hematologic malignancy in the United States. 

According to the American Cancer Society, it is the fourth leading cause of cancer in 

women and the fifth leading cause of cancer in men in the United States; an estimated 

65,980 people were diagnosed with the disease in 2009. NHL encompasses a large 

and heterogeneous group of lymphomas, each with unique pathologic and clinical 

characteristics. Among the more than 30 subtypes of NHL, MCL accounts for 6% of 

cases and carries the worst prognosis.1
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MCL is an aggressive lymphoma with a short overall 

survival (OS) duration when left untreated; the median OS 

duration is 3–5 years.2–6 The majority of patients have pro-

gressed to advanced stages (III or IV) of the disease by the 

time of diagnosis and often have disease outside of the lymph 

nodes.3 The most frequent sites of extranodal involvement 

are the bone marrow, peripheral blood, and gastrointestinal 

tract.4 The disease has a slight male predominance, and 

patients are typically in their seventh decade of life at the 

time of diagnosis.5

Specific clinical features have been identified as prognostic 

factors and are used to calculate a prognostic score called the 

Mantle cell International Prognostic Index (MIPI).7 Indicators 

of poor prognosis (low performance status, advanced age, high 

lactate dehydrogenase levels, and leukocytosis) are assigned 

values and added together. The corresponding score may be 

useful for predicting the clinical course of an individual’s 

disease and has the potential to help guide treatment.

Newly diagnosed MCL
In a very small subset of patients, MCL has an indolent 

course. A watch-and-wait method has been used in these 

patients and may be reasonable as long as their disease 

progression remains slow.8 For the majority of patients with 

MCL, however, the prompt initiation of cytotoxic therapy is 

warranted. Chemotherapy is the mainstay of frontline treat-

ment, and the addition of biologic therapy (eg, rituximab) 

has become a widely accepted standard. Consolidation treat-

ment using high-dose chemotherapy followed by autologous 

hematopoietic stem cell transplantation is now a growing 

area of clinical research in this setting.

Current options for frontline therapy include combination 

regimens, usually involving multiple conventional chemo-

therapy agents, rituximab, and corticosteroids. Early data 

with rituximab, cyclophosphamide, doxorubicin, vincristine, 

and prednisone (R-CHOP) therapy demonstrated favorable 

initial responses in patients with MCL, but not the increase 

in survival that was demonstrated in other subtypes of 

NHL using the same regimen.9 A prospective single-center 

study assessed the efficacy of a more dose-intense regimen 

involving rituximab, cyclophosphamide, vincristine, doxoru-

bicin, and dexamethasone alternating with methotrexate and 

cytarabine (R-hyperCVAD/MA).10 The authors of the latter 

trial concluded that dose intensification does increase 

response rates and has the potential to increase OS.11 More 

recently, a prospective multicenter study by the Southwest 

Oncology Group attempted to replicate these results and 

confirmed the high response rates seen in the single-center 

study.12 A newer approach in the frontline setting involves 

studying the combination of R-hyperCVAD/MA with 

targeted therapies like bortezomib, a proteosome inhibitor 

approved for relapsed MCL, with the hopes of increasing 

first-line efficacy. Studies of this combination are currently 

underway.

One limitation of the R-hyperCVAD/MA regimen is the 

high rate of adverse events associated with the MA cycles, 

especially in patients older than 60 years.10 In an attempt 

to decrease toxicity while maintaining efficacy with this 

regimen, the Wisconsin Oncology Network performed a small 

Phase II study to assess the use of a modified R-hyperCVAD 

regimen – one that did not have alternating MA cycles and 

instead included a maintenance program using rituximab.13 

This study demonstrated that modified R-hyperCVAD 

produced overall response rates (ORRs) comparable to the 

original regimen and had a lower incidence of adverse events 

despite the study’s inclusion of an older patient population. 

Recently, a retrospective study observing patients with MCL 

treated at a single center over time concluded that less dose-

intense therapy (eg, R-CHOP) may yield similar rates of OS 

as R-hyperCVAD/MA, despite higher rates of initial response 

to dose-intense therapy.14

The role of high-dose chemotherapy followed by 

autologous hematopoietic stem cell transplantation has 

also been studied in MCL. Initially, it was reserved for 

treatment of patients with relapsed disease after response to 

second-line chemotherapy. However, preliminary evidence 

failed to show long-term remissions using this strategy.15 

Not surprisingly, given that prognosis worsens with each 

failed therapy, the subset of patients who had been through 

fewer lines of therapy seemed to benefit more than those 

who had received multiple lines of treatment prior to 

transplantation.16 In line with this decrease in efficacy with 

subsequent treatments, earlier autologous hematopoietic 

stem cell transplantations following response to frontline 

therapy have produced positive results in several prospec-

tive studies.17,18 Of note, patients whose disease achieves 

complete or partial remission after induction chemotherapy 

had better rates of OS and progression-free survival (PFS) 

