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Study design: Review and reinterpretation of existing literature.

Objective: This review article summarizes the anatomy and pathogenesis of disease processes 

that contribute to low back pain, and discusses key issues in existing therapies for chronic low 

back pain. The article also explains the scientific rationale for investigational pharmacology 

and highlights emerging compounds in late development.

Results/conclusion: While the diverse and complex nature of chronic low back pain continues 

to challenge clinicians, a growing understanding of chronic low back pain on a cellular level has 

refined our approach to managing chronic low back pain with pharmacology. Many emerging 

therapies with improved safety profiles are currently in the research pipeline and will contribute 

to a multimodal therapeutic algorithm in the near future. With the heterogeneity of the patient 

population suffering from chronic low back pain, the clinical challenge will be accurately 

stratifying the optimal pharmacologic approach for each patient.
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Introduction
Low back pain (LBP) has reached epidemic proportions in Western societies with 

reported lifetime prevalence rates more than 70%.1 LBP is a musculoskeletal 

 symptom defined as discomfort in the lumbosacral region of the back. The dis-

comfort may or may not radiate to the legs, hips, and buttocks. LBP is considered 

acute if the discomfort persists 6 weeks or less and is considered chronic if persists 

longer than 12 weeks. While the population of patients suffering from LBP contin-

ues to expand, the clinical challenges of effectively treating back pain persist. This 

reflects the  multidimensional nature of LBP and heterogeneity of the population it 

affects. In the past decade,  emerging treatments and preventive approaches of care 

for conditions such as respiratory and circulatory diseases have been successful 

in reducing the cost of social security disability. This contrasts with LBP, where 

the population of disabilities beneficiaries continues to expand despite an array of 

therapeutic measures.2

Despite a substantial expansion in other therapeutic approaches, pharmacotherapy 

remains central to the management of LBP. Analysis of the United States national 

expenditures for back pain finds that the costs allocated to prescription medications 

have increased at a rate greater than any other service category, which includes  imaging, 

emergency department visits, and inpatient and outpatient services.3

Fortunately, there are promising emerging treatments that may help in  optimizing 

pharmacologic management. The focus of LBP pharmacology has shifted from 
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symptom-directed management to a better understanding of 

pain mechanisms on a basic science level. Disease modifica-

tion, molecular based pharmacologic targets, and biomarkers 

of disease processes are all new and exciting pathways for 

investigational pharmacology.

Investigational pharmacology for LBP is a topic 

of incre asing significance on clinical and fiscal levels. This 

article will look at common etiologies of back pain, review 

emerging treatments along the research pipeline (Figure 1), 

their scientific rationale, and the promise of their therapeutic 

possibilities.

Osteoarthritis-induced low  
back pain
LBP affects 80% of the world’s population. The common 

cold is the only disorder that occurs more frequently than 

LBP.4 The lumbar spine is a common site for symptomatic 

pain associated with osteoarthritis (OA), because it is a pri-

mary weight-bearing structure for most functional activities. 

Risk factors predisposing to osteoarthritis-induced LBP range 

from race and gender to biomechanics and age. Pharmaco-

logic treatment options for OA are diverse both in terms of 

mechanisms of action and delivery formulations. However, 

no single agent has been demonstrated to consistently offer 

both a high level of tolerability and sustained degree of 

efficacy across a broad OA patient population.5

Patient satisfaction is shifting to medications that provide 

an improved long-term prognosis rather than short-term 

symptomatic relief. This has allowed pharmacotherapeutic 

strategies to focus on the biology of osteoarthritis on a molec-

ular level in hopes to modify the disease and provide long-

term results with improved safety profiles. Scientific rationale 

behind emerging  pharmacology  centers on the  biomarkers of 

OA and will attempt to modify these  inflammatory mediators. 

The relationship between inflammation and angiogenesis 

and prevalence of synovositis in OA also provides clinical 

ground for experimental strategies.

Anatomy
Aside from the complex psychological component of pain 

perception and referred pain, the ambiguous nature of LBP 

is underpinned by the numerous potential pain contributors 

within the anatomy. Clinicians must travel a path of exclu-

sion, investigating the nature of disease processes, integrity, 

and the biomechanics of spinal anatomy before deciding 

upon the appropriate therapeutic regimen. Anatomic areas 

of interest include intervertebral discs, lumbar spinal nerves, 

sacroiliac and zygapophyseal joints (ZJ), muscles, ligaments, 

and tendons.

To locate the primary pain generator in LBP, physi-

cians must correlate clinical findings with the appropriate 

pathophysiologic process. A crucial step in understanding 

the pathophysiology of LBP was made with the description 

of the degenerative cascade by Dr William Kirkaldy-Willis. 

The degenerative process that transforms an anatomically 

succinct lumbar spine into a source of pain was described by 

Kirkaldy-Willis in a 3-phase process. The first phase, termed 

the dysfunction phase, described the low back in terms of 

functional units. Each functional unit is composed of a 3-joint 

complex consisting of an intervertebral disk and 2 ZJs. The 

dysfunction phase described the clinical presentation and pain 

produced by dysfunctionality of the 3-joint complex.6

1.   Licofelone (ML3000)
2.   Naproxcinod (AZD-3582)
3.   Lumiracoxib
4.   ADL5859, ADL5747
5.   Loperamide
6.   Salmon calcitonin

8.   Lacosamide
7.   Botulinum toxin

11.   Sativex
12.   Venlafaxine12.   Antidepressants

1.   COX/LOX inhibitor

Drug class Drug

2.   COX-inhibiting nitric oxide donator (CINOD)
3.   COX-2 inhibitor
4.   Delta opioid receptor agonist
5.   µ-opioid receptor agonist
6.   Antiresorptive pharmacology

8.   Ion channel (voltage and ligand gated) blocker
7.   Neurotoxin

9.   N-type calcium channel blocker 9.   Ziconotide, leconotide (CNSB004)
10.   TRPV1-agonis 10.   Transacin (Transdolor, NGX-4010)
11.   Cannabinoids

Figure 1 Pharmacology reviewed.
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The second stage, known as the unstable phase, described 

the pain generated from continuing stresses secondary to 

 dysfunction of the 3-joint complex during movement. The third 

phase, termed the stabilization phase, referred to pathologic 

changes in the lumbar spine that produce stiffness, immobil-

ity, and eventual autofusion of the spine.6 These pathologic 

changes include fibrosis of the 3-joint complex, osteophyte 

production and subsequent central spinal canal, lateral recess 

and neural foramen narrowing, which lead to the production 

radicular leg pain.

