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Aim: Transcription factor (TF) in glioma, including proliferation, invasion/migration, and 
tumor microenvironment, has been receiving increasing attention. However, there are still no 
systematical analyses based on global TF. Herein, using global TF target gene sets, we 
comprehensively investigated their relationship with prognosis and potential biological effect 
in lower-grade glioma (LGG). We aimed to develop a less-biased prognostic model and 
provide new insight for personalized management of this disease.
Methods: TF target gene sets were collected from MSigDB and GRID database followed by 
ssGSEA calculating normalized enrichment score. Comprehensive survival analysis was 
combined with Kaplan–Meier and Cox algorithms. Consensus cluster and lasso regression 
were performed to develop prognostic signatures with validation of ROC and independent 
external cohort. Approaches of xCell/CIBERSORT/TIMER were involved in analyzing the 
immune microenvironment. We also correlated identified prognostic signatures with tumor 
mutational burden (TMB) and m6A genes.
Results: Fourteen TFs were significantly screened based on survival. Patients were classified 
into 2 prognosis-related clusters based on 14-TFs features. The function of differentially 
expressed TF target genes between Cluster1/2 was enriched mostly on glioma invasion/ 
migration. The prognostic model was trained by 6 out of 14-TFs followed by generating risk- 
score as an independent prognostic indicator. We found differences between the high/low- 
risk group in TMB and the immune microenvironment, where the high-risk group repre-
sented “hot-tumor”. Besides, 6-TFs were correlated with m6A regulation genes.
Conclusion: Our findings suggested that the 6-TFs model could be used to predict prog-
nosis and predict the status of the immune microenvironment in LGG.
Keywords: transcription factor target gene set, lower-grade glioma, prognostic model, tumor 
immune microenvironment, risk signature

Introduction
Gliomas are the most common primary cancers of the central nervous system, 
representing heterogeneous neuroepithelial neoplasms. Based on WHO criteria, 
glioma can be classified into Grade-I~IV, where Grade-II~III are defined as lower- 
grade glioma (LGG) by “The Cancer Genome Atlas” (TCGA). Compared with Grade- 
IV (glioblastoma, GBM), patients with LGG are often younger and with longer 
survival. However, though LGG has slower growth and locally aggressive behavior, 
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they may be associated with greater mortality due to recur-
rence and malignant aggressiveness, even in the setting of 
optimal resection.1 Besides, some GBM patients can be 
recurrent and progress from LGG, especially LGG combined 
with IDH1 wildtype and 1p19q non-codeletion.2 Most con-
ventional studies on glioma focused on GBM. Thus, the aim 
of the present study was to uncover a novel bio-signature to 
develop risk stratification and provide a new perspective 
with potential for personalized diagnosis and treatment to 
manage this disease.

Transcription factor (TF) is a special protein with at least 
one DNA-binding domain attached to a specific DNA 
sequence. Mounting evidence indicated that TFs have 
a crucial role not only in regulating biological processes but 
in tumorigenesis and in the micro-environment of tumors, 
including glioma. Our previous study found that NICD con-
tributes to the proliferation, invasion, and maintaining the 
stemness of glioma cells.3–5 Other research showed that 
STAT3 could induce the immunosuppression microenviron-
ment in glioma and increase the expression of PD-L1.6 NF- 
κB can induce CSN5 upregulation for PD-L1 stabilization, 
leading to eradicating anti-tumor immunity and enhanced 
tumor cell survival.7 Besides, targeting NF-κB could elevate 
ROS levels in glioma cells, and, in turn, induce cell 
apoptosis.8 In this study, we hypothesized that TFs could be 
closely associated with the progression and prognosis of 
gliomas. Moreover, the most important reason for less bias 
in our hypothesis is that TFs are the cornerstone for biologi-
cal effects. However, there is still no globally comprehensive 
research based on TFs in LGG.