after autologous hematopoietic stem cell transplantation.19 

One recent study implemented an intensified induction 

chemotherapy regimen followed by autologous hematopoi-

etic stem cell transplantation in newly diagnosed patients 

with MCL and found a high rate of PFS at 2 years, provid-

ing further encouraging evidence for the use of upfront 
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transplantations in MCL.20 New data on allogeneic and 

nonmyeloablative stem cell transplantations are adding to 

the already expanding choices of transplant schemas in 

MCL; however, their discussion is beyond the scope of 

this review.

Relapsed or refractory MCL
Despite favorable responses to chemotherapy in de novo 

MCL, most patients will experience a recurrence of their 

disease. Treating patients with relapsed or refractory dis-

ease presents a challenge because response rates are lower 

in this setting than they are in frontline treatments. Treat-

ment options in the second-line setting have historically 

been limited, with the use of multiagent chemotherapy 

regimens showing only marginal utility. However, with the 

advent of newer agents and targeted therapies, the options 

are expanding. Bortezomib, the first in its class of protea-

some inhibitors, was the first agent to be approved by the 

United States Food and Drug Administration (FDA) for use 

in relapsed or refractory MCL.21–24 Bendamustine, a new 

agent encompassing properties of both purine analogs and 

alkylating agents, has been used in this setting as part of 

combination therapy and has shown promising results.25–28 

More data are emerging on the use of thalidomide and 

lenalidomide, two multifunctional immunomodulatory 

agents, as second-line treatments.29,30 Another promising 

new agent in this setting is temsirolimus, an analog of the 

immunosuppressant drug sirolimus (first known as rapamy-

cin), which has shown efficacy in treating relapsed or 

refractory MCL. Table 1 compares the efficacy and general 

toxicities of the second-line agents currently employed in 

treating MCL as observed in Phase II trials.

Targeting the PI3K/Akt/mTOR 
survival pathway
Rapamycin was isolated from the bacteria Streptomyces 

hygroscopicus and has been approved by the FDA as 

an immunosuppressive agent. Since the discovery of 

rapamycin in the 1970s, the study of its effects on cells 

has helped scientists explore new intracellular signaling 

mechanisms, namely those involving the plasma mem-

brane protein phosphatidylinositol 3-kinase (PI3K). The 

activation of PI3K causes changes within the cell through 

the phosphorylation of a variety of downstream effector 

proteins. One of these proteins is Akt, a serine/threonine 

kinase, which has more than 50 potential downstream 

targets and is directly activated by PI3K.33 One of the 

most critical proteins affected by Akt is mTOR. Taken 

together, the PI3K/Akt/mTOR pathway helps control cell 

metabolism, survival, and proliferation through the activa-

tion and inactivation of various proteins, as demonstrated 

in Figure 1.

Early clinical trials with rapamycin noted the drug’s 

cytostatic properties and its potential as an antitumor agent.34 

Scientists found that rapamycin exerts its effect on the cell 

by binding to the 12-kDa immunophilin FK506-binding 

protein (FKBP12) and that the FKBP12–rapamycin complex 

inhibits the activity of mTOR.35 This prompted an area of 

research using mTOR inhibitors for anticancer therapy and 

increased interest in targeting various aspects of the PI3K/

Akt/mTOR pathway.

Current evidence suggests that mTOR exists as a multi-

protein complex, with its downstream effects being regulated 

by its association with various proteins, growth factors, and 

nutrients. Researchers have isolated two specific complexes, 

Table 1 The comparative efficacy of second-line agents in MCL (data from select Phase II trials)

Clinical trials in relapsed  
or refractory MCL

N PR CR ORRa Significant AEb

Bortezomib21 141 26% (36/141) 6% (9/141) 47% Fatigue, thrombocytopenia, neuropathy
Bortezomib22 28 43% (12/28) 0 46.4%
Bortezomib23 29 21% (6/29) 21% (6/29) 41% (12/29)
Bortezomib24 10 40% (4/10) 0 50% (5/10)
Lenalidomide30 15 33% (5/15) 20% (3/15) 53% (8/15) Neutropenia, leucopenia, thrombocytopenia
Thalidomide29 16 50% (8/16) 25% (4/16) 81% (13/16) Somnolence, neuropathy, constipation
Bendamustine + fludarabine25 9 66% (6/9) 33% (3/9) 100% (9/9) Leukopenia, neutropenic fever,  

thrombocytopenia, anemiaBendamustine + rituximab26 16 25% (4/16) 50% (8/16) 75% (12/16)
Bendamustine + rituximab +  
mitoxantrone28

