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Abstract: Type 2 diabetes mellitus (T2DM) is the most common form of diabetes, and is 
rising in incidence with widespread prevalence. Multiple gene variants are associated with 
glucose homeostasis, complex T2DM pathogenesis, and its complications. Exploring more 
effective therapeutic strategies for patients with diabetes is crucial. Pharmacogenomics has 
made precision medicine possible by allowing for individualized drug therapy based on 
a patient’s genetic and genomic information. T2DM is treated with various classes of oral 
hypoglycemic agents, such as biguanides, sulfonylureas, thiazolidinediones, meglitinides, 
DPP4 inhibitors, SGLT2 inhibitors, α-glucosidase inhibitors, and GLP1 analogues, which 
exhibit various pharmacogenetic variants. Although genomic interventions in monogenic 
diabetes have been implemented in clinical practice, they are still in the early stages for 
complex polygenic disorders, such as T2DM. Precision DM medicine has the potential to be 
effective in personalized therapy for those suffering from various forms of DM, such as 
T2DM. With recent developments in genetic techniques, the application of candidate-gene 
studies, large-scale genotyping investigations, genome-wide association studies, and “mul-
tiomics” studies has begun to produce results that may lead to changes in clinical practice. 
Enhanced knowledge of the genetic architecture of T2DM presents a bigger translational 
potential. This review summarizes the genetics and pathophysiology of T2DM, candidate- 
gene approaches, genome-wide association studies, personalized medicine, clinical relevance 
of pharmacogenetic variants associated with oral hypoglycemic agents, and paths toward 
personalized diabetology. 
Keywords: pharmacogenomics, personalized medicine, type 2 diabetes, antidiabetic drugs

Introduction
Type 2 diabetes mellitus (T2DM), a complex polygenic disorder, is a major burden 
worldwide.1 Genome-wide association studies (GWASs) have detected several gene 
variants associated with diabetes in different Indian subethnic populations. 
Population-specific riskalleles have been seen to increase diabetes prevalence in 
South Asians.2 The worldwide prevalence of diabetes has been predicted to double 
from 171 million cases in 2000 to 366 million in 2030, and then to 642 million by 
2040, with approximately 79.4 million by 2030 in India.3 According to Wild et al, 
the “top” three countries with the most T2DM cases are India, China, and the US, 
with estimates of 79.4 million, 42.3 million, and 30.3 million by 2030, 
respectively.4 Although diabetes is a global health concern, its burden is more 
evident in developing countries like India. Economically, the global encumbrance 
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of diabetes is huge, with 75% prevalence in low- and 
middle-income countries (LMICs). India is considered 
the diabetes capital of the world, with a large number of 
diabetic subjects and individuals remaining undiagnosed, 
accounting for >50% of people.3 The use of molecular 
testing to customize treatment widely is not yet possible. 
Furthermore, diabetes treatment based on a homogeneous 
therapeutic algorithm frequently leads to therapeutic fail-
ure with various diabetic complications.3 With the 
advancement of high-throughput sequencing technologies, 
combined “omics” data, such as genomics, transcrip-
tomics, proteomics, metabolomics, can be accumulated 
and used in global profiling of health and diseases.4 

Combined analysis of big data and routinely gathered 
clinical and laboratory data can be used in personalized 
therapeutic approaches.5 Personalized medicine is the most 
promising strategy in treating a complicated polygenic 
illness like T2DM, because of variability in 
phenotypes across population groups and the need to 
determine the appropriate medication for each 
individual.6 This new paradigm is based on the patient’s 
genetic and metabolic structure to customize diabetes 
diagnostics, prevention, prognostics, and treatment. 
Comprehending the widespread prevalence of diabetes, 
personalized diabetes management is considered impera-
tive. As such, this demands the development and 

implementation of a framework for personalized diabetes 
care. The road to personalized medicine is interesting, yet 
challenging. This review focuses on the current opportu-
nities and challenges for implementation of personalized 
medicine in the clinical practice of T2DM management — 
“personalized diabetology.”

Diabetes Pathogenesis and Gene 
Variants
GWASs have identified several gene loci involved in the 
various pathophysiological pathways of diabetes, explain-
ing its complex polygenic nature.7–9 Various gene loci are 
involved in insulin secretion, insulin resistance, obesity- 
associated diabetes, fasting glucose, β-cell count, and 
function. These genomic data can help in early disease 
prevention and selection of tailored diabetic therapy to 
achieve optimal glycemic control, thereby preventing or 
delaying the development of diabetic complications. In 
Figure 1, the pathogenic effects of certain T2DM-related 
genes in Indian populations are summarized, based on 
GWASs on T2DM pathogenesis in Indian subjects.10–32

Genetics of Type 2 Diabetes
Candidate-Gene Studies
The candidate-gene approach focuses on a population of 
distinct individuals, rather than related family members. 