In this study, we collected TF target gene sets (TFTGS) 
from widely recognized and validated databases, followed 
by screening survival-related gene sets via normalized 
enrichment score (NES). A multi-TFs independent prog-
nostic indicator was generated following unsupervised/ 
supervised learning in both the training (TCGA) cohort 
and the independent external validation (CGGA) cohort. 
This was followed up with immune microenvironment- 
related enrichment analysis, somatic mutation status ana-
lysis, and epigenetic modification analysis. We also 
attempted to create a prognostic, predictive tool to predict 
survival and propensity for immune status.

Materials and Methods
Dataset
TCGA-LGG (n = 538) and GTEx RNA-seq dataset were 
downloaded from UCSC Xena (www.xenabrowser.net). 

The data was transformed into Transcripts Per Kilobase 
Million (TPM) followed by log2 transformed. External 
independent validation cohort was download from 
CGGA website (www.cgga.org.cn, n = 325). Since 
glioma in this research was supratentorial tumor, we 
also only selected the sample of supratentorial-brain tis-
sue in GTEx cohort (n = 291). The batch effect among 
different cohorts was removed via R package “sva”. The 
somatic mutation dataset of TCGA-LGG was down-
loaded by using R package “TCGAbiolinks” and 
“TCGAmutations”. Recurrent glioma and missing survi-
val data were removed in both TCGA and CGGA 
cohorts. This research confirms “International ethical 
guidelines for biomedical research involving human sub-
jects (2002)” developed by Council For International 
Organizations Of Medical Sciences (CIOMS) in colla-
boration with World Health Organization (WHO), and 
research in this article are approved by Ethical 
Committee of Tianjin Medical University General 
Hospital.

TFs Functional Annotation
TF functional annotations were performed via DAVID 
v6.8 (www.david.ncifcrf.gov) and Cistrome (www.cis 
trome.org).

Unsupervised Learning
LGG patients were classified into several groups based on 
significantly changed TFTGSs between longer/shorter-OS 
groups via R package “ConsensusClusterPlus”. We set 
1000 iterations, a resample rate of 80%, a clustering 
method of “k-means”, and distance of “euclidean” to con-
duct consensus clustering. The optimal clustering number 
was validated by both results and external independent 
validation by R package “fpc”. Principal component ana-
lysis (PCA) and t-distributed stochastic neighbor embed-
ding (tSNE) were conducted via R package “PCAtools” 
and “Rtsne”. Single sample gene set enrichment analysis 
(ssGSEA) was conducted by R packages “GSVA” and 
GMT annotation file was downloaded from MsigDb 
(www.gsea-msigdb.org). TFTGSs were validated by 
Gene Transcription Regulation Database9 (GTRD, www. 
gtrd.biouml.org). The NES of TFTGSs were selected for 
survival analysis. Enrichment scores were normalized by 
the formula:

NES ¼
x � xmin

xmax � xmin 
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Survival-Related Analysis
Kaplan–Meier (KM) method was performed based on 
NES of TFTGSs for overall survival (OS) analysis via 
R package “survival”. The Log rank test was performed 
to compare samples with different OS; p-value <0.001 
was considered extremely significant. The median value 
of NES was regarded as the cut-off threshold. Cox 
regression algorithm (R package “survival”) was also 
applied to screen significant TF target gene sets contri-
buting to OS. Schoenfeld Individual test both on the 
global model and separate covariate was performed to 
test the proportional hazards assumption for Cox regres-
sion model fit. The Cox regression model was considered 
to fit the proportional hazards assumption when the lin-
ear relationship between residual error and time was 
non-significant (p > 0.05). Marking TF target gene set 
was extremely significant to OS (p < 0.001, wald-test).

Differential Expression TF Target Genes 
(DETFTGs)
Differential expression TF target genes between Cluster1/2 
were screened in primary-LGG patients using the 
R package “DESeq2”; p-values <0.05, as well as log2 
fold change >1 were regarded as statistically significant.

Enrichment Analysis
DETFGs’ enrichment was done via R package 
“clusterProfiler” and “ReactomePA”, including Gene 
Ontology (GO) analysis, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis, Reactome pathway ana-
lysis, and Gene Set Enrichment Analysis (GSEA).