18 44% (8/18) 33% (6/18) 78% (14/18)

Temsirolimus31 27 37% (10/27) 4% (1/27) 41% (11/27) Thrombocytopenia, fatigue,  
hyperglycemia, dyspneaTemsirolimus32 34 35% (12/34) 3% (1/34) 38% (13/34)

Notes: aORR based on PR and CR. bGenerally grade 3 or higher.
Abbreviations: N, number of patients with MCL evaluable for efficacy; PR, partial response; CR, complete response; ORR, overall response rate; AE, adverse events.
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mTORC1 and mTORC2, each leading a separate branch of 

the mTOR pathway. The mTORC1 complex includes mTOR 

and a protein called regulatory-associated protein of mTOR, 

whereas mTORC2 is made of mTOR and the rapamycin-

insensitive companion of mTOR protein.36 Essentially, 

activated mTOR is responsible for integrating cellular signals 

and triggering downstream targets.

Among other functions, mTORC1 is responsible for the 

phosphorylation of two substrates – ribosomal p70 S6 kinase 

(S6K1) and elongation initiation factor 4E (eIF4E)-binding 

protein 1 (4E-BP1).37 Activated S6K1 promotes protein 

synthesis by allowing translation of ribosomal proteins. 

The phosphorylation of 4E-BP1 causes disassociation from 

eIF4E, thus allowing eIF4E to recruit ribosomes to mRNA 

via association with the mRNA cap. The result of mTOR-

activated translation of mRNA is the production of proteins 

that are necessary for G1 cell-cycle progression and initiation 

of the S phase.38 Passage from G1 to S phase is considered 

the most crucial step in the cell cycle.

Although the exact mechanism by which mTOR regulates 

cell-cycle progression is not well understood, one proposed 

mechanism includes the eIF4E-dependent nuclear transport 

and translation of mRNAs that encode for cell-cycle 

regulators such as cyclin D1.39,40 In general, the cyclins are 

a group of proteins that guide cell cycling from one phase 

to another. Four different classes of cyclins exist (A, B, D, 

and E), and each is responsible for regulating different phases 

of the cell cycle. The role of cyclin D includes promoting 

the gene transcription involved in the transition from G1 to 

S phase.

Rationale for targeting mTOR  
for cancer therapy
A close study of mTOR’s central role in intracellular signaling 

and advances in research on deregulated signaling pathways 

in cancer have led scientists to study the effects of aberrant 

mTOR function. Through years of research, scientists have 

found correlative data to suggest that mTOR deregulation can 

lead to tumorigenesis via increased cell growth and survival 

and via decreased apoptosis.

Deregulation of proteins upstream of mTOR
In normal cells, mTORC1 activation represses PI3K–Akt 

signaling upstream via a negative feedback mechanism 
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Figure 1 Intracellular proteins involved in the PI3K/Akt/mTOR pathway.
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involving S6K1.41 In addition, the tumor suppressor gene 

PTEN can inhibit Akt activation via a reduction in levels 

of P13K in the cell membrane.42 In support of this finding, 

cells that lack PTEN exhibit a constitutively active form of 

Akt.43 Loss of PTEN from gene alteration or deletion has been 

found in a variety of human cancers, including lymphoid 

neoplasms.44,45 Other mechanisms of increased PI3K–Akt 

activity include the amplification of genes that encode for 

Akt.46 An alternate hypothesis suggests that mTORC2 can 

directly activate Akt, thus circumventing the negative feed-

back mechanism led by S6K1.47

Deregulation of proteins downstream of mTOR
The overexpression of the downstream protein eIF4E in 

cancer cells coincides with an increase in tumorigenesis 

and has become an increasingly vigorous area in oncology 

research. Scientists have shown that cells exhibiting an 

overexpression of eIF4E have markedly increased levels of 

cyclin D1.48 One explanation for this finding is an increase 

in eIF4E-facilitated transport of cyclin D1 mRNA from the 

cell nucleus to the cytoplasm.49 The clinical importance of 

eIF4E function is supported by evidence in human cancer 

cells. A strong expression of eIF4E has been observed in 

some NHL cell lines, particularly in the aggressive and highly 

aggressive subtypes, suggesting that the level of eIF4E may 

be predictive of the clinical characteristics and behavior of 

particular cancers.50

Studies on mouse xenografts have demonstrated that 

in addition to its effects on cell-cycle progression, eIF4E 

participates in the activation of a pathway that suppresses 

apoptosis.51 In normal cells, mTOR suppresses the DNA 

repair protein p53 during periods of cell proliferation. This 

occurs via the protein MDM2, from the murine double minute 

(MDM) oncogene, which is a negative regulator of p53. The 

normal function of p53 is to enable DNA repair and trigger 

apoptosis in cells that cannot be repaired after DNA damage. 