Figure 1 Pathogenic effects of certain T2DM-related genes. 
Abbreviations: HNF4A, Hepatocyte nuclear factor 4 alpha; KCNJ11, Potassium Inwardly Rectifying Channel Subfamily J Member 11; NEUROD1, Neuronal Differentiation 1; 
NEUROG3, neurogenin 3; HNF1A, hepatocyte nuclear factor 1 homeobox A; TCF7, Transcription Factor 7; PPARG, Peroxisome proliferator-activated receptor gamma; UCP2, 
Uncoupling Protein 2; TCF7L2, Transcription factor 7-like 2; ENPP1 K121Q, ectonucleotide pyrophosphatase/phosphodiesterase 1 K121Q; SLC30A8, Solute Carrier Family 
30 Member 8; MTNR1B, Melatonin Receptor 1B; FTO, fat mass and obesity-associated gene; CXCR4, C-X-C Motif Chemokine Receptor 4; HHEX, Hematopoietically 
Expressed Homeobox; LPL, Lipoprotein lipase; ADIPOQ, Adiponectin, C1Q And Collagen Domain Containing; MC4R, melanocortin-4 receptor gene; DOK5, Docking Protein 
5; TCN2, Transcobalamin 2; MTR, 5-Methyltetrahydrofolate-Homocysteine Methyltransferase; CHDH, Choline Dehydrogenase; TNF-α, Tumor necrosis factor -α.
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These studies are theory-motivated,1 analyzing gene var-
iants within functional candidate genes based on data 
generated by linkage studies regarding genetic association. 
Though novel genes cannot be identified,1 these studies 
signify as the most influential method. Intensive sequen-
cing of genes thought to be involved in T2DM pathogen-
esis like glucose metabolism, insulin secretion, and insulin 
resistance is done in candidate genetic analysis.33 Along 
with the assistance of data from the Human Genome 
Project, which includes a public database of single- 
nucleotide polymorphisms (SNPs), candidate genetic var-
iants are detected.

PPARG
An initial candidate gene positively associated with 
T2DM was PPARG of the nuclear hormone–receptor 
family, regulating transcription.1 As a molecular target 
for the antidiabetic-drug class thiazolidinediones, this 
makes it a promising candidate gene.34 Substitution of 
proline for alanine at position 12 in this protein, ie, 
polymorphism Pro12Ala (rs1801282), in PPARG2 on 
extra exon B has been observed to yield a 20% higher 
risk of diabetes.33 The genetic variant in this gene has 
been found to have high correlation with elevated tran-
scriptional function, and an elevated function of defense 
against T2DM.35

KCNJ11
KCNJ11 is an inwardly rectifying potassium channel (sub-
family J, member 11) encoding Kir6.2. It is an ATP-sensitive 
channel, coding for four subunits.34 It acts as a significant 
gene in regulation of insulin secretion by β cells,33 where 
polymorphisms lead to elevated K-ATP channel function, 
causing β-cell dysfunction.36 In 1998, a missense poly-
morphism in KCNJ11 E23K was initially identified to be 
related to T2DM and confirmed by various studies, includ-
ing GWASs.37 KCNJ11 is associated with neonatal diabetes 
as well, and its rare potential polymorphism can even lead to 
a permanent form of neonatal diabetes.38

IRS1 and IRS2
Insulin Receptor Substrate 1 and Insulin Receptor 
Substrate 2 (IRS1 and IRS2) play a crucial role in the 
insulin-signaling cascade,39 and polymorphisms in these 
genes have been found to be linked with reduced insulin 
sensitivity.40

WFS1
The missense mutation rs734312 is found in exon 8 of 
Wolfarin ER Transmembrane Glycoprotein (WFS1). Also, 
elevated oral glucose-tolerance test–derived insulin- 
secretion levels are related to variant rs10010131. These 
two polymorphisms in have been found to have substantial 
defensive action against T2DM.41 SNPs in WFS1 have 
strong associations with T2DM.

HNF1A, HNF1B, and HNF4A
HNF1A, HNF1B, and HNF4A are significantly associated 
with monogenetic diabetes in the young, also called matur-
ity-onset diabetes of the young.33 The 127L, A98V, and 
S487N variants in HNF1A mutation have decreased tran-
scription function in genes engaged in GLUT2 mechan-
isms. Polymorphisms of HNF1A like AG8V and S487N 
are highly developed in late-onset autosomal-dominant 
DM, which is clinically similar to T2DM.42

ENPP1
ENPP1 is associated with T2DM.43 The missense variant 
rs1044498 of the ENPP1 K121Q polymorphism is asso-
ciated with T2DM and the development of insulin resis-
tance, which was also supported by various other studies 
in distinct populations.44 A meta-analysis on 11,855 
Chinese subjects established that the Q allele of K121Q 
gene may act as a predisposing factor of T2DM, augment-
ing T2DM susceptibility.45 However, no association has 
been replicated in other studies on different populations 
such as a one involving north Indian subjects, which 
reported no associations among ENPP1 K121 polymorph-
isms, T2DM, and related quantitative metabolic traits.46

Genome-Wide Association Studies
The Human Genome Project, completed in 2003, mapped the 
entire human genome.47 This has led to subsequent develop-
ments in genomic research. The international haplotype map 
(HapMap) project primarily sequenced 3.9 million SNPs in 
270 DNA samples from four distinct ethnic populations, fol-
lowed by detection of millions of SNPs, which got stored on a 
public database.48 Another international research effort, the 
1000 Genome Project, has also detected SNPs throughout the 
human genome and added data, and is used widely by the 
research community. Utilization of these data sources and 
enhancement of advanced high-throughput sequencing tech-
nology thus play an important role in studying various T2DM- 
associated genes and in comprehending the disease at its 
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genetic level. A French cohort study involving 661 T2DM 
cases and 614 controls that covered 3,92,935 SNP loci was the 
first GWAS to identify novel genetic variants like SLC30A8, 
HHEX, EXT2, and COC387761 as being associated with 
T2DM.49 GWASs have illustrated novel pathways, pointed 
toward fundamental biology, confirmed prior epidemiological 
observations, drawn attention to the role of β-cell dysfunction 
in T2DM, explained ~10% of disease heritability, tempered 
our expectations with regard to their use in clinical prediction, 
and provided possible targets for pharmacotherapy and phar-
macogenetic clinical trials. GWASs have also been integrated 
with high-throughput metabolomic profiling to provide scien-
tific insights into how genetic diversity influences metabolism 
and how metabolic differences in plasma might help identify 
important genes within chromosomal areas associated with 
T2DM.50