Supervised Learning
Lasso regression algorithm was adopted with R package 
“glmnet” to develop a survival prediction model with 
a potential risk signature. To evaluate prognosis with key- 
TFs (kTFs) and prognostic indicators, cox algorithm was 
performed. Univariate Cox (uni-Cox) analyses were oper-
ated to screen the independent prognostic indicators (p < 
0.05). Nomogram was built by R package “regplot” and 
a calibration curve was created with R package “Hmisc”.

Immune-Related Analysis and 
N6-Methyladenosine (m6A) Correlation
Immunocyte infiltrating analysis was performed by TIMER 
(www.timer.comp-genomics.org), CIBERSORT (www. 
cibersortx.stanford.edu), and xCell (www.xcell.ucsf.edu) 

algorithm. The m6A genes were acquired from previous 
research.10 The correlation between m6A genes and kTFs 
was performed with R package “ggcor”.

Somatic Mutation Analysis
Somatic mutation analysis and tumor mutational burden 
(TMB) were performed and visualized by R package 
“maftools”. T-test was adopted to compare the distribution 
between high/low-risk group, Cluster1/2, and grade.

Results
Screening OS-Related TFTGSs and 
Function Annotation in Primary-LGG
ssGSEA algorithm was conducted with TFTGSs to gener-
ate a score of each primary-LGG sample in the TCGA 
cohort (Figure 1A). The normalized enrichment score 
(NES) was used for the following analyses. There were 
14-TFTGSs that extremely contributed to OS via KM 
survival analysis and Cox regression algorithm 
(Figure 1B). The 14-TFTGSs’ survival curve is shown in 
Figure 1B-I~XIV.

To investigate the NES consensus patterns of those 14- 
TFs, we performed an unsupervised cluster algorithm. 
Interestingly, primary-LGG samples in the TCGA cohort 
were clustered into 2 clusters based on the clustering result 
(Figure 1C-I~III). The lowest proportion of ambiguous 
clustering was “k=2” which seems to be the optimal 
choice. Moreover, we also conducted “Prediction 
Strength” method, an external independent clustering algo-
rithm, to validate the k value. When the prediction value 
was more than the cut-off, the samples were clustering into 
2 groups (Figure 1C-IV).

We also performed PCA and tSNE to compare the 
distribution of 14-TFs’ NES. Similarly, results indicated 
that samples were gathered into 2 sub-cohorts, both in 
PCA and tSNE. Cluster1/2 were well-grouping in the 
dimension of PC1 (Figure 1D-I) and tSNE2 (Figure 1D- 
II).

The above-reported findings suggested that cluster 
algorithm on 14-TFs’ NES could divide primary-LGG 
samples in a novel pattern. To further investigate the 
functions of 14-TFs, we firstly performed differentially 
expression genes (DEGs). Then, 285-TF target genes 
were matched out of 2679 DEGs and were marked as 
DETFTGs followed by enrichment analysis. As a result, 
twenty of the terms in GO and Reactome databases were 
significantly enriched (Figure S1A and B, Supplementary 
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Figure 1 Screening OS-related TFTGS based on NES followed by unsupervised cluster. (A) NES heatmap of TFTGS via ssGSEA. (B) (I~XIV) survival curve of OS-related 
14-TFs screened by combining KM and Cox methods. (C) Consensus cluster matrix (I) based on NES, consensus index (II), delta area of k (III), and externally validated 
cluster method of k (IV). (D) PCA (I) and tSNE (II) result based on NES.
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Table) and top 12 out of 25 terms in GSEA (Figure S1C). 
In KEGG, five pathways (hsa04512, hsa05205, hsa04510, 
hsa05410, hsa05414) were significantly enriched, and as 
displayed in top 3 (Figure S1D–F), these data indicated 
that DETFTGs would make a difference to migration/ 
invasion in LGG.