Elevated levels of eIF4E in oncogenic cells – possibly via the 

upregulation of mTOR – can lead to an upsurge in transport 

of MDM2 mRNA from the nucleus.52 The enhanced levels 

of MDM2 can boost p53 inhibition and upset the balance 

between cell proliferation and programmed cell death, thus 

leading to tumor growth.52

Another group of proteins downstream of mTOR 

involved in cell growth and proliferation includes those 

encoded by the Myc family genes: c-Myc, N-Myc, and L-Myc. 

Studies on murine models have demonstrated that c-Myc 

enhances protein synthesis during lymphocyte development 

and carries the ability to induce apoptosis in quiescent 

cells.53 The overexpression of c-Myc has been implicated in 

the pathogenesis of B-cell lymphomas, especially in more 

aggressive subtypes. Research has indicated that lymphom-

agenesis involving c-Myc may be accelerated by various 

cell-cycle proteins such as cyclin D1.54 In addition, elevated 

levels of eIF4E may further augment the effects of cyclin 

D1 on cells with deregulated c-Myc.55 Studies show that 

overexpression of eIF4E inhibits c-Myc-induced apoptosis.51 

Since c-Myc is also an upstream activator of eIF4E, c-Myc 

may induce a feedback mechanism for suppression of its own 

proapoptotic function via increased eIF4E.56

Hypoxia-inducible factor (HIF) is a family of transcrip-

tion factors involved in angiogenesis, glucose metabolism, 

and apoptosis regulation, which are activated under hypoxic 

conditions in the cell.57 Researchers have reported an increase 

in HIF1α in hematologic malignancies despite conditions of 

normoxia.58 This increase may be due to the effects of Akt-

mediated translation of HIF.59 Interestingly, the upregula-

tion of HIF1α was found to correlate with the presence of 

aberrant mTORC1 pathways.60 It is possible that tumor cells 

overexpressing Akt may increase HIF1α expression via the 

upregulation of mTOR.

Rationale for using mTOR inhibitors  
for the treatment of MCL
MCL can be differentiated from other subtypes of NHL 

by the expression of the translocation t(11;14)(q13;q32) 

observed by fluorescence in situ hybridization (FISH) and 

the subsequent overexpression of the cyclin D1 protein as 

seen by immunohistochemical (IHC) analysis. The t(11;14) 

determines the deregulated expression of cyclin D1  in 

lymphoid cells because of its proximity to B-cell immuno-

globulin heavy chain transcription enhancers.38 Two other 

types of cyclin D proteins, D2 and D3, also exist, and each 

is specific to certain tissues. Cyclins D2 and D3 are used in 

normal lymphoid cells, but are replaced by overexpressed 

cyclin D1 in cases of MCL.61

Various additional proteins have also been shown to be 

upregulated in MCL. As mentioned earlier, PI3K/Akt is a 

major signaling pathway that regulates cell growth and cell 

death through a variety of molecular pathways, including 

mTOR activation. Interestingly, the PI3K/Akt pathway 

has been found to be constitutively active in some cases of 

MCL. In one study, the upregulation of Akt increased the 

antagonistic activity of phosphorylated MDM2 against p53, 

which is analogous to earlier preclinical data.62 A strong 

correlation between upregulation of Akt and the presence 

of activated mTOR was also observed, although mTOR 
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activation through Akt-independent pathways could not 

be ruled out. In further support of these data, another study 

showed the increased activation of the mTOR pathway in 

MCL cell lines and found enhanced Akt activation in one-

third of MCL tumors.63 More recent data have indicated that 

PTEN might not be lost in MCL cells, but rather may persist 

in an inactivated form secondary to constitutive phosphory-

lation.64 In contrast to earlier studies that predicted that Akt 

upregulation would be more common in the rare blastoid 

variant of MCL, new data suggest that Akt activation might 

be just as common in normal variants of MCL.64

Given these findings, the treatment of MCL cells with 

rapamycin seemed to be the next logical step for researchers. 