Personalized Medicine: A Paradigm 
Shift in Diabetes Treatment
Applying data generated from various clinical trials on 
the genetics of diabetes involving subjects who are 
usually young with few or no comorbid diseases to the 
general diabetic population remains a challenge. Even 
with data produced from individuals meeting selective 
inclusion criteria of glycemic control and development 
of complications, replicating this evidence-based medi-
cine for diabetic patients of various heterogeneity may 
not always provide a similar outcome. Sometimes, it even 
leads to adverse outcomes. With diverse genetic variants 
studied in GWASs, linkage with different diabetic risks 
and pathogenesis mechanisms like insulin secretion and 
resistance, glucose homeostasis, and membrane transpor-
tation necessitates personalized medicine in diabetes 
management.51

In complex polygenic disorders like T2DM, early risk 
prediction and prevention are essential. Various rando-
mized controlled trials have established that the risk of 
developing diabetes can be reduced by half if predicted 
early. Personalized medicine can play a potential role, 
enabling clinicians to provide tailored therapy.52 In addi-
tion to clinical markers like phenotypic characteristics and 
markers of metabolism, endothelial dysfunction markers, 
data on well-established genetic variants associated with 
T2DM risk possess great significance in diabetic preven-
tion. Genetic variants in TCF7L2, PPARG, KCNJ11, 
WFS1, SLC30A8, JAZF1, and HNF1B have been estab-
lished as posing a high risk of developing T2DM.28 

Therefore, the use of big data generated by GWASs and 
other “multiomics,” including proteomics, metabolomics, 
and transcriptomics, along with advanced high-throughput 
sequencing technologies, will provide a promising future 
in precision medicine for diabetes. Although, genetic test-
ing regarding the monogenic form of diabetes is available 
as a tool in specialized diabetes clinics, the use of preci-
sion medicine for the polygenic form of diabetes has not 
yet evolved. Incorporating omics data with clinical pheno-
type data of a patient potentially aids in better risk predic-
tion, prevention, and management of T2DM. A recent 
data-driven cluster analysis of six diabetes-related vari-
ables in newly diagnosed diabetes patients from the 
Swedish All New Diabetics in Scania cohort (n=8,980) 
has been replicated in three other cohorts: the Scania 
Diabetes Registry (n=1,466), All New Diabetics in 
Uppsala (n=844), and Diabetes Registry Vaasa (n=3,485). 
Five clusters of diabetic patients with distinct disease 
characteristics and a higher risk of diabetic complications 
were identified, each with a different genetic association 
from conventional T2DM. As a result, such subcategoriza-
tion aided in a better understanding of diabetes stage and 
pathogenesis, allowing for targeted and early intervention. 
This new substratification might eventually help to tailor 
and target early treatment for patients who would benefit 
most, thereby representing a first step toward precision 
medicine in diabetes.53

Deep-learning algorithms, which can detect exceed-
ingly complex patterns in huge data sets, have been 
shown to be effective in illness-prediction models and 
biological process prediction.54 These findings demon-
strate that a multiomics technique provides additional 
information for T2DM prediction and treatment manage-
ment. In the near future, deep-learning algorithms may be 
applied in multiomics studies on T2DM, as well as preci-
sion medicine. The development of systems biology meth-
ods for the integration of multiomics data is crucial for 
forecasting rising fasting plasma-glucose levels. SNPs in 
such genes as RPL7AP27, SNX30, SLC39A12, and BACE2 
have been found to be highly associated with increased 
fasting plasma-glucose levels.55 This demonstrates that 
combining candidate SNPs with IgG glycomics can yield 
T2DM-biomarker potential. The strong predictive poten-
tial observed by integrating genomes and glycomic bio-
markers suggests that such multiomic approaches could be 
used to provide predictive, preventive, and personalized 
T2DM medication.
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Effect of Pharmacogenetics on 
Antidiabetic Medications
Pharmacogenomics means formulating a genetically tai-
lored therapeutic plan to achieve the best optimal indivi-
dual response. The individual’s genetic profile is 
considered to optimize pharmacokinetics and pharmaco-
dynamics, in achieving the desired drug efficacy and 
response. In the recent years, several gene polymorphisms 
on the therapeutic response of various anti-diabetic drugs 
have been studied. However, issues like lack of knowledge 
on clinical relevance and implementation, lack of struc-
tured guidelines and ethical, social, technological, legisla-
tive, and economic issues remains a challenge. Therefore, 
giving importance to interindividual genetic variability in 
response to antidiabetic agents is the primary factor in 
achieving “personalized diabetology”.