The Cluster1/2 is Clinical 
Prognosis-Related Followed by hTFs 
Annotation
To evaluate whether the results of unsupervised learning 
were clinically significant, we performed Wilcoxon-test to 
compare the distribution of clinical features (grade, age, 
IDH status, 1p19q co-deletion status, MGMT promoter 
methylated status, KPS, histology, immune score, stromal 
score) between Cluster1/2 cohorts (Figure 2A). Our find-
ings indicated that grade (p < 0.05), age (p < 0.001), 1p19q 
co-deletion status (p < 0.05), KPS (p < 0.01), histology 
(p < 0.01), immune score (p < 0.001), and stromal score 
(p < 0.001) were significantly clinical signatures. Besides, 
Cluster1 demonstrated that these findings were consistent 
with poor prognosis (Figure 2B) and poor clinical 
signature.

The functional annotations of the 14-hub TFs (hTFs) 
were conducted by DAIVD and Cistrome databases 
(Figure 2A). Co-relation network (Figure 2C) was also 
performed and indicated that most hTFs had positive inter-
actions, while the only 2-negative relationships were 
between TAZ-FOXN3 and TAZ-ZFP91. Meanwhile, the 
network also demonstrated that the very stronger interac-
tions were between ADNP-KMT2D/ZNF597-ADNP 
/YBX1-HDGF. The mRNA expressions of hTFs between 
Cluster1/2 and LGG/GTEx were conducted (Figure 2D 
and E), and the obtained results were consistent with 
lower levels (p < 0.05).

Prognostic Predict Model of kTFs and Its 
Validation
We used mRNA expression of the hTFs to establish 
a prognosis risk-signature model via lasso algorithm in 
the training cohort (TCGA-LGG). The best λ was defined 
when partial likelihood deviance was at the minimum 
value (Figure 3A-I~II). Meanwhile, only 6-TFs out of 14- 
hTFs were screening by the lasso algorithm, and they were 
marked as the kTFs. A prognostic-related risk-score of 
each sample was calculated by the coefficient of kTFs 
with the lasso algorithm. Risk groups (high/low) were 

generated by the median value of the risk-score. 
Expression levels of kTFs between high/low-risk groups 
demonstrated significantly higher expression in the high- 
risk group, except for ZNF423 (Figure 3B). The ROC 
curve showed that this risk model could satisfactorily 
predict 1-year (AUC = 0.75), and 3-year (AUC = 0.722) 
survival rates (Figure 3A-III). Furthermore, we also com-
pared OS between high/low-risk groups (Figure 3A-IV), 
and found that OS of the high-risk group was significantly 
shorter (p = 0.0014).

The distribution of risk-score between Cluster1/2 and 
grades was performed by t-test (Figure 3C-I~II). Our data 
suggested that a higher risk-score was significantly (p < 
0.05) consistent with higher-grade and Cluster1 (poorer- 
survival). These results also indicated that more than half 
of Cluster1 samples were in a high-risk group, which 
suggested that cluster algorithm based on hTFs’ NES 
revealed consistent findings with lasso algorithm based 
on kTFs’ expression values.

To confirm whether risk-score could better predict the 
prognosis of primary-LGG patients, we performed uni- 
Cox regression with risk-score and clinical-pathological 
variates (grade, IDH mutation status, TERT promoter sta-
tus, 1p19q co-deletion status, MGMT promoter methyla-
tion status). As a result (Figure 3D), higher grade, IDH 
wildtype, 1p19q non-codeletion, MGMT promoter 
unmethylation and higher risk-score were harmful to prog-
nosis, with hazard ratios (HR)>1 and p-values <0.001. 
Next, we selected risk-score and significant clinical- 
pathological indicators (IDH, 1p19q, MGMT, grade) to 
build a prognostic-predicted nomogram via multi-Cox 
algorithm (Figure 3E). Meanwhile, the multivariable 
regression calibration curves showed satisfactory precision 
of regression models in 1/3/5-year survival (Figure 3F- 
I~III).