Reports from earlier data demonstrated the effects of rapamy-

cin in significantly reducing cyclin D1 levels in some in vitro 

cell cultures, presumably by delaying its accumulation.65 

One study demonstrated a decrease in cyclin D1  mRNA 

translation secondary to the loss of eIF4E in rapamycin-

treated cells, which could explain the decrease in cyclin 

D1 accumulation.40 Interestingly, cyclin D1 levels in MCL 

cells treated with rapamycin were not significantly altered, 

suggesting that cyclin D1 might not be the primary target of 

mTOR inhibition in this disease, but rather a downstream 

effect of mTOR inhibition.66 The direct effect of rapamycin 

on cyclin D1 warrants further study.

What is known about rapamycin is its ability to bind 

intracellular FKBP12 and form a complex that inhibits the 

activity of mTORC1. Thus, mTORC1 is also known as the 

rapamycin-sensitive complex. Since FKBP12–rapamycin is 

not known to exhibit similar action on mTORC2, the latter 

is known as the rapamycin-insensitive complex. Scientific 

interest in mTORC2 inhibition arises partly from its abil-

ity to activate Akt signaling and overcome the negative 

feedback mechanism that normally takes place secondary 

to PI3K activation.

Clinical data on the use of temsirolimus 
in MCL
The National Cancer Institute (NCI) identified rapamycin as 

a potential anticancer therapy in 1981 and began studying 

its effects on a variety of human cancers.67 The develop-

ment of rapamycin as an anticancer therapy, however, was 

limited by its low oral bioavailability (about 14%) and low 

solubility in aqueous solutions.68 This led to the development 

of temsirolimus (rapamycin-42-[2,2-bis-(hydroxymethyl)]-

propionate), a naturally occurring water-soluble ester analog 

of rapamycin with improved stability and bioavailability 

when administered intravenously (IV).69 The main in vivo 

metabolite of temsirolimus is rapamycin (sirolimus), and 

both molecules exhibit similar potency with regard to mTOR 

inhibition. Similar to rapamycin, temsirolimus binds with 

high affinity to FKBP12, decreasing phosphorylation of 

S6K1 and 4E-BP1, inhibiting mRNA synthesis, and resulting 

in an approximately 15% decrease in protein synthesis.69 

Preclinical studies with temsirolimus demonstrated its ability 

to delay tumor progression in a variety of human cancer 

models.70–73

A dose-escalation study with temsirolimus was under-

taken in patients with advanced cancers on the basis of 

activity of temsirolimus in animal models.74 Temsirolimus 

was administered once weekly at a starting dose of 7.5 mg/m2, 

and each cycle consisted of four consecutive weekly doses. 

Rates of immunosuppression were low throughout the study, 

even in patients receiving the highest dose of 220 mg/m2. The 

most frequent adverse effects seen were stomatitis, rash, and 

hypercholesterolemia. The main dose-limiting toxicity of 

temsirolimus in this study was reversible thrombocytopenia. 

To find the most appropriate dose for patients, a simulation 

test was performed to compare the pharmacokinetics between 

body surface area-based dosing vs fixed/flat dosing. The 

study showed no difference in the area under the curve and 

low interpatient variability between the dosing schemas, 

suggesting that the use of fixed doses would be appropriate 

for further analyses.74

Of the groups of patients with cancer exposed to temsi-

rolimus in early clinical trials, those with renal cell cancer 

(RCC) appeared to accrue the largest potential benefit from 

this therapy. A large Phase III randomized trial demonstrated 

an increase in OS with temsirolimus over interferon alfa, 

which had been the standard of care for RCC at the time.75 

In 2008, temsirolimus was FDA approved for the treatment 

of patients with advanced RCC with poor prognostic features. 

The approved dose was based on Phase II trials showing the 

efficacy and safety of weekly infusion with a flat dose of 

25 mg delivered IV.76 Since the terminal half-life of rapamy-

cin is about three times that of temsirolimus (54.6  hours 

vs 17.3 hours), the weekly dosing schedule was thought to 

provide sustained clinical activity between doses.77

On the basis of prior research on rapamycin activity in 

MCL cells, researchers began to assess the effects of single-

agent temsirolimus in patients with relapsed MCL. One Phase 

II trial of temsirolimus for MCL included patients who had 

relapsed or were refractory to one or more lines of prior 

therapy. For inclusion in this study, all patients had to have 
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cyclin D1-positive tumors as determined by IHC analysis 

or t(11;14)(q13;q32) demonstrated by FISH assay as well 

as measurable disease (defined as a lymph node or tumor 

mass $2 cm or lymphocytosis with an absolute neutrophil 

count $5,000). The median age of this study population was 

70 years, with most patients having stage IV disease and 

most having relapsed after an average of four prior lines of 

therapy. Patients were treated with a flat dose of 250 mg IV 

once weekly, with each cycle consisting of four doses. The 

ORR was 38%, with one patient’s disease achieving complete 

response (CR) and twelve patients’ diseases achieving partial 

response [PR; 13 of 34 patients; 90% confidence interval (CI): 

24%–54%]. The median time to response was 1 month, with 

eight responses occurring after just one cycle. The median OS 

was 12 months (95% CI: 6.7 months to not yet reached) at 

study completion. Among responders, the median duration of 

response was 6.9 months (95% CI: 5.2–12.4 months). Three 

patients went off study because of intolerable side effects or 

a perceived decrease in quality of life while on treatment. 