Metformin
ATM
A meta-analysis of three cohort studies — Hoorn Diabetes 
Care System (DCS) cohort,56 CARDS cohort,57 and smal-
ler Rotterdam Study cohort58 — concluded that the ATM, 
a member of the PI3K family and important for cell-cycle 
control and DNA repair, in which rs11212617 polymorph-
ism was associated with metformin-treatment response.59 

This polymorphism and rs628031 of SLC22A1 were found 
to have no association with metformin treatment in an 
Iranian T2DM population.60 In a Caucasian population, 
rs11212617 had a significant association with metformin 
response, with low plasma concentration of metformin 
indicating high cellular-level action.61 However, in 
a south Indian population, these SNPs were found to 
have no contribution to T2DM incidence.62

OCT1
The allele and genotypes of the SLC22A1 rs622342 poly-
morphism were associated with metformin effectiveness in 
south Indian patients with T2DM.63 The GoDART database 
study examined rs122083571 and rs72552763 in 2,216 
participants and reported that patients with these 
polymorphisms on OCT1 inhibitors had more than fourfold 
the risk of acquiring intolerance to metformin (OR 4.13, 
95% CI 2.09–8.16; P<0.001).64 The rs2297374 polymorph-
ism (+43C>T) and metformin response showed no signifi-
cant association in Indian populations,65 and 20% frequency 
of rs2282143 (1022C>T) was detected in Indian subjects. 
The influence of rs1867351 (156T>C) on metformin-action 

regulation has been examined in an Indian population, 
showing a frequency of 27% (2018).66 A study on 
a Mexican population recently identified CC-rs622342 
(β=1.36, P<0.001), AA-rs628031 (β=0.98, P=0.032), and 
GG-rs594709 (β=1.21, P=0.016) in the SLC22A1 gene to be 
associated with reduced metformin effectiveness, with 
increased HbA1c levels.67 The variants R61C 
(rs12208357), G401S (rs34130495), G456R (rs34059508), 
and 420del (rs72552763) were associated with reduced 
metformin activity.68

OCT2
Genetic variants in the SCL22A2 gene encoding the OCT2 
protein, such as T199I, T201M, and A270S, have been 
fouund to be related to decreased metformin function.69 

However, no significant association between SLC22A2 
SNPs (rs10755577, rs17588242, rs17589858, rs2928035, 
rs312024, rs312025, rs312026, rs3127573, rs533452, and 
rs662301) and metformin clearance has been found in 
healthy Caucasian males.70 A recent study also failed to 
replicate associations between any SNPs of SLC22A2 and 
glucose regulation. However, using multinomial logistic 
regression and adjusting for covariates like age and BMI, 
associations between glucose regulation and SNPs within 
SLC22A1, SLC22A2, and SLC22A3 were replicated.71

OCT3
The four SLC22A3 SNPs (rs12194182, rs2292334, 
rs2504927, and rs3123634) have been found to have no 
association with metformin action in Caucasians.71 The 
rs2292334 and rs12194182 SNPs are associated with 
lower risk of T2DM and lower mean HbA1c levels. In an 
Iranian study, metformin showed better glucose regulation 
and lipid management, irrespective of OCT3-564G>A 
variant.72 The genetic variants in PRPF31, CPA6, and 
STAT3 are associated with novel glucose-lowering 
mechanisms for metformin.73 A significant association 
was observed in a recent study in 2019 on T2DM patients 
between TCF7L2 rs7903146 and metformin response.74 

Carriers of the G allele of the intronic SNP rs3889348 
exhibit significantly lower expression of SLC29A4, which 
encodes PMAT. Since it aids in metformin absorption, 
metformin therapy increases the risk of gastrointestinal 
intolerance.75

Sulfonylureas
Sulfonylureas are metabolized in the liver primarily by the 
polymorphic cytochrome P450 isoenzyme 2C9, encoded 
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by CYP2C9. In a large GoDARTS64 retrospective study of 
1,073 subjects, carriers of loss-of-function CYP2C9*2 or 
CYP2C9*3 alleles had 3.4-fold the higher probability of 
attaining glycemic control of carriers of the wild-type 
alleles. Two polymorphisms — CYP2C9*2 (I359L) and 
CYP2C9*3 (R114C) — were associated with elevated 
serum-sulfonylurea levels.76

Sulfonylureas are insulin secretagogues that bind the 
SUR1 subunit (encoded by ABCC8), play a major role in 
insulin secretion, and are potential candidate for T2DM. 
The 3c → t polymorphism and the Thr759Thr (ACC → 
ACT) silent polymorphism were initially associated with 
T2DM in Caucasians.77 A genotyping study assessing this 
polymorphism failed to replicate this in a south Indian 
population of 637 diabetes patients.78 The KCJN11 E23K 
variant is associated with T2DM and sulfonylurea efficacy 
in Caucasians.79 In Caucasian T2DM patients, rs7903146 
and rs1801278 polymorphisms of the TCF7L2 and IRS1 
genes are associated with poor sulfonylurea response.80 In 
an Indian study involving a Gujarat population of T2DM 
patients, genetic variation at rs12255372 was associated 
with the sulfonylurea effectiveness.81 Several genetic var-
iants of TCF7L2 are related to T2DM in diverse ethnici-
ties, among which rs7903146 (intron 4) has the strongest 
association with T2DM, while rs12255372 and rs7903146 
are related to poor therapeutic outcomes.82,83 MIR4532 
rs60452575 influenced KCNJ11 expression and sulfony-
lurea effectiveness in a Chinese population.84