We also validated the results in the external indepen-
dent validation cohort of CGGA. Risk-score in the valida-
tion cohort was calculated via kTFs coefficients followed 
by ROC and KM analysis. As the outcomes of ROC curve, 
robust evidence correlated the risk-score with prognosis 
(Figure 3G-I), where AUC in 1/3/5 years was 0.905/0.681/ 
0.697, respectively. KM analysis between high/low-risk 
groups also showed significant differences (p = 0.00028) 
in OS (Figure 3G-II). Then, we performed uni-Cox algo-
rithm with risk-score and clinical-pathological variates, 
which revealed consistent outcomes (Figure 3H) with 
training cohort, except MGMT (p> 0.05). Nevertheless, 
a few missing data of MGMT in the CGGA cohort might 

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S335399                                                                                                                                                                                                                       

DovePress                                                                                                                       
8177

Dovepress                                                                                                                                                               Liu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=335399.docx
https://www.dovepress.com/get_supplementary_file.php?f=335399.docx
https://www.dovepress.com/get_supplementary_file.php?f=335399.docx
https://www.dovepress.com
https://www.dovepress.com


Figure 2 Distributions of hTFs’ expression and clinical features between Cluster1/2. (A) Heatmap of NES in hTFs and clinical features between Cluster1/2 (Wilcoxon test), 
molecular functional annotation of hTFs (***p<0.001, *p<0.05). (B) Survival curve of Cluster1/2. (C) Correlation network among hTFs. (D and E) Gene expression of hTFs 
between Cluster1/2 (D) and LGG/GTEx (E).
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Figure 3 Training predicted model and developing nomogram followed by validation. (A) Lambda value of lasso predicted model (I~II), ROC curve to validate lasso predicted model 
(III), and survival curve between high/low-risk group generated by lasso algorithm (IV). (B) Gene expressed distribution of kTFs between high/low-risk groups via t-test (***p<0.001). 
(C) The risk levels between Cluster1/2 (I) and grades (II). (D and H) Uni-Cox analysis of clinical signatures and risk levels via training cohort (D) and validation cohort (H). (G) ROC 
curve to validate lasso predicted model (I) and survival curve between high/low-risk group in validation cohort. (E and I) Nomogram based on independent indicators of training cohort 
(E) and validation cohort (I). (F and J) Calibration curves of nomogram in training cohort (F) and validation cohort (J).
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cause this bias. Besides, MGMT promoter methylation 
status systemically demonstrated coincidence with 
patients’ OS.11,12 Then, we used the same clinical- 
pathological variates in the training cohort and risk-score 
to build the prognostic predicted nomogram (Figure 3I). 
Similar results were found in the external independent 
validation cohort, where calibration curves (Figure 3J- 
I~III) indicated robust precision of risk-score in the 
nomogram.

These results indicated that risk-score was an indepen-
dent predictor of prognosis in primary-LGG, and the risk- 
score-based nomogram could also provide a robust prog-
nostic prediction in LGG.

More Immunocyte Infiltrating and Higher 
Immune Checkpoints (ICPs) Expression 
in a High-Risk Group
We performed 3-independent algorithms (xCell/ 
CIBERSORT/TIMER) to calculate the infiltration score of 
immunocytes and studied the distinction between high/ 
low-risk groups. Interestingly, there were 14 (xCell, 
Figure 4A), 9 (CIBERSORT, Figure S2B), and 6 
(TIMER, Figure S2A) kinds of terms showing significant 
differences. However, all results were consistent with 
higher-infiltrating scores in the high-risk group. Of note, 
macrophage, mast cell, monocyte, and myeloid dendritic 
cell (mDC) with more characteristics of immunosuppres-
sion showed the higher-infiltrating score (Figures 4A and 
S2A). The results of xCell (Figure 4A), monocyte, macro-
phage, mast cell, activated-mDC, and T helper 2 cells 
(Th2) showed significantly higher composition in the high- 
risk group. Still, “T cell NK” showed significantly higher 
infiltration in low-risk group. In TIMER (Figure S2A), 
macrophage, mDC, and neutrophil showed higher infiltra-
tion in the high-risk group. Moreover, in CIBERSORT 
(Figure S2B), macrophage M2, activated-mast cell, neu-
trophil, and resting-memory CD4+ T cell were higher- 
enriched in the high-risk group. Meanwhile, resting-NK 
cells were also higher-enriched in the high-risk group. 
These findings indicated that immune cells with more 
skewed functions of immunosuppression were more abun-
dant in a high-risk group, whereas immune cells with more 
functions of anti-tumor immunity were less present. 
However, some anti-tumor immunocytes were also higher- 
significantly enriched in the high-risk group (“macrophage 
M1” in Figures 4A and S2B, “CD8+ T cell” in Figure S2A 
and B). Interestingly, their infiltration scores were at 