With the responsibility of truncal load dissipation, tor-

sion, flexion, and extension the interplay between lower 

back anatomic structures is significant. Abnormalities in 

pathoanatomic structures, such as muscle, tendon, ligament, 

or the sacroiliac joint produce poor postural control and 

altered kinematics that facilitate LBP. Two of the primary 

 anatomical components of mechanical LBP are the interver-

tebral disc and ZJ.

The essential components of disc-mediated pain include 

internal disc disruption (IDD), which is the most common, 

disc torsion, and infection of the intervertebral disc known 

as diskitis. Discogenic pain is mediated through the mixed 

autonomic and somatic fibers of the sinuvertebral nerve. 

The sinuvertebral nerve innervates the posterior annulus 

and adhering longitudinal ligament and normally penetrates 

the outer 1–3 mm of the annulus or outer third of the disk. 

The annulus is significant in that it is responsible for the 

 highest stress concentration during mechanical loading.

The ZJs, also commonly referred to as facet joints, are 

one of the most common sources of LBP.7 The ZJs are a 

pair of joints in the posterior aspect of the spine that bridge 

between the superior articular process of one vertebra and 

the inferior articular process of the vertebra immediately 

superior (Figure 2). The facets on the articular processes 

are covered by articular cartilage and a 1 mm thick fibrous 

capsule lined by synovial membrane, making this joint a 

true synovial joint. The function of the lumbar ZJ includes 

repetitive load transmission, stabilization of flexion and 

extension, and limiting axial rotation. Potential pain genera-

tors are interwoven throughout the complex neuroanatomy 

of the ZJ. Terminal branches of unmyelinated (Group 4) and 

thinly myelinated (Group 3) fibers are located throughout the 

synovium and periosteum. Nociceptors are found surround-

ing blood vessels near the synovium cells. In addition, the 

capsule of the ZJ is richly innervated with nociceptive and 

autonomic nerve fibers.8

Innervation of the ZJ begins with the spinal nerve at each 

lumbar spinal level, which divides into a ventral and dorsal 

Cross section of the zygapophyseal joint (ZJ)

Intervertebral disk

Vertebral body

Spinous process

Inferior articular process
Superior articular process Zygapophyseal joint

Figure 2 Zygapophyseal joint.
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primary ramus. The dorsal ramus divides into 3 branches, 

and the most medial branch supplies sensory fibers to 2 facet 

joint levels. The sensory fibers supply the inferior portion of a 

posterior facet and the superior part of the joint capsule at the 

next lower level. Therefore, each ZJ is supplied by sensory 

nerves from spinal nerves from 2 different segments.9 The 

perception of pain originates from inflammation and resultant 

sensitization of unmyelinated sensory nerves present in the 

osteoarthritic joint. This network of sensory nerve innerva-

tion to the ZJ is complex and often overlaps, making lumbar 

spinal pain difficult to localize.

Pathogenesis
Osteoarthritis-induced LBP represents step-wise structural 

failure of the lumbar spine that ultimately leads to an ingrowth 

of nerves and blood vessels. Lumbar spinal pain related to OA 

of the ZJ is closely related to disk height for several reasons. 

The height of the annulus determines the separation between 

the neural arches of adjacent vertebrae, and annulus collapse/

bulging in old discs can lead to more than 50% of the com-

pressive force being resisted by the neural arch.10 With age 

and repetitive compressive loading, the trabecular network of 

the vertebral endplate sustains microdamage and allows for 

decompression of the adjacent nucleus, which subsequently 

transfers truncal load to the annulus. An irregular distribu-

tion of mechanical load throughout the disk ultimately shifts 

forces posteriorly to the ZJ and the ligmamentum flavum. 

The net result is that the posterior elements, particularly 

the ZJ, will bear a greater load, which contributes to further 

degeneration of the spine.

On a cellular level, disc degeneration occurs when an 

imbalance exists between the efforts of chondrocytes, the 

production of cartilaginous anabolic factors, and production 

of catabolic enzymes. Catabolic mediators include matrix 

metalloproteinases (MMP-3, MMP-13), inducible nitric 

oxide synthase (iNOS), interleukin-1-beta (IL-1B), and 

tumor necrosis factor (TNF-a).11 The catabolic pathways 

are induced by compressive forces, which also cause tissue 

hypoxia and bony matrix degeneration both of which are 

potent mediators of angiogenesis.

Angiogenesis is the proliferation of new blood vessels 

from preexisting blood vessels. Degeneration leads to inflam-

mation, which is mediated by macrophages that produce 

inflammatory mediators as well as produce factors that initi-

ate the angiogenic cascade. The association between osteo-

chondral angiogenesis and pain behavior may be explained 

by perivascular nerve growth or stimulation of subchondral 

nerves following loss of osteochondral integrity.12

Angiogenesis perpetuates inflammation by providing 

permeable channels for leukotreine ingress which secrete pro-

inflammatory factors. The sprouting network of  unmyelinated 

nerve growth or neo-innervation that follows angiogenesis 

is a crucial element in the generation of pain. Angiogenesis 

may introduce sensory nerves into the aneural cartilage, 

and inflammation can sensitize nerves present in the joint.13 

Therefore, a ‘normally’ insensate structure potentially 

becomes a candidate for pain in OA. This may also accelerate 

disease status via localized neurogenic inflammation.14

The symbiotic relationship between angiogenesis and 

inflammation occurs within the synovial membrane and is 

significant to the pathophysiology of OA. Increasing atten-

tion is being devoted to the contribution of synovositis in 

the pathology of OA. Synovositis is the result of an over 

expression of proinflammatory cytokines, such as IL-1B, 

and TNF, that drive degenerative catabolic activity. Thrombin 

is another protein in the synovial fluid which is a potential 

biomarker of synovial inflammation and is correlated with 

angiogenic factor VEGF expression.15 Synovositis has been 

identified in early and end-stage OA. Synovositis, therefore, 

although not a prerequisite for OA, may lead to a poor clinical 

outcome.13 Novel therapeutic interventions aiming to inhibit 

synovositis in OA may not only improve short-term symp-

toms but also reduce pain and disability in the long term.