The most common adverse effects seen in this study were 

thrombocytopenia, hyperglycemia, anemia, neutropenia, 

hypertriglyceridemia, mucositis, fatigue, infection, rash, 

nausea, weight loss, aspartate aminotransferase elevations, 

dysgeusia, hypercholesterolemia, and sensory neuropathy. 

Most patients (88%) required dose reductions secondary to 

adverse effects, and the study was amended to incorporate 

dose reductions down to 50 mg IV weekly.

Given the high rate of myelosuppression in the previous 

study, another Phase II trial was initiated using the FDA-

approved dose of 25 mg IV weekly for RCC. The authors 

analyzed whether adverse effects could be reduced while 

maintaining efficacy for MCL. As in the previous study, 

only patients with relapsed or refractory MCL with cyclin 

D1 positivity and measurable disease were included in this 

study. Baseline patient characteristics were also similar to 

those of the previous study, with a median patient age of 69, 

stage IV disease in 86% of patients, and an average of four 

prior lines of therapy. The ORR was 41% (11 of 27 patients; 

90% CI: 22%–61%) with 1 CR and 10 PRs. Analogous to 

the previous study, median time to response was 1 month. 

The median OS was higher in this study at 14 months (95% 

CI: 10–27  months), and the median duration of response 

for the 11 responders was 6 months (range, 1–26 months). 

Overall, 70% of patients needed dose reductions or treatment 

delays secondary to adverse effects, which was less than that 

seen in the previous study. Again, thrombocytopenia was 

the most common side effect and the most common cause 

of dose reductions, with 82% of patients experiencing a 

decrease in platelet counts at the starting dose. Most cases 

of thrombocytopenia resolved quickly when treatment was 

delayed by an average of 1 week. The authors concluded that 

the 25 mg/week dose of temsirolimus had similar efficacy to 

and better tolerability than higher doses.

To verify a true dose–response relationship, a multicenter 

Phase III trial compared two doses of temsirolimus, 25 mg 

and 75 mg IV weekly, against other single-agent therapies 

chosen by the investigator.78 Those chosen by the investigator 

included agents that had been studied for relapsed MCL, 

such as thalidomide, lenalidomide, and fludarabine, among 

others. Patients treated with temsirolimus at the 75  mg 

dose had a significantly longer PFS (4.8 vs 1.9  months, 

P = 0.0009; 97.5% CI: 0.25–0.78) and higher ORR (22% 

vs 2%, P = 0.0019) than patients who received one of the 

investigator’s choice therapies. Patients on the 25-mg dose 

showed a trend toward increased PFS and ORR, but this was 

not statistically significant at the time of study completion. 

Median OS did not differ significantly between groups. The 

only adverse effect that occurred with a significantly higher 

incidence in the temsirolimus arms than in the investigator’s 

choice therapy arms was thrombocytopenia. Grade 3 or 4 

adverse effects occurred more often with the 75-mg dose than 

with the 25-mg dose (89% vs 80%). The authors concluded 

that there was a dose–response relationship with temsirolimus 

in MCL based on the differences seen in PFS and overall 

responses in this study and recommended that 75 mg should 

be the accepted dose for further studies in MCL. In 2009, 

the European Commission approved temsirolimus for the 

treatment of adult patients with relapsed or refractory MCL, 

based on this trial.

Pharmacokinetics of temsirolimus
Both temsirolimus and its primary metabolite rapamycin are 

metabolized hepatically and excreted in the feces.77 When 

temsirolimus is dosed weekly, its concentration decreases to 

subnanomolar levels within 3–4 days after administration. 

However, rapamycin remains at therapeutic levels for an 

extended period of time and likely exerts the primary antitu-

mor effect of temsirolimus.74 An in vitro study of the metabo-

lism of temsirolimus demonstrated that exposure to human 

liver microsomes resulted in the formation of 15 different 

metabolites; the major enzyme involved in biotransfor-

mation of temsirolimus was found to be CYP3A4.79 The 

clinical significance of this finding is that practitioners must 

be alert to the potential for drug–drug interactions with 
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temsirolimus. A study of the effects of administering a potent 

CYP3A4 inhibitor (in this case, ketoconazole) on systemic 

exposure to temsirolimus demonstrated the need for a 50% 

reduction in the dose of temsirolimus when given together.80 

A Phase I trial is currently underway to assess the need for 

temsirolimus dose adjustments in patients with compromised 

hepatic function.