a lower level than others. Besides, it is well known that 
there is still a small number of anti-tumors immunocytes 
in tumor tissue, and the level of anti-tumor immunocytes 
in LGG is not as exhausted as in GBM.

To thoroughly investigate the immune status levels 
between high/low-risk groups, we analyzed the expression 
of ICPs in grade and Cluster1/2 (t-test). The high-risk 
group revealed results (Figure 4B-II) consistent with 
a higher level of expression in most ICPs (p < 0.05), 
except TIGIT. Meanwhile, expressions of ICPs in 
Cluster1 (poorer prognosis) and Grade-III were associated 
with higher levels (Figure 4B-I/III).

The above findings suggested that patients in the high- 
risk group may receive higher-level of immunosuppression 
and could be regarded as having “hot-tumor”.

Higher-Level of TMB in High-Risk Group 
and kTFs Associated with m6A Gene
Next, we analyzed the somatic mutation in LGG. As 
shown in Figure 4C, findings indicated that the low-risk 
group, Cluster2, and Grade-II were consistent with higher 
mutation frequency in IDH1, which represented a better 
prognosis. TMB was calculated and transformed to loga-
rithmic form for normalization (Figure 4D). Poorer- 
prognosis groups (high-risk group, Cluster1 and Grade- 
III) demonstrated that these results were consistent with 
higher levels of TMB (t-test, p < 0.0001). Risk groups 
based on kTFs were a prognostic predictor, represented the 
immunosuppression level, and reflected the ICPs, espe-
cially in CD274/PDCD1/PDCD1LG2, which are the 
most widely studied. Therefore, patients in the high-risk 
group may benefit from ICPs inhibitor or other 
immunotherapies.

While kTFs participated in transcription, it remained 
unclear whether they could be involved in epigenetic mod-
ification. We next performed correlation analysis with 
m6A regulatory genes, as methylation was the most com-
mon epigenetic modification. The 20-m6A genes were 
divided into 3 parts by function: Readers, Writers, and 
Erasers. The Pearson’s correlation matrix (Figure 4E) 
showed that ADNP had the most significant relationship 
with m6A regulatory genes and an almost positive relation 
between Writer’s and Eraser’s genes (p < 0.001), followed 
by KMT2D. Mantel’s test revealed that ADNP also had 
a stronger positive relation to Writer and Reader 
(Figure 4E, p < 0.01, r > 0.6). Besides, KMT2D had 
a stronger positive relation to Writer (Figure 4E, p < 
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Figure 4 Immune infiltrating levels and TMB status between high/low-risk groups followed by the relationship between kTFs and m6A genes. (A) Significantly enriched terms via xCell 
algorithm and 14 terms were significantly enriched. (B) Gene expressions of ICPs in Cluster1/2, high/low-risk group, and grades. (C and D) Heatmap of top 20 frequency mutated genes 
in LGG (C) and TMB levels in Cluster1/2, high/low-risk group and grades (D). (E) The relationship among kTFs, m6A genes, and m6A process; the mantel test was applied to test the 
m6A process and kTFs, line’s color referred to p value as well as size referred to relative coefficient. (t-test ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05, NS. p≥0.05).
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0.01, r > 0.6). A previous study found that ADNP were 
functioning in the form of transcription complex,13 which 
was similar to the Write process. Meanwhile, KMT2D 
encoded protein functioned as methyltransferase, and it 
also served in a protein complex.14,15 However, substantial 
systematic research is needed to explain how ADNP and 
KMT2D interacted with the m6A process. In conclusion, 
kTFs showed positive relation to m6A regulatory genes, 
especially in processes involving Reader and Writer’s 
genes.