Prostanoids and receptors
The development and severity of OA correlates with an 

increasing expression of cartilage-degrading enzymes, pros-

taglandins (PGs) and leukotrienes (LTs) in synovial fluid. 

The action of cyclooxygenase (COX) and 5-lipooxygenase 

(5-LOX) on arachidonic acid (AA) produces prostanoid 

enzyme products PGs and LTs. The COX enzyme exists 

in 3 isoforms COX-1, COX-2, and COX-3. Non-steroidal 

anti-inflammatory drugs (NSAIDs) pharmacologically inhibit 

both COX-1 and COX-2, producing substantial analgesia. 

The dual inhibition of NSAIDs prohibits the protective 

effect of PGs on gastric mucosa and leads to ulceration of 

the mucosa. Selective COX-2 inhibitors reduce PG forma-

tion, producing analgesia and inflammation relief. However, 

selective COX-2 inhibitors also have adverse effects on the 

cardiovascular (CV) system. The COX-3 isoform is a variant 

of COX-1 and has low enzymatic capability; its distribution 

and low abundance in the central nervous system and in 

periphery do not make this a compelling target for analgesia.14 

Inhibition of both COX-1 and COX-2 shifts AA metabolism 

towards the 5-LOX pathway, which leads to subsequent LT 

production (Figure 3).
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LTs are responsible for changes in vascular permeability 

that occur during acute inflammation.16 Therefore, LTs have 

been implied as contributing factors in NSAID induced 

gastropathy and are identified an inflammatory mediators 

along with PGs. The combination of 5-LOX inhibitors or 

LT receptor antagonists with NSAIDs has been reported to 

be beneficial not only in relieving pain and inflammation, 

but also in preventing or reducing NSAID induced gastric 

damage.17 Thus, the concept of dual inhibition (ie, COX 

and 5-LOX inhibition) has emerged as an alternative safe 

therapy for enhanced analgesic and anti-inflammatory effect 

with little or no gastric mucosal damage.18 Recently, dual 

inhibition was suggested to curtail the adverse CV effects 

otherwise reported with COX inhibition.19

Prostanoid related pharmacology
The quest for analgesia without adverse CV effects has been 

well covered since the worldwide withdrawal of Vioxx in 

2004 for its relation to myocardial infarction and stroke. 

Licofelone (ML3000) is a promising dual inhibitor of COX-1/

COX-2 and 5-LOX enzymes with anti-inflammatory and 

analgesic properties as well as an improved CV and gas-

trointestinal (GI) profile for the treatment of osteoarthritis. 

Licofelone has good oral bioavailability and reaches peak 

plasma level 3–4 hours after ingestion. It has a long half-life 

(approximately 11 hours), with the highest accumulations in 

liver, lung, kidney, heart, and intestine.20

Licofelone is currently in phase 3 trials and has been 

compared to NSAIDs (Naproxen) and selective COX-2 

inhibitors (Celcoxib) in terms of analgesic efficacy and 

safety profile. A 52-week trial was performed to determine 

the long-term tolerability and efficacy of licofelone compared 

with naproxen. This multicenter double-blind trial included 

patients with symptomatic OA of the knee (as defined by 

American College of Rheumatology guidelines) who had 

discontinued NSAID therapy 3–14 days prior to the baseline 

visit. Patients were randomized to receive licofelone, 100 

mg twice daily (n = 235), or naproxen, 500 mg twice daily 

(n = 229).21

Licofelone treatment was associated with a dose-dependent 

improvement in WOMAC pain scores from baseline. The 

efficacy of licofelone 200 mg was similar to that of naproxen 

during the study, with a trend towards greater efficacy at weeks 

26, 39, and 52. Mean changes in WOMAC pain scores, from 

the baseline value of 63.9 mm, were 27.1, 30.2, and 27.7 mm 

for licofelone 100 mg, licofelone 200 mg, and naproxen, 

respectively. Safety evaluation of the trial was evaluated by 

means of GI or CV adverse events. Laboratory parameters and 

vital signs were also recorded. The incidence of adverse events 

confirmed the superior long-term tolerability of licofelone 

Phospholipids

12-LOX

A B

COX (COX-1/COX-2)

15-LOX

5-LOX

5-HPETE

5-LOX

LTA42

LTA42 hydrolase

LTB4
LTC4

LTD4

TXA2 PGD2

PGH2

PGG2

PGE2
PGF2a PGI2

LTE4

5-HETE

GST

Cyclooxygenase reaction

Activation of phospholipases
(PLC, PLD, PLA2)

Peroxidase reaction

Arachidonic acid

Figure 3 The cyclooxygenase (COX) pathway.
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over naproxen. The patients in the 100 and 200 mg licofelone 