The clinical studies that led to the approval of temsiroli-

mus for RCC did not include patients with decreased renal 

function. Since less than 5% of the drug is cleared renally, 

the manufacturer suggests that no dose adjustments need 

be made for renal impairment.77 A small study in patients 

with RCC compared the pharmacokinetic parameters of 

temsirolimus and rapamycin in patients with normal kidney 

function with those receiving hemodialysis and did not find 

a statistically significant difference.81 The authors concluded 

that temsirolimus clearance was not affected by dialysis given 

its large molecular weight (1,030 Da) and large volume of 

distribution.

Select adverse effects of temsirolimus in MCL
Targeted therapies often exhibit a diverse array of side effects 

not seen with conventional cytotoxic chemotherapy agents, 

some of which can be linked to their mechanisms of action. 

For example, hyperlipidemia is commonly seen in patients 

treated with temsirolimus, the mechanism behind which may 

be secondary to the inhibition of Akt in adipose tissue by 

rapamycin.82 In normal adipose cells, Akt function is depen-

dent on insulin stimulation and (once activated) can suppress 

lipolysis. In rapamycin-treated cells, Akt inhibition can result 

in increased lipolysis and an accumulation of free fatty acids, 

resulting in the hepatic generation of triglycerides.83 Pulmonary 

toxicity also has been observed in clinical trials with temsi-

rolimus in patients with MCL.31,32,78 Symptoms ranged from 

increased cough or dyspnea to more severe adverse effects, 

such as grade 3 pleural effusions and hypoxia. In rare cases, a 

severe adverse reaction known as interstitial pneumonitis has 

been seen. The mechanism of this toxicity is not well under-

stood, but may be due to an increase in NF-kappaB activation 

secondary to mTOR inhibition. NF-kappaB is a ubiquitous and 

inducible heterodimer that mediates the induction of proinflam-

matory cytokines and thus may explain the pathogenesis of 

pulmonary toxicity from temsirolimus.84 Dermatologic side 

effects from temsirolimus were most commonly manifested 

as a maculopapular rash on the face/neck and an acne-like rash 

on the face and upper chest. A possible explanation for this 

toxicity could be that mTOR effects epidermal growth factor 

receptor (EGFR) in normal skin.72

Discussion
Treatment options for MCL have expanded since its clas-

sification as a separate and unique disease within NHL in 

the early 1990s. While therapeutic strategies for frontline 

therapy are still evolving, the lack of a reliable standard 

of care makes treating this disease rather challenging. 

In general, as the number of treatments to which a patient 

has been exposed increases, the likelihood of a response to 

additional agents decreases.78 Therefore, it is imperative to 

find efficacious frontline regimens that decrease a patient’s 

likelihood of relapse.

The application of R-CHOP as a standard-of-care treat-

ment in MCL has been disputed given the failure of early 

studies to show an increase in OS. It was hoped that more 

dose-intense strategies, such as R-hyperCVAD/MA, would 

show a clear advantage over R-CHOP, but newer data 

question this. Given the conflicting evidence, a standard 

chemotherapy option for frontline treatment for MCL 

does not exist yet. To establish a standard of care, further 

research in this area is needed with prospective multicenter 

comparative trials. Data on early treatment with autologous 

hematopoietic stem cell transplantation are promising and 

seem to suggest an OS advantage for patients who respond 

well to frontline chemotherapy regimens (such as R-CHOP 

and R-hyperCVAD/MA).

In view of the conflicting data on frontline strategies, the 

controversy over which therapeutic strategy is most effica-

cious for newly diagnosed patients will persist. Clinicians 

are continuing to search for a better understanding of why 

some patients respond to a given type of treatment when 

others do not. The use of MIPI scores to predict outcomes 

is still in the early stages given its relatively new inception, 

and its utility may not be validated for some time. In the 

meantime, the search for effective second-line treatments 

that can prolong survival is becoming increasingly important. 

With researchers’ growing understanding of the molecular 

pathways involved in the pathogenesis of MCL, the options 

for second-line treatment are expanding.

An ideal second-line agent would be able to prolong DFS, 

lacks a maximum cumulative dosage limit so that patients 

could continue on treatment as long as they respond, and has 

manageable toxicities. Thus far, the efficacy of second-line 

agents seems to be similar whether single agents or combina-

tion regimens are used, offering average ORRs of 60%–70%. 