Discussion
Previous studies on LGG often focused on single-gene 
level as the starting point, thus potentially neglecting the 
biological effect to some degree. Research starting with 
the gene sets could promote exploring and developing the 
less-bias predictable prognostic model. Transcription fac-
tors are the crucial proteins regulating gene expression and 
key functional molecules in the signaling pathway. 
Therefore, this study adopted a comprehensive bio- 
information approach beginning with TFs target gene 
sets to develop and validate the immune-related prognostic 
predict model via integrating multiple-dimension data 
including NES, clinical information, mRNA expression, 
and somatic mutation levels (Figure S3).

Global TFTGS score was first calculated by ssGSEA. 
Bio-function-based survival analyses helped to explore 
screening OS-related TFTGS. Therefore, our findings sug-
gested that the hTFs were not only OS-related but had 
fewer bias features with prognostic and biological mean-
ing. In this way, enrichment results confidently supported 
the evidence that the DETFTGs were involved in tumor 
invasion and migration (Figure S1D~F). Besides, enriched 
pathways were associated with molecular function in GO/ 
GSEA analysis (Figure S1A-C). Immunocyte infiltration 
and TBM analysis indicated the “hot-tumor” status and 
TBM ratio in a high-risk group. Finally, kTFs were related 
to m6A regulatory genes. Our approach generated a robust 
prognosis-model-based nomogram that contributed to the 
treatment of LGG.

Adopting a bio-information approach based on NES 
of TFTGS could yield less-biased global information, 
considering that TF has a crucial role in gene expres-
sion. As the lasso algorithm was screened, kTFs were 
engaged for calculating risk-score. The relation of 
prognosis with immunocytes was getting accumulated 
research. Gjorgjevski16 and Szulzewsky’s17 works, for 
instance, found that macrophage polarization and their 

bio-markers would be developed to potential targets for 
future anti-glioma therapy. We also analyzed the 
immune microenvironment based on our novel pre-
dicted model. However, tumor is not only a group of 
malignant tumor cells but a complex environment with 
many kinds of cells. Therefore, based on works like 
Gjorgjevski16 and Szulzewsky,17 we performed com-
prehensive methods (eg, deconvolution algorithm) to 
assess the status of infiltration of up to 22-kinds of 
immunocytes in different predicted groups. This 
would be an extension to the previous research. As 
the result, the high-risk group revealed a higher expres-
sion level with almost all ICPs (Figure 4B-II), which 
suggested that patients in the high-risk group could 
benefit from adopting ICPs inhibitor. According to 
this finding, novel drugs can be designed for targeting 
HAVCR2 and PDCD1LG2. Immune score from xCell 
showed that the high-risk group was consistent with 
a higher score, which suggested that patients in the 
high-risk group were with “hot-tumor”. “Hot-tumor” 
is likely to trigger a stronger immune response and 
usually responds well to immunotherapy. Besides, the 
high-risk group demonstrated findings (Figure 4D) con-
sistent with high levels TMB. Higher TMB is usually 
associated with higher levels of neoantigens that can be 
recognized by the immune system.18 Therefore, “hot- 
tumor” (high-risk group) showed a higher level of 
macrophage M1 infiltrating (Figures 4A and S2B). 
Our analysis provided novel insights that could be 
used to develop new immunotherapeutic strategies for 
personalized treatment.

In conclusion, we presented a comprehensive analysis 
with systematically and closely combining algorithm and 
bio-function that could be used to predict prognosis in 
lower-grade glioma patients. We trained a novel indepen-
dent prognostic indicator and developed an easy-to-use 
nomogram for clinicians to evaluate the prognosis of 
LGG patients, having the potential to inform treatments 
and therapeutic strategies for this difficult condition.

Abbreviations
DETFTGs, differential expressed transcription factor tar-
get genes; hTFs, hub transcription factors; kTFs, key tran-
scription factors; NES, normalized enrichment score; TF, 
transcription factor; TFTGS, TF target gene sets; TMB, 
tumor mutational burden; TPM, transcripts per 
kilobase million.
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