treatment experienced fewer side effects than those in the 

naproxen group (59.2%, 56.3%, and 66.7%, respectively). In 

particular, lower frequencies of peripheral edema and aggra-

vated hypertension were recorded for licofelone compared 

with naproxen.21 These findings of reduced peripheral edema 

and hypertension suggest the dual inhibition mechanism of 

licofelone could be free from CV toxicity in OA patients, an 

adverse effect otherwise associated with selective COX-2 

inhibitors.22

To compare the efficacy and tolerability of licofelone with 

celecoxib in patients with knee OA, a 12-week multicenter, 

double-blind, parallel-group study was performed. Results 

indicated that licofelone, 200 mg twice daily, administered 

to 302 patients was as effective as celecoxib, 200 mg every 

day, given to 306 patients, with a similar frequency of GI 

adverse events in both the licofelone group (31.9%) and the 

celecoxib group (36.4%) with significantly fewer incidences 

of peripheral edema with licofelone as compared to cele-

coxib. Responders were quantified as those with a .30% 

improvement in WOMAC pain score from baseline. After 

12 weeks, responder rates in the licofelone and celecoxib 

groups were 77.2% and 77.8%, respectively.21

With a heterogeneous patient population, polypharmacy 

must be considered when pursuing ideal safety profiles in 

the pharmacologic treatment of OA. The demographic of 

patients suffering from OA and seeking analgesia with a low 

risk burden is growing. To further evaluate the risk burden of 

licofelone in a patient who is taking more than one medica-

tion, the safety profile of licofenole compared with naproxen 

was explored with the coadministration of aspirin 81 mg daily 

in a 4-week double-blind, randomized, endoscopy trial. The 

trial investigated the gastric and duodenal mucosal tolerabil-

ity, as assessed by endoscopy, of licofelone 200 mg bid and 

licofelone 400 mg bid compared with naproxen 500 mg bid 

therapy and placebo over a 4-week period in healthy volun-

teers. Data revealed that gastroduodenal ulcers of unequivocal 

depth developed in 20% of the volunteers receiving naproxen 

after 4 weeks, while no ulcers were reported in volunteers 

who received licofelone 200 mg or 400 mg. Lanza scores con-

firmed the significantly superior gastric tolerability of both 

licofelone doses compared with naproxen, and demonstrated 

the excellent gastric and duodenal tolerability of licofelone 

200 mg and 400 mg compared with placebo. In addition, the 

tolerability of the treatments did not appear to be effected by 

positive Helicobacter pylori status.23

Naproxcinod (AZD-3582) is the first in a new class of 

analgesic and anti-inflammatory drugs called  COX-inhibiting 

nitric oxide donators (CINODs). CINODs possess the 

 anti-inflammatory properties of NSAIDs through the 

 balanced inhibition of COX-1 and COX-2 while maintaining 

an improved GI and CV safety profile. The gastroprotective 

of CINOD comes from its nitric oxide donating ability. Nitric 

oxide increases gastric mucus and bicarbonate secretion, 

improves gastric mucosal blood flow, and inhibits the pro-

inflammatory activities of neutrophils and platelets.

Naproxcinod has completed 3 Phase III clinical studies 

conducted in the US, Canada, and Europe, which recruited 

more than 2,700 patients with OA of the knee and hip. Data 

extrapolated from the most recent phase III clinical trial for 

Naproxcinod is listed below. Three co-primary endpoints of 

the study compared the efficacy of naproxcinod 750 mg bid 

to placebo, in terms of the mean change between baseline 

and week 13 in the following scores: the WOMACTM pain 

subscale, the WOMACTM function subscale and the subject’s 

overall rating of disease status.24

In November 2008, a 13-week, double-blind, placebo and 

naproxen controlled trial in patients with OA of the hip took 

place. 810 patients were enrolled at 120 clinical centers in 

the United States, Canada, and Europe. Eligible patients 

had a diagnosis of primary osteoarthritis of the hip of at 

least 3 months in duration and were randomized on a 2:2:1 

basis to receive naproxcinod 750 mg bid, placebo bid, and 

naproxen 500 mg bid, respectively. Naproxcinod 750 mg bid 

showed good overall safety and tolerability. The percentage 

of patients who experienced one or more GI adverse events 

were the same for placebo and naproxcinod 750 mg bid at 

15.5%, compared with 19.2% for naproxen 500 mg bid. 

There was not a single serious CV or serious GI adverse 

event in the naproxcinod arm during the 13 weeks of the 

study. In addition, naproxcinod 750 mg bid showed a similar 

blood pressure profile to placebo, supporting earlier find-

ings suggesting its nondetrimental effect on blood pressure. 

Naproxinod 750 mg bid showed a clear reduction in systolic 

and diastolic blood pressure compared with naproxen 500 mg 

bid at all time points.24 In November 2009, NicOx announced 

that it received a filing communication from the US Food 

and Drug Administration (FDA) stating that the New Drug 

Application (NDA) for naproxcinod was accepted for filing. 

Pending the FDA’s approval, naproxinod could be poised for 

a US launch in late 2010.

Lumiracoxib is a novel COX-2 selective inhibitor devel-

oped for the treatment of OA. Lumiracoxib is the only acidic 

coxib (pKa:4.7), and is more selective for the COX-2 isoform 

compared with the COX-1 isoform than any other available 

selective COX-2 inhibitor.25 It is structurally  distinctive 
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from other COX-2 selective drugs by demonstrating a short 

 half-life (4 hours), but sustained pharmacokinetics and phar-

macodynamics in target tissue (eg, synovial fluid). These data 

suggest that lumiracoxib may be associated with reduced 

systemic exposure, while still reaching sites where COX-2 

inhibition is required for pain relief.26

The GI and CV safety profile of lumiracoxib was com-

pared with 2 non-steroidal anti-inflammatory drugs, naproxen 

and ibuprofen, in the Therapeutic Arthritis Research 

and Gastrointestinal Event Trial (TARGET). TARGET 

was a 52-week, international, multicenter, randomized, 

 double-blind, parallel-group study that compared 400 mg 

4 times daily (for OA recommended dose is 100 mg/day) with 

ibuprofen 800 mg 3 times daily and with naproxen 500 mg 

twice daily. The study indicated a significantly lower rate of 

ulcer complications in the group taking lumiracoxib in com-

parison with those taking nonselective NSAIDs. The lumira-

coxib group had significantly fewer ulcer  complications 

compared with those taking NSAIDs. Amongst those taking 

aspirin, there was no significant difference between lumira-

coxib and NSAID patients.14

After initially being launched in 2005, lumiracoxib (Prex-

ige) was withdrawn for liver toxicity. Novartis, the maker 

of lumiracoxib has identified a biomarker in patients with 

potential hepatic adverse effects and is currently planning 

resubmission of lumiracoxib with a companion diagnostic 

biomarker program to the FDA. To certify the molecular 

biomarker as an effective diagnostic test, Novartis has been 

working with the pharmacogenic experts at the FDA’s Vol-

untary Exploratory Data Submissions program for their feed-

back on utilizing the hepatic safety biomarker as a companion 

test. The resubmission of lumiracoxib could be the “first 

example” of a molecular diagnostic-based “drug rescue” in 

the industry.27 After the commercial re-launch of lumiracoxib 

with a widely certified diagnostic test is broadly introduced, 

Novartis is planning to conduct a prospective observational 

study to confirm the benefit of genetic testing.