Temsirolimus has become a promising therapeutic option 

in this setting and seems to offer several advantages. The 

weekly intravenous doses can be given on an outpatient basis 

as a short infusion, increasing the ease of administration and 
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compliance of patients. It does not require dose adjustments 

for renal dysfunction, which is advantageous in a largely 

elderly population who may have decreased renal function 

secondary to comorbidities or prior treatments. Lastly, its 

unique side-effect profile does not overlap greatly with those 

of the prior therapies to which this population is likely to 

have been exposed.

The use of temsirolimus in the frontline setting also 

warrants investigation. The combination of chemotherapy 

and rapamycin showed potent activity against Akt-expressing 

lymphoma cells in murine models and might help in treating 

cells otherwise resistant to chemotherapy agents such as 

cyclophosphamide and doxorubicin.85 Thrombocytopenia 

is one of the dose-limiting toxicities for temsirolimus in the 

MCL population, which is understandable in a population of 

patients who may have had multiple lines of prior therapy 

(around four, as noted previously), prior hematopoietic stem 

cell transplantation, or bone marrow involvement of their 

lymphoma. The rates of such toxicity might be less frequent 

in the frontline setting, where patients have healthier and 

less-suppressed bone marrow.

In addition to temsirolimus, two other rapamycin analogs 

are currently in clinical trials: everolimus (RAD001) and 

deferolimus (AP23573). Everolimus is FDA approved for 

patients with RCC who have progressive disease following 

first-line therapy.86 Its mechanism of action is parallel to that 

of temsirolimus, and it is available in an oral formulation. 

In vitro data demonstrate that everolimus inhibits mTOR 

activity in MCL cell lines, causes a dose-dependant decrease 

in phosphorylated 4E-BP1, and results in the enhancement 

of G1 cell-cycle arrest.87 In addition, everolimus exhibited 

synergistic activity in vitro when combined with other agents 

used in MCL such as doxorubicin, vincristine, rituximab, and 

bortezomib.87 Deferolimus is currently undergoing Phase 

II trials in patients with relapsed or refractory hematologic 

malignancies.88 Currently, the optimal use of temsirolimus 

in MCL is still being elucidated. Researchers are trying to 

understand mechanisms of resistance to temsirolimus to 

overcome them and optimize treatment. One mechanism of 

resistance may be the unexpected upregulation of mTORC2 

corresponding with mTORC1  inhibition by temsirolimus. 

However, scientists have hypothesized that prolonged 

exposure to rapamycin may help inhibit both mTORC2 and 

mTORC1, which warrants the investigation of alternate 

dosing strategies for temsirolimus to overcome this mecha-

nism of resistance.47 Unlike the binding of rapamycin to a 

preformed mTORC1, the inhibition of mTORC2 may hap-

pen prior to its formation. Since both complexes need free 

mTOR to form their respective complexes, the inhibition of 

free mTOR may be the causal factor in mTORC2 inactiva-

tion.83 Resistance to temsirolimus may also occur through 

the upregulation of eIF4E independent of mTOR activation. 

The increase in eIF4E can restore Akt action on the cell 

membrane and circumvent the effects of mTOR inhibition by 

temsirolimus.85 Therefore, agents directly targeting upstream 

factors such as Akt deserve investigation and might help 

overcome this resistance pathway when used in combination 

with temsirolimus.

A new generation of drugs known as small-molecule 

mTOR kinase inhibitors is currently in Phase I clinical trials.89 

Unlike rapamycin analogs that require binding to FKBP12, 

these agents exert their effects by directly inhibiting mTOR 

kinase and blocking the formation of both mTORC1 and 

mTORC2. Among this class of agents are the dual inhibitors 

of mTOR kinase and PI3K. By targeting various components 

of the PI3K/Akt/mTOR pathway, these agents may be able to 

overcome resistance to rapamycin and increase cytotoxicity.

Conclusion
The treatment of MCL has evolved greatly in the last decade. 

The application of targeted therapies in the second-line 

setting has expanded treatment options for patients with 

relapsed or refractory disease. The use of mTOR inhibitors 

is especially promising in view of the data on deregulated 

PI3K/Akt/mTOR pathways in MCL. Several new agents in 

this class are in the pipeline, and new dosing strategies for 

existing agents are still being explored. Thus far, temsiroli-

mus has shown clinical efficacy in this patient population as 

a single-agent treatment with a favorable side-effect profile. 

Further research is needed to study this drug in combina-

tion with other targeted agents and chemotherapy. Finding 

efficacious treatments for relapsed or refractory disease is 

fundamental to increasing survival rates and durations for 

patients with this rare and aggressive disease.
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