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Abstract: Exosomes with diameters of 30–150 nm are small membrane-bound vesicles 
secreted by a variety of cells. They play an important role in many biological processes, such 
as tumor-related immune response and intercellular signal transduction. Exosomes have been 
considered as emerging and noninvasive biomarkers for cancer diagnosis. Recently, a large 
number of optical and electrochemical biosensors have been proposed for sensitive detection 
of exosomes. To meet the increasing demands for ultrasensitive detection, nanomaterials 
have been integrated with various techniques as powerful components. Because of their 
intrinsic merits of biological compatibility, excellent physicochemical features and unique 
catalytic ability, nanomaterials have significantly improved the analytical performances of 
exosome biosensors. In this review, we summarized the recent progress in nanomaterials- 
based biosensors for the detection of cancer-derived exosomes, including fluorescence, 
colorimetry, surface plasmon resonance spectroscopy, surface enhanced Raman scattering 
spectroscopy, electrochemistry, electrochemiluminescence and so on. 
Keywords: exosomes, nanomaterials, circulating tumor biomarkers, electrochemical 
biosensor, optical biosensor

Introduction
Cancer is the main cause of death, and its occurrence and development is a gradual 
and complicated process. Early diagnosis and treatment of cancer can enormously 
improve the survival chance of cancer patients. Extracellular vesicles (EVs) are 
secreted by various cell types and circulate in different body fluids. They were first 
discovered as “cell junks” about 40 years ago.1,2 The lack of specific and reliable 
markers makes the clear assignation of EV subtypes extraordinarily difficult. 
According to operational terms for EV subtypes proposed by the International 
Society for Extracellular Vesicles (ISEV), EVs can be classified into three groups 
based on their size: exosomes, small EVs (sEVs) (< 200 nm), medium EVs 
(mEVs), and large EVs (lEVs).3 Exosomes are nanosized extracellular vesicles 
(EVs) (30–200 nm). For the convenience of the reader, this review used 
a relatively broad term of “exosomes” to refer to a heterogeneous mixture of 
sEVs less than 200 nm in size because it is increasingly utilized in bioassays.4 

Compared to circulating tumor cells and circulating DNA, exosomes exist in body 
fluids (such as serum, urine and ascites) with higher abundance and stability.5 

Emerging evidences suggest that most types of cancer secret large numbers of 
exosomes that carry abundant molecular information stemming from parent tumor 
cells, including nucleic acids, proteins, bioactive lipids and metabolites.6,7 
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Exosomes can act as cellular messengers to deliver infor-
mation between cells via endocytosis.8,9 They also play 
a key role in cancer metastasis and progression in the 
tumor microenvironment.10,11 Moreover, various unique 
cargos in exosomes represent meaningful physiological 
and pathological states of diseases.12,13 Therefore, exo-
somes have been recognized as the most reliable non- 
invasive biomarkers for the early diagnosis and cure of 
cancers.14–17

Various exosomes-containing complex biological fluids 
have a plenty of nonvesicular macromolecules, such as 
proteins, proteases, nuclease and RNA complexes, which 
may interfere with the analysis of exosomes. For example, 
proteases and nuclease can digest the biorecognition ele-
ments such as antibodies and aptamers. Thus, the growing 
interests in exosomes and their potential applications in 
cancer detection have pushed researchers to develop var-
ious isolation and detection techniques. Normally, conven-
tional isolation techniques, including ultracentrifugation, 
density gradient centrifugation and ultrafiltration, are 
mainly based on the physical properties of exosomes (eg 
size and density).5,18 However, these techniques confront 
of some problems, such as low purity, tedious procedures 
and requirement of expensive instruments. Traditional 
detection techniques utilized to quantify the isolated exo-
somes include nanoparticle tracking analysis (NTA), flow 
cytometry, Western blot, dynamic light scattering, scan-
ning electron microscope (SEM), and transmission elec-
tron microscope (TEM).2,19–22 Although these methods 
have been popularly used, the problems of low reproduci-
bility, time consuming, large sample demand and low 
sensitivity limit their further applications.

Over the past years, many types of proteins, such as 
tetraspanins (eg CD9, CD63, CD81 and CD82), adhesion 
molecules (eg integrins and lactadherin) and lipid rafts (eg 
cholesterol, phosphatidylserine and ceramide), have been 
found on the membrane of all types of exosomes.23,24 

These biomolecules can be utilized as the targets for the 
detection of total exosomes. However, exosomes derived 
from various tumor cells exhibit different cancers-asso-
ciated antigens on the surface. These distinct antigens 
have been used as the biomarkers for the determination 
of certain cancer-derived exosomes.25 For example, MCF- 
7-secreted exosomes with highly expressed MUC1 on the 
surface.26 Protein tyrosine kinase 7 and CD147 are over- 
expressed on the surface of human leukemic lymphoblasts 
(CCRF-CEM) and colorectal cancer cellular exosomes, 
respectively.27,28 These proteins are the promising markers 

for the isolation and detection of exosomes with the aid of 
biorecognition elements.29,30 By modifying magnetic 
beads (MBs), chips or microfluidics with antibodies 
toward exosome membrane markers, immunoaffinity-cap-
ture-based techniques are proposed for the isolation and 
enrichment of exosomes with high selectivity and specifi-
city as well as intact biological activity.23,31–44 However, 
the expensive cost and instability of antibodies limit their 
practical applications. Aptamers and peptides are screened 
to act as biorecognition elements for the isolation and 
detection of exosomes by the virtue of low