Opiates and their receptors
The concern over the safety profile of traditional first-line 

agents such as cyclooxygenase-2 inhibitors and NSAIDs has 

limited their use in the pharmacologic management of LBP. 

In patients who cannot tolerate or have not benefited from 

the use of traditional first-line agents, conservatively dosed, 

time-based opioid therapy is becoming a popular alternative. 

The improved pain control of opioid therapy has allowed 

the patients suffering from osteoarthritis-induced LBP to 

become more functionally mobile. This is significant, since 

inadequate pain control has often left patients immobile, 

isolated to their home without sunlight which subsequently 

leaves them deficient in Vitamin D. Among the patients with 

spinal disorders, The National Medical Expenditure Panel 

Survey showed a 108% increase in opioid prescriptions from 

1997 through 2004. The combination of increasing use and 

higher drug prices resulted in a 423% inflation-adjusted 

increase in expenditures.28

Opioids bind to opioid receptors in the central nervous 

system and other tissues. Opioid receptors are G-protein 

coupled receptors acting on GABAergic neurotransmission. 

There are three principal classes of opioid receptors, mu, 

kappa, and delta. In addition the opioid receptor-like receptor 

1 (ORL1) is an important analgesic target in those who have 

developed tolerance to mu-opioid agonists.

Clinicians today are finding themselves in a difficult posi-

tion when it comes to prescribing opiates for their patients 

suffering from OA due to side effects such as nausea, depen-

dence, hyperalgesia, hypogonadism, respiratory depression, and 

physical dependence.2 The increasing trend to rely upon opioid 

therapy as an adjunctive therapy for the treatment of a disease 

process as far reaching as OA, poses the potential to create 

broad societal impacts. Emerging strategies in utilizing opioids 

in the pharmacological management of LBP focus on reducing 

the adverse effects produced by centrally penetrating opiates. 

Adverse effects of opiate use, such as respiratory depression and 

constipation, and potential for dependence/abuse are associated 

with mu-receptor agonists. To circumnavigate around these 

unwanted effects of mu-opioid receptor agonists, delta opioid 

receptors, which possess a favorable safety profile, are being 

targeted. In addition, central mu-opioid receptor agonists are 

being reformulated to intra-articular and topical forms.14

Pharmacology targeting the delta-opioid receptor (DOR) 

may provide analgesic efficacy without the common side 

effects of mu-opioid receptor agonists. Emerging DOR 

biology has indicated that stimulus-dependent (pain, inflam-

mation) trafficking of DOR from cytoplasm to cell surface 

appears to modulate apparent efficacy of agonists. Thus, delta 

ligands have low analgesic efficacy in acute pain models but 

show robust analgesia efficacy in a variety of chronic pain 

conditions accompanied by inflammation.29 Based on these 

findings the biopharmaceutical company Adolor has devel-

oped two delta compounds, ADL5859 and ADL5747. In 

October 2009, Adolor in collaboration with Pfizer initiated a 

Phase 2a proof-of-concept study of ADL5859 and ADL5747 

in osteoarthritis patients.30 Another route for providing  opiate 

analgesia without the side effects of  centrally acting opi-

ates is the anti-diarrheal drug Loperamide. In addition to its 
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 anti-diarrheal capabilities, Loperamide is a mu-opiate receptor 

agonist that does not penetrate the blood-brain barrier. When 

mu-opiate receptors are stimulated, they release potassium 

ions, which cause hyperpolarization of the cell membrane, 

and makes the neuron less excitable. The release of potassium 

ions also reduces the calcium ion influx in the terminal end 

of the neuron, which significantly reduces neurotransmit-

ter release. A neuron with a hyperpolarized cell membrane 

and  diminished ability to release neurotransmitters cannot 

 effectively relay pain signals. The development of topical and 

intra-articular formulations of loperamide have shown effi-

cacy as a peripherally selective opiate analgesic agent in post 

operative, inflammatory, and bone cancer pain models.31,32

Antiresorptive pharmacology
Salmon calcitonin (SCT) is an anti-resorptive agent that has 

been available for over 30 years. SCT is approved for the treat-

ment of post-menopausal osteoporosis, bone associated pain, 

and metabolic bone disease. SCT is commercially available as 

an injectable and as a nasal spray. A new oral formulation has 

been recently developed, and data from the first clinical trials 

indicate a potential utility not only in osteoporosis but also in 

osteoarthritis. Recent interest in SCT in the management of 

OA is due to its potential chondro-protective capabilities and 

analgesic effects. While the kinetics of calcitonin-induced pain 

relief have not been conclusively shown, potential mechanisms 

include an endorphin-mediated effect through the elevation of 

endogenous B-endorphin levels, centrally mediated pain relief 

via central nervous system binding sites, and stimulation of 

descending spinal serotonergic pathways.33

Clinical and pharmacological trial data have been largely 

focused on the analgesic efficacy of calcitonin as nasal spray 

(SCT-NS) and as an injectable treatment. Injectable SCT has 

been shown to be superior to placebo for pain relief in acute 

vertebral fractures.34 The analgesic effects of SCT-NS in 

vertebral fracture associated pain syndromes have also been 

shown in a double blind, placebo controlled study.35 Overall, the 

analgesic effects of both nasal spray and injectable preparations 

are comparable. The oral preparation of SCT has been shown 

to improve bioavailability and provide higher systemic levels 

of SCT. In Phase II trials, oral SCT has shown improvements 

in OA pain.36 Currently, Novartis and Nordic Bioscience are 

evaluating oral SCT (SMC021) in a Phase III trial for OA.

Botulinum toxin
The mechanism of pain relief provided by botulinum toxin 

(BoNT) has generated interest after clinical studies indicated 

that onset of pain relief occurred sooner than muscle spasm 

relief in studies evaluating BoNT injection for cervical dys-

tonia.37 This led to the investigation that pain relief provided 

by BoNT was separate from its ability to produce reversible 

muscle paralysis through inhibition of acetylcholine.

Animal studies have indicated multiple mechanisms 

for the anti-nociceptive properties of botulinum toxin type 

A (BoNTA). Possible mechanisms include a reduced rest-

ing discharge of muscle spindles after injection of BoNTA 

into skeletal muscles,38 which may theoretically diminish 

central sensitization. In central sensitization, wide-range 

function neurons of the spinal cord erroneously perceive 

non-nociceptive input (such as that from muscle spindles) 

as nociceptive.39 In cell cultures and animal studies, BoNTA 

diminishes the release of pain neurotransmitters such as sub-

stance P, calcitonin gene-related peptide, and bradykinin.40

In paraspinal compartment syndrome, BoNTA injection-

 induced atrophy of bulky paraspinal muscles relieves 

 compression of nerves and vascular structures and reduces 

ischemic pain. The evidence for BoNTA in the relief of 

osteoarticular pain has been encouraging. In a double blinded, 

randomized, placebo controlled study, administration of 

BoNTA into paraspinal muscles using a novel technique 

 produced significant pain relief in 60% of patients with 

chronic refractory back pain. However, this study was lim-

ited by a small sample size (n = 31).41 In a larger (n = 75) 

prospective, randomized open labeled study with a 14 month 

follow-up, a similar yield of pain relief was seen (53%). 

Among initial responders, 91% continued to respond over 

the length of the study.42 Currently, the Walter Reed Army 

Medical Center is holding a Phase IV trial to evaluate the 

analgesic efficacy of BoNTA in the management of patients 

suffering from chronic LBP. Botulinum neurotoxin therapy 

of chronic LBP is an off-label use and is not approved by the 

US Food and Drug Administration.

Neuropathic pain
Chronic LBP is highly prevalent in Western societies. Large 

epidemiological studies show that 20%–35% of patients 

with back pain suffer from a neuropathic pain component. 

Presently, chronic lumbar radicular pain is the most common 

neuropathic pain syndrome.1 The revised definition from 

the International Association for the Study of Pain states 

neuropathic pain is “pain initiated or caused by a primary 

lesion or dysfunction in the nervous system”.43 This definition 

signifies a shift from the traditional view that neuropathic 

LBP only relates to radiculopathy. Neuropathic pain is 

 comprised of a complex interplay between peripheral and 

central  mechanisms of pain modulation.
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The complex nature of neuropathic pain has currently 

left most therapeutic needs unmet. Neuropathic pain can 

be divided into central and peripheral components. The 

term ‘central’ refers to the brain and spinal cord. Central 

neuropathic pain refers to pain initiated or caused by 

a primary lesion or dysfunction of the central nervous 

system.44

Anatomically, central pain may originate in any lesion 

along the neuraxis located in the dorsal horn, the ascend-

ing pathways throughout the spinal cord and brain stem, 

the thalamus, the subcortical white matter, and the cerebral 

cortex. The most common occurrences of central pain stem 

from traumatic spinal cord injuries, strokes, and multiple 

sclerosis. Other causes of central pain include brain tumors, 

epilepsy, syringomyelia, and spinal cord infractions.45

Central neuropathic pain syndromes appear to originate 

from the reorganization of central somatosensory process-

ing. Central neuropathic pain is associated with neuronal 

plasticity. Neuronal plasticity refers to the anatomical and 

neurochemical changes that can occur within the central 

nervous system. These changes facilitate and maintain a ‘pain 

state’ long after the initial injury. This neuronal plasticity 

or increased excitability reflects a sensitization of neurons 

within the dorsal horn following peripheral tissue damage. 

This sensitization is characterized by increased spontaneous 

activity of the dorsal horn neurons, a decreased threshold and 

an increased responsivity to afferent input, and cell death in 

the spinal dorsal horn.46

The peripheral component to neuropathic pain pertains 

to peripheral nerve injury. In peripheral nerve injury, new 

adrenergic receptors may develop leading to an increased 

sensitivity to pain. In addition to an increased amount of 

adrenergic receptors, damaged nerves may possess differ-

ent depolarization characteristics and dysfunctional sodium 

channels. These structural aberrations lead to an increased 

excitability which leads to increased pain transmission.

Pharmacological treatment of neuropathic pain to date is 

directed towards the symptomatic management of hallmark 

features such as spontaneous pain, mechanical and cold allo-

dynia, hyperalgesia, and hyperpathia. Recently, an improved 

molecular-based understanding behind the mechanisms 

of neuropathic pain has provided better insight and led to 

development of new therapeutic approaches.

The neuroanatomy of the central and peripheral nervous 

system and the neuropathic pain spectrum is beyond the scope 

of this article. Therefore, we will focus on key molecular 

events and cellular processes in neuropathic pain that provide 

rationalization for investigational pharmacology.

Pathogenesis
The neuropathic component to LBP is a not a result of a 

single pathophysiological mechanism, but the final product 

of altered peripheral, spinal and supraspinal processing. 

The initiation of neuropathic LBP may be caused by lesions 

of nociceptive sprouts within the degenerated disc (local 

neuropathic), mechanical compression of the nerve root 

(mechanical neuropathic root pain), or by action of inflam-

matory mediators (inflammatory neuropathic root pain) 

originating from the degenerative disc even without any 

mechanical compression.1

Ion channel (voltage and ligand gated) 
blockers
Hyperexcitability in small and large peripheral sensory 

nerves acts as an important driving mechanism for neuro-

pathic pain and can account for the initiation and maintenance 

of central hyperexcitability.43 Changes in the expression 

and activity of several voltage-gated sodium, potassium, 

and calcium channels have been highlighted after nerve 

injury.47 These changes in the expression, trafficking, and 

redistribution of ion channels after inflammation or nerve 

injury are considered to account for unstable oscillations of 

membrane potential, abnormal firing and the generation of 

ectopic activity in afferent nerves.48 Therefore, the blockage 

of voltage-gated ion channels is therapeutic in regulating 

sensory neural excitability.

Lacosamide is an anticonvulsant with neuronal antihyper-

excitability properties that is being evaluated as an emerging 

treatment for neuropathic pain. By blocking voltage-gated 

sodium channels, Lacosamide has been reported to incon-

sistently produce significant reduction in pain measures 

compared with a placebo in clinical trials.47 Currently, Lacos-

amide is in a Phase II trial to assess the continued efficacy and 

safety of ascending doses in subjects with chronic refractory 

neuropathic pain.

Another voltage-gated ion channel of interest in the phar-

macologic treatment of neuropathic pain is the calcium chan-

nel. The influx of calcium ions through voltage-gated calcium 

channels has an established role in axonal potential formation 

and neurotransmitter release by primary sensory neurons. Aber-

rant calcium channel physiology and activity has also become 

a focus of attention in the search for targets for therapeutic 

interventions that prevent or alleviate neuropathic pain.

Ziconotide is the first in a new class of non-opioid 

analgesics known as N-type calcium channel blockers 

(NCCBs), which target pre-synaptic calcium channels on 

nerves that ordinarily transmit pain signals.49 Intrathecal 
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ziconotide  infusion was approved by the FDA in 2004 for 

the  management of severe chronic pain in patients who were 

not effectively managed with systemic analgesics, adjunctive 

therapies, or intrathecal morphine. Ziconotide is the synthetic 

equivalent of a naturally occurring conopeptide found in the 

venom of a marine snail known as Conus magus, a predatory 

sea creature that attacks its prey with harpoons loaded with 

a paralytic poison.50

Intrathecal ziconotide is regarded as a broad-spectrum 

analgesic effective as a monotherapy and in conjunction 

with opioids in the management of neuropathic pain, and to 

those suffering from intractable pain. In a double-blinded ran-

domized, placebo-controlled trial, patients (169 ziconotide, 

86 placebo) with severe chronic nonmalignant pain unre-

sponsive to conventional therapy were treated over a 6-day 

period in an inpatient hospital setting. The mean percentage 

change in visual analog scale of pain intensity (VASPI) 

score from baseline was 31.2% and 6.0% for ziconotide- and 

placebo-treated patients, respectively.51 Due to its narrow 

therapeutic index, ziconotide has been associated with side 

effects such as postural hypotension, mental status changes 

and hallucinations. However, significant adverse events are 

less apt to occur when the drug is slowly titrated gradually 

over 3 weeks or longer.52

The intrathecal administration and adverse effects of 

ziconotide has limited its clinical utility. Recently, another 

n-type calcium channel blocker, leconotide (CNSB004) has 

drawn considerable pharmacologic interest. In animal studies, 

the anti-hyperalgesic effect of leconotide was comparable to 

that of ziconotide. When compared with ziconotide, the side 

effect profile of leconotide (locomotor activity and vascular 

responses) was clearly better than that of ziconotide.53 The 

maximum no side-effect dose of leconotide caused 51.7% 

reversal of hyperalgesia, compared with 0.4% for the highest 

no side-effect dose of ziconotide.54 In addition, leconotide 

was effective when administered intravenously, suggesting 

an effective alternative delivery method for n-type calcium 

channel blockers other than intrathecal administration.53 

In the treatment of neuropathic pain, the development of 

non-opioid analgesics offers new, powerful therapeutic pos-

sibilities. These initial findings demonstrate the therapeutic 

potential of leconotide, a calcium channel blocker with an 

improved side-effect profile and the ability to be administered 

through a new route.

In addition to voltage-gated ion channels mentioned 

above, the large family of transient receptor potential (TRP) 

vanilboid channels are also pharmacological targets in the 

treatment of neuropathic pain. Transient receptor potential 

vanilloid channel 1 (TRPV1), a non-selective cation channel, 

has garnered significant pharmacological interest. On noci-

ceptive neurons, TRPV1 is gated by capsaicin, noxious heat 

(.45°C), acidic pH (,5.3), and is regulated by a variety of 

inflammatory mediators (eg, bradykinin and PGE2).47 Emerg-

ing strategies focus on TRPV1 agonists and antagonists as 

a molecular focal point in neural sensitization caused by 

mediators of inflammation and nerve injury.55

Capsaicin, a TRPV1-agonist, has been investigated, 

and reports have been promising. When capsaicin binds to 

TRPV1, it causes the channel to open below 37°C. Prolonged 

activation of these neurons by capsaicin depletes presynaptic 

substance P, one of the body’s neurotransmitters for pain 

and heat. Capsaicin mimics a burning sensation that leaves 

the nerves that host a TRPV1 receptor overwhelmed. These 

nerves are unable to report pain for an extended period of 

time due to a depletion of neurotransmitters. This depletion 

of neurotransmitters leads to a reduction in pain sensation. 

Low dose capsaicin cream (0.025% and 0.075%) has been 

a moderately efficacious over the counter topical treatment 

for chronic pain for decades. These low dose capsaicin 

creams must be applied multiple times a day and have 

caused a burning pain each time they are applied leading to 

non compliance.

Transacin (Transdolor, NGX-4010) is a high concentra-

tion (8%) dermal patch that delivers a therapeutic dose of 

capsaicin during a 60-minute application. Transaicin (NGX-

4010) has been well tolerated and efficacious in reducing 

pain in a number of neuropathic pain conditions including 

a Phase III study in patients with post-herpetic neuralgia.56 

Although trials have been limited, due to the difficulty of 

blinding high-concentration capsaicin, multiple studies both 

open label and double blinded, suggest that a 1-hour appli-

cation of NGX-4010 can reduce neuropathic pain in a safe 

and efficacious manner. Neuropathic pain reductions with 

NGX-4010 can be maintained with repeated administrations 

over a 1-year period.57

Cannabinoids
In 1997, the British Medical Association (BMA), NIH, and 

American Medical Association published reports concluding 

that cannabinoids have a role as adjuvant analgesics for pain 

conditions refractory to standard drugs.47

The analgesic success of cannabinoids compounds is 

centered on targeting 2 receptors within the  endocannabinoid 

system, cannabinoid receptor 1 (CB1) and cannabinoid 

receptor 2 (CB2). CB1 receptors are widely distributed in 

the  central nervous system and peripheral sensory neurons, 
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whereas CB2 receptors have been found in peripheral 

 tissues including tissues of the immune system and keratino-

cytes with limited expression in sensory and central nervous 

system cells.58

Studies indicate that cannabinoids such as ∆9-tetrahydro-

cannabinol (∆9-THC) activate both CB1 and CB2 receptors 

and facilitate cellular inhibitory mechanisms that attenuate 

the hyperexcitability involved with neruopathic pain. CB1 

receptors are responsible for mediating the analgesic effects 

in the brain and spinal cord, while peripheral CB1 receptors 

are involved with pain transmission from the peripheral 

nervous system.59 CB2 receptors are also responsible for 

pain modulation in the spinal cord.

Multiple clinical trials have shown that treatment utilizing 

cannabinoid compounds reduce neuropathic pain; however, 

they also produce adverse effects such as euphoria, dizzi-

ness, and sedation. Recent studies have shown selective 

targeting of peripheral and spinal CB1 and CB2 receptors 

are promising targets for analgesia because they may avoid 

the psychoactivity of brain CB1 receptor activation and may 

allow the administration of doses that produce a greater 

analgesic effect with reduced psychoactivity.60

Cannabinoid receptor pharmacology
Sativex, an oral form of (∆9-THC) in the preparation of an 

oralmucosal spray has shown promise as an adjuvant anal-

gesic in the treatment of refractory peripheral neuropathic 

pain in a Phase II/III, 5-week, double blinded, randomized, 

placebo-controlled study (324). This study suggests a syn-

ergistic interaction between the endocannabinoid and opioid 

receptor system in the treatment of neuropathic pain. The 

majority of adverse events associated with Sativex use in 

this study were categorized as being mild or moderate. Cur-

rently, Sativex is an investigational drug in the United States 

and is being developed as an adjunctive analgesic treatment 

for patients with advanced cancer whose persistent pain has 

not been adequately relieved by opioid therapy. Studies have 

also shown CB2 selective agonists to modulate pain without 

central CB1-like side effects.61

Although many studies involving cannabinoids in the 

treatment of neuropathic pain have been promising, there are 

many challenges that remain. Barriers that need to be over-

come prior to utilizing cannabinoid receptors in the treatment 

of neuropathic pain include an improved definition of thera-

peutic indications, a better understanding of the therapeutic 

balance between cannabinoid receptors and opioid receptors, 

and how to provide effective analgesia while minimizing side 

effects. Another major barrier to the accepted therapeutic use 

of cannabinoids in clinical practice is the associated stigma 

that comes hand in hand with this drug class.62

Anti-depressants and B-mimetics
Despite the close association between chronic pain and 

depression, we now know that the pain-relieving effect 

of antidepressants is independent of their mood-elevating 

properties.63,64 The primary mode of action is an  interaction 

with pathways extending through the spinal cord from 

serotoninergic and noradrenergic structures in the brain 

stem and midbrain. Other pathways for analgesia provided 

with antidepressants include actions on opioids, adrenergic, 

GABA, and N-methyl-D-aspartate receptors.

Tricyclic antidepressants (TCAs) such as amitryptiline, 

nortryptyline, imipramine, and desipramine are regarded as 

first-line drugs when treating LBP.65 In addition to blocking 

the reuptake of norepinephrine and serotonin, TCAs block 

neuronal membrane ion channels and interact with adenosine 

and NMDA receptors. The utilization of TCAs for neuropathic 

pain has been limited due to anticholinergic side effects includ-

ing blurred vision in glaucoma patients, urinary retention, con-

stipation, and dry mouth. Antihistaminergic side effects such 

as oversedation and weight gain can also preclude its use.66

Venlafaxine is a serontonin-norepinephrine reuptake 

inhibitor (SNRI) and may be considered a suitable alterna-

tive to TCAs in relieving neuropathic pain. Venlafaxine does 

not have anticholinergic and antihistaminergic blocking side 

effects.67 Venlafaxine blocks the reuptake of serotonin at 

lower doses; when used in higher doses it blocks the reuptake 

of norepinephrine. When utilized at a high dose there has been 

concern with Venlafaxine producing hypertension.66 Dulox-

etine, another SNRI commonly used in painful neuropathy, 

does not have these effects.

Recent studies investigating the mechanism of antidepres-

sants in alleviating neuropathic pain revealed that activation 

of B-adrenergic receptors (B2-AR) plays a critical role. In a 

neuropathic pain model, the absence of a B2-AR suppresses 

the analgesic effects of chronic antidepressant treatment.68,69 

Preclinical studies have reported that chronic direct stimu-

lation of B2-AR by agonists may relieve neuropathic pain 

symptoms in a murine neuropathic pain model.70–72 Drugs that 

belong to the class of Beta two–adrenergic receptors include 

albuterol, terbutaline, fenoterol, salmeterol, ritodrine, and 

isoprenaline among others. These drugs are widely used and 

have well described adverse effects. Reports on B-mimetics 

potential as a neuropathic pain treatment are encouraging, 

and require randomized, controlled, prospective and blinded 

studies for further evaluation.
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Conclusion
Unified by the urgency to meet the therapeutic needs of the 

many that suffer from LBP and provide pain relief with a 

lower risk burden, the pharmacological landscape for the 

treatment of chronic LBP is changing as rapidly as any other 

field in medicine. At the epicenter of this investigational 

boom is an improved understanding of the biology of pain 

at a cellular level, safer drug profiles, new routes for drug 

delivery and novel molecular based therapeutic targets.

The therapeutic challenge of treating LBP stems from 

treating a pain that is maintained through nociceptive and 

neuropathic mechanisms, and abnormalities in the excit-

ability of central and peripheral pathways. These factors 

compounded with a diverse patient population have led to 

the need for an improved pharmacotherapeutic regimen. This 

review identified several emerging drugs in clinical Phases 

II and III, and attempts to provide some insight on how the 

drug development process is providing viable solutions for 

managing the complexities of LBP.

As the multimodal approach to managing LBP continues to 

evolve, our reliance on pharmacotherapy to play a significant role 

in the treatment algorithm remains constant. The heterogeneity of 

the LBP population prohibits a single drug from revolutionizing 

the treatment of LBP, and it is difficult to predict which drug or 

drugs will establish themselves as the most efficacious. However 

with the promise of the investigational pharmacology noted in 

this paper, there is no reason to believe that a larger, safer, and 

improved therapeutic armamentarium is not forthcoming.
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