DPP4 Inhibitors and GLP1 
Analogues
DPP4 inactivates the incretins GLP1 and gastric inhibitory 
polypeptide (GIP). DPP4 inhibitors extend the half-life of 
these incretins, and this is correlated with augmented 
insulin release and reduced glucagon release.85 GLP1- 
receptor agonists and DPP4 inhibitors control blood glu-
cose by targeting the body’s incretin system. GLP1 ago-
nists act as “incretin mimetics” and DPP4 inhibitors 
prevent the breakdown of endogenous incretin. DPP4 inhi-
bitors and GLP1-receptor agonists are recommended 
as second-line glucose-lowering agents by the American 
Diabetes Association and the European Association for the 
Study of Diabetes in cases where patients require combi-
nation therapy for adequate glycemic control or when 
metformin or sulfonylureas are ineffective.86,87 The first 
DPP4-selective inhibitor was sitagliptin, which was fol-
lowed by vildagliptin, saxagliptin, linagliptin, and most 

recently alogliptin. Exenatide, liraglutide, lixisenatide, 
dulaglutide, and albiglutide are the five GLP1-receptor 
agonists currently approved for the treatment of T2D.88

In a recent study on a Central European population of 
206 T2DM patients, missense variant rs6923761 in the 
GLP1R gene was associated with lower glucose control in 
6-month exposure to gliptins.89 In individuals with high 
body fat, DPP4 rs6741949 in intron 2 position showed 
negative correlations with insulin secretion (P=0.0061), glu-
cose tolerance (P=0.0208), and glucose-stimulated GLP1 
levels (P=0.0229).90 The rs2285676 variant in the KCNJ11 
gene is a predictor of the therapeutic effect of DPP4 
inhibitors.91 In a study on 137 Caucasian diabetics, the 
KCNQ1 rs163184 T>G variant was related to glucose reg-
ulation of DPP4 inhibitors.92 Variants of CDKAL1 
(rs7754840 and rs7756992) in Japanese are linked with 
glycemic control activity of DPP4 inhibitors.93 In the 
Taiwanese, rs57803087 in PRKD1 is highly associated 
with DPP4-inhibitor function.94 GLP1-analogue drugs are 
incretin mimetic agents. The SNP rs7202877 has been found 
to control the expression of CTRB1 and CTRB2 for chymo-
trypsin, a significant regulator of the incretin mechanism in 
non-T2DM patients.95 In a recent study, T2DM patients with 
minor A allele of GLP1R (rs6923761), who had received 
exenatide or liraglutide showed a more significant delay in 
gastric emptying T½ to baseline.96 Although TCF7L2 
(rs7903146) and WFS1 (rs10010131) and KCNQ1 
(rs151290, rs2237892, and rs2237895) were initially 
shown to be related to GLP1 response, another study of 
the effect of these variants on GLP1 concentrations showed 
no association in healthy individuals. Also, GLP1R poly-
morphisms showed no statistical association with GLP1- 
analogue responses in T2DM patients with poor glycemic 
control.97

Sodium–Glucose Cotransporter 2 
Inhibitors
SGLT2 is encoded by the SLC5A2 gene, located on human 
chromosome 16p11.2. From genotyping of five SNPs in 
SLC5A2 gene locus in 603 T2DM subjects, no association 
between SLC5A2 variants and empagliflozin response was 
detected.98 On the other hand, the rs9934336 G allele has 
been found to be associated with increased 30-minute 
plasma glucose, 120-minute insulin concentrations, and 
AUC120 glucose on oral glucose-tolerance test in 907 
nondiabetic Sorbs (P<0.05).99 In addition, the 
UGT1A9*3 and UGT2B4*2 polymorphisms have been 
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demonstrated to increase plasma concentration of the 
SGLT2 inhibitor canagliflozin in carriers of wild-type 
alleles.100 Kan et al investigated the effect of alogliptin 
on liver function and glucose regulation in T2DM patients 
with nonalcoholic fatty-liver disease and PNPLA3 
rs738409 C>G genotypes. Those with the G allele showed 
a positive relationship between improved HbA1c levels and 
alterations in liver-transaminase levels.101

α-Glucosidase Inhibitors
The STOP-NIDDM trial,102 with 770 study subjects, stu-
died the acarbose response and its association with genetic 
variants of PPARA, HNF4A, LIPC, PPARG2, and 
PPARGC1A were studied. Findings were not replicated in 
other populations with preexisting T2DM. The Pro12Pro 
genotype of PPARG2 gene and the 482Ser allele of 
PPARGC1A has been established to be associated with 
the transformation of impaired glucose tolerance in 
T2DM. Acarbose averts the progression of diabetes, irre-
spective of PPARG2 genotype.103

Meglitinide
SLCO1B1, CYP2C8, CYP3A4, TCF7L2, SLC30A8, 
IGF2BP2, KCNJ11, KCNQ1, UCP2, NAMPT, MDR1, 
PAX4, and NEUROD1 were found to be associated with 
meglitinide response in the Chinese population.104 

OATP1B1, which SLCO1B1 encodes, facilitates hepatic 
transport of the drug. Genetic polymorphisms in CYP2C8 
and CYP2C8*1/*3 genotypes are associated with reduced 
plasma concentrations of repaglinide.105 In a study on 
Chinese T2DM patients on repaglinide, the NAMPT 
−3186C⁄T polymorphism affected plasma levels of post-
prandial serum insulin and total cholesterol levels.106 The 
KCNQ1 rs2237892 T and rs2237895 C alleles respond to 
repaglinide positively.107 As KCNQ1 plays a vital role in 
controlling insulin resistance through the IRS2–PI3K–Akt 
signaling pathway, the genetic polymorphism in this gene 
has been found to affect repaglinide response in the same 
population.107 The frequency of the ABCC8 rs1801261 
allele has been found to be higher in T2DM patients 
than control subjects (22.6% vs 11%, P<0.01), exerting 
effects on repaglinide response.108 The C/C homozygotes 
of the ABCC8 exon16– 3T/C variant have shown better 
repaglinide response in insulin sensitivity than the T/C and 
T/T genotypes of the KCNJ11 E23K variant.109

Thiazolidinediones
Thiazolidinediones are PPAR activators that decrease cir-
culating free fatty acids, thereby enhancing sensitivity to 
insulin and reducing hyperglycemic episodes.110 The 
rs296766 T allele of AQP2 and rs12904216 G of 
SLC12A1 have been found to be associated with edema 
in rosiglitazone users.111 PPARGC1A Thr394Thr and 
Gly482Ser polymorphisms are associated with rosiglita-
zone action in Chinese patients with T2DM.112 The P12A 
variant in PPARG is associated with lowered rosiglitazone 
effectiveness.113 Another Asian study with 250 patients 
demonstrated that carriers of the minor allele of variant 
rs1801282 in PPARG had higher odds of being responders 
to pioglitazone than carriers of wild-type alleles.114 

Additionally, carriers of the A allele of rs6467136 in 
PAX4 showed improved response to rosiglitazone.115 The 
major metabolizer of thiazolidinedione is CYP2C8, in 
which the *3 variant116 has reduced response to insulin, 
with lower plasma concentration of rosiglitazone.117 The 
transporter OATP1B1, encoded by SLCO1B1, facilitates 
hepatic uptake of thiazolidinediones, which are metabo-
lized by the enzyme CYP2C8 (encoded by CYP2C8), are 
associated with two variants — Val174Ala and 
rs4149056 — in the Scottish population.116 Genetic var-
iants associated with therapeutic responses to antidiabetic 
medications are summarized in Table 1.

Current Perspectives and Future 
Prospects of Personalized Medicine 
in Type 2 Diabetes
The Precision Medicine in Diabetes Initiative was 
launched in 2018 by the American Diabetes Association 
in collaboration with the European Association for the 
Study of Diabetes and the US National Institute of 
Diabetes and Digestive and Kidney Diseases.118 

Although the application of precision medicine in mono-
genic diabetes was successful, it is challenging to imple-
ment in T2DM, a complex multifactorial polygenic 
disease.

Over the years, more than 100 T2DM-susceptibility 
loci have been detected. However, the understanding of 
functions of these detected genetic variants in diabetic 
pathogenesis remains challenging. As the effect of causal 
variants in T2DM is small, it becomes hard to establish 
their association. This issue can be reduced using bio-
banks, which help in the accessibility of well-organized, 
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Table 1 Genetic Variants that Influence Antidiabetic-Medication Response

Gene dbSNP ID Study 
Population/ 
Country

Main Outcome Reference

Metformin ATM rs11212617 Netherlands Carriers of A allele of ATM rs11212617 had less response to metformin 

than C-allele carriers.

van der Heijden 

et al56

ATM rs11212617 Caucasian Carriers of minor allele of rs11212617 had lower metformin plasma 

concentration and hence metformin response.

van Leeuwen 

et al59

SLC22A1 rs622342 South Indian The rs622342 polymorphism of SLC22A1 was associated with the 

therapeutic efficacy of metformin.

Umamaheswaran 

et al63

OCT1 rs122083571 GoDARTS 

database

Carriers of these polymorphisms and OCT1 inhibitors had four times the 

risk of developing intolerance to metformin.

Dujic et al64

rs72552763

SLC22A1 rs622342 Mexican Carriers of these genotypes showed less response, with increased levels of  

HbA1c after 12 months of metformin therapy.

Reséndiz-Abarca 

et al67rs628031

rs594709

SLC47A1 rs2289669 Rotterdam 

Cohort 

Study

Carriers of minor A allele at rs2289669 showed 0.3% higher HbA1C 

reduction.

Becker et al69

SLC22A3 rs12194182 Jordanian Carriers of CC genotype exhibited the lowest mean HbA1c levels, while 

patients with the CT and TT genotypes exhibited higher levels.

Al-Eitan et al71

PRPF31 rs254271 ACCORD 

trial (US and 

Canada)

Carriers of C allele of rs254271, an intronic variant in PRPF31, showed 

inferior metformin response.

Rotroff et al73

TCF7L2 rs7903146 Bosnia and 

Herzegovina

Newly diagnosed patients carrying the T allele had lower insulin resistance 

and better glycemic response within the first year of metformin treatment.

Dujic et al74

Sulfonylureas CYP2C9 rs1057910 Netherlands Polymorphism of CYP2C9*3 required lowered dose of tolbutamide to 

regulate serum glucose.

Becker et al76

KCJN11 rs5219 Central 

European 

Caucasian

Carriers of the KCNJ11 K-allele polymorphism had greater therapeutic 

response to gliclazide.

Javorsky et al79

TCF7L2 rs12255372 Indian Carriers of GG genotype showed better response to sulfonylureas than 

GT or TT carriers.

Dhawan et al81

KCNJ11 rs60452575 China MIR4532 rs60452575 variant influenced KCNJ11 expression and 

increased sulfonylurea efficacy.

Chen et al84

DPP4 inhibitors GLP1R rs6923761 Slovakia and 

the Czech 

Republic

Associated with reduced glycemic response to 6-month DPP4-inhibitor 

therapy.

Urgeová et al89

KCNJ11 rs2285676 Malaysia KCNJ11 rs2285676 was found to be a predictor of DPP4 inhibitor– 

treatment response.

Jamaluddin et al91

KCNQ1 rs163184 Caucasian The KCNQ1 rs163184 T>G variant was associated with decreased glycemic 

response to DPP4 inhibitors.

Gotthardová 

et al92

CDKAL1 rs7754840 

rs7756992

Japan CDKAL1 was linked with glycemic control activity of DPP4 inhibitors. Osada et al93

PRKD1 rs57803087 Taiwan PRKD1 gene of SNP rs57803087 had a strong association with 

DPP4-inhibitor response.

Liao et al94

(Continued)
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multiuser, large-cohort databases covering clinical, labora-
tory, and molecular information from large patient sam-
ples. The DNA Technology Regulation Bill 2019 in India 
provides for the establishment of DNA data banks at 
national and regional levels. There are now 336 million 
people with diabetes living in LMICs,3 accounting for four 
in five people worldwide with diabetes. India, an LMIC 
that is a major epicenter of diabetes, is a diverse country 
with nearly 4,000 population groups and characterized by 
unique genetic variations within the subpopulations. 
GWASs involving a larger population of different ethni-
cities may lead to identification of more genetic loci asso-
ciated with T2DM. They also may aid in the interpretation 
of the function and role of predetected genetic variants. 
This can be achieved as the cost of sequencing technolo-
gies reduces over time.

Establishing a set of biomarkers that would accurately 
associate with various stages of diabetes and complica-
tions is crucial. As molecular sequencing studies keep 
generating pharmacogenetic markers, clinical trials invol-
ving interventional therapies that target these should be 
conducted to ensure the reliability of the established data. 
One of the best examples of how precision medicine can 
be successfully exploited is sulfonylureas targeting the 
KCNJ11 genetic variation. Metformin has been observed 

to enhance the antitumor activity of MEK inhibitors in 
human LKB1 wild-type non–small cell lung cancer 
(NSCLC) cell lines, regardless of KRAS-mutation status, 
by downregulating GLI1 and decreasing NF-kB (p65)- 
mediated transcription of MMP2 and MMP9.119 The 
METAL trial was designed to determine the maximum 
tolerated dose and evaluate the safety and activity of 
metformin coupled with erlotinib in second-line treatment 
of patients with stage IV NSCLC whose tumors expressed 
the wild-type EGFR gene.120 A recent multicenter clinical 
trial on diabetic kidney disease called Nephropathy in 
Diabetes Type 2 compared standard of care (n=188) with 
multifactorial intensive therapy (n=207) in which compre-
hensive therapy for the main risk factors was far more 
effective than standard of care in preventing major fatal/ 
nonfatal cardiovascular events in diabetic kidney-disease 
patients, and its use at an early stage offered prolonged 
protection. As a result, such an integrated and multifactor-
ial approach may result in better diabetic outcomes.121 

Sharing those trial results is crucial in providing new 
insights. Databases have been developed in recent years 
through sharing of data, such as the Human Gene Mutation 
Database122 and ClinVar.123

The ancillary effects of antiglycemic drugs can also be 
tailored and directed toward beneficial results. In major 

Table 1 (Continued). 

Gene dbSNP ID Study 
Population/ 
Country

Main Outcome Reference

α-Glucosidase 
inhibitors (AGIs)

PPARγ2 Pro12Pro STOP- 

NIDDM trial 

subjects

PPARG genotypewith acarbose prevented the development of diabetes. Andrulionytè 

et al99PGC-1α 482Ser
Carriers of the 482Ser allele of the PPARGC1A gene were responsive to 

acarbose treatment.

GLP1 GLP1R rs6923761 US Carriers of A allele of GLP1R rs6923761 had a greater delay in gastric 

emptying in response to treatment with GLP1 agonists.

Chedid et al102

Meglitinide KCNQ1 rs2237892 Chinese Carriers of rs2237892 T and rs2237895 C alleles were more likely to have 

a positive response to repaglinide than those with rs2237892 CC and 

rs2237895 AA genotypes.

Dai et al107

rs2237895

NOS1AP rs12742393 Chinese Carriers of risk C allele of NOS1AP rs12742393 may have poor therapeutic 

response to repaglinide.

Wang et al108

ABCC8 rs1801261 Chinese Carriers of genotype CT showed a significantly reduced response to 

repaglinide than those with genotype CC.

Zhou et al109

Thiazolidinediones PAX4 rs6467136 Chinese Carriers of the A allele showed improved response to rosiglitazone. Chen et al115

Abbreviations: ATM, Ataxia Telangiectasia Mutated; SLC22A1, Solute carrier family 22 member 1; OCT1, Organic Cation Transporter 1; SLC47A1, Solute carrier family 47 
member 1; SLC22A3, Solute carrier family 22 member 3; PRPF31, Pre-MRNA Processing Factor 31; TCF7L2, Transcription factor 7-like 2; KCJN11, Potassium Inwardly 
Rectifying Channel Subfamily J Member 11; GLP1R, glucagon-like peptide 1 receptors; KCNQ1, Potassium Voltage-Gated Channel Subfamily Q Member 1; CDKAL1, Cdk5 
regulatory associated protein 1-like 1; PRKD1, Protein Kinase D1; PPARγ2, Peroxisome proliferator-activated receptor gamma 2; PGC-1α, Peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha; NOS1AP, Nitric Oxide Synthase 1 Adaptor Protein; ABCC8, ATP Binding Cassette Subfamily C Member 8; PAX4, Paired box gene 4.
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randomized clinical trials and real-world observational 
studies, SGLT2 inhibitors have shown positive pleiotropic 
effects on body weight, systolic blood pressure, and eGFR 
levels, as well as improved cardiovascular outcomes. 
These pleiotropic effects are advantageous for the preven-
tion or decrease of macro- and microvascular problems, 
and may be especially beneficial in patients with diabetes 
or at risk of diabetes complications, such as CVD, HF, and 
CKD. This enables physicians to choose appropriate gly-
cemic therapy based on cardiovascular and renal 
comorbidities.124,125

Electronic health-care records across health-care sys-
tems are crucial in implementing of precision medicine for 
diabetes, as they are easy to access and share among 
various systems across a wide region. Collaborations 
among various research societies, health-care organiza-
tions, funding organization, suppliers, and governing agen-
cies to implement precision medicine in diabetes 
diagnostics, prevention, monitoring, prognostics, and treat-
ment are crucial. It is essential to form an active network 
of stakeholders with patient representatives and public 
organizations to raise agendas and funds.

Although diabetes precision medicine involving sequen-
cing technologies is more expensive than conventional treat-
ment, precision medicine in monogenic diabetes has been 
established to be cost-effective. As diabetic complications 
are the primary factor in treatment expenses, early diagnosis, 
prevention, and intervention based on genetic 
variants through precision medicine may be motivation for 
acceptance. A critical evaluation of the cost versus benefit of 
sequencing technologies, genomics, and biomarkers is neces-
sary to advocate its use in clinical practices in certain popula-
tions. The use of technology in diabetes, such as wearable 
glucose-monitoring sensors with minimal invasion and unin-
terrupted glucose measuring, is highly encouraged and prac-
ticed in various health-care systems, the best example of 
extensive personalized medicine in diabetes.126

Algorithms and guidelines on personalized diabetes ther-
apy based on genotype should be developed based on the 
clinical evidence generated, aiding in implementing such evi-
dence at the clinical level. The exploitation of artificial intelli-
gence in clinical decision-making for an optimal therapeutic 
regimen for many patients will be the revolutionizing 
approach in personalized medicine of diabetes. Educational 
programs are required to train and educate clinicians, geneti-
cists, and other health-care professionals in implementing 
personalized medicine for diabetes at the patient level and 
handling potential accidental findings, such as unexpected 

germ-line mutations. Adequate training of the genomic work-
force can be achieved by procuring suitable funds for provid-
ing genomic education. The participation of regulatory bodies 
in the initial phases of precision-medicine development in 
diabetes is crucial for its effective execution and practice.

Individual genetic variation identification and knowledge 
of its role in the predisposition and pathogenesis of T2D 
would be a significant step in disease management, improv-
ing clinical conditions and preventing complications. In this 
review, we have identified the current state of genetic risk 
variants linked with T2DM and shown the importance phar-
macogenomic studies have in associating actionable relation-
ships between genetic and pharmacological treatments. 
Personalized medicine can lead to more effective drug ther-
apy with better patient adherence in routine clinical practice. 
Precision DM medicine is already being used to treat mono-
genic forms, such as maturity-onset diabetes of the young, 
neonatal DM, and congenital hyperinsulinemic hypoglyce-
mia. Precision DM medicine promises to be useful in custo-
mized therapy for those suffering from different types of 
diabetes, such as T2DM.127

T2DM is a polygenic condition, and the clinical phe-
notype reflects both genetic and environmental effects, 
making it far more challenging to define subgroups using 
molecular testing.128 One strategy for precision medicine 
in T2DM is to divide patients into subgroups based on 
treatment response and then examine the biological under-
pinnings of each subgroup utilizing next-generation 
sequencing platforms and gene arrays.129 Big data, or the 
growing availability of genetic and electronic health data 
from large populations, is a significant tool for delivering 
precision treatment for T2DM.130,131

Conclusion
The increasing incidence of diabetes is causing rising 
health-care costs, morbidity, mortality, and diabetes- 
related comorbidities. Numerous genomic technologies 
have led to the identification of several genetic loci asso-
ciated with T2DM. However, the complete landscape of 
T2DM-susceptibility gene variants remains inadequate, 
calling for more genetic studies on various ethnicities. 
Moreover, it is also imperative to replicate studies on the 
identified gene variants through advanced sequencing tech-
nologies on different populations and subethnic groups to 
establish more compelling data for clinical translation. 
Although genomic interventions in monogenic diabetes 
are translated into clinical practice, they are still evolving 
in complex polygenic diseases like T2DM. Paradigm shifts 
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in the future of diabetes management are crucial in tackling 
the diabetes epidemic. With diverse phenotypic and geno-
typic features in T2DM populations, the “one size fits all” 
approach is inept. Comprehensive phenotyping and geno-
typing of diabetic individuals at the prediabetic stage helps 
in precision diagnostics, prevention, prognostics, and ther-
apy. Health-care professionals can use electronic medical 
records consisting of individuals complete omics data, 
including genomics, proteomics, metabolomics, and tran-
scriptomics. Then, decisions on therapeutic optimization 
can be made using potential actionable findings generated 
in T2DM individuals. Given the remarkable advancements 
made over the recent decades, it is reasonable to forecast the 
acceptance of “personalized diabetology” in T2DM in com-
ing years. Recent breakthroughs in genetic techniques, the 
application of candidate-gene studies, large-scale genotyp-
ing investigations, and GWASs have begun to produce 
suggestive results that may lead to changes in clinical prac-
tice. Pharmacogenetic research has already begun to deliver 
on the promise of personalized diabetes treatment for some 
monogenic forms. The recently introduced “miRNA phar-
macogenomics,” which examines polymorphisms in the 
miRNA regulatory pathway and their relationship to drug 
response, would also be valuable for personalized medicine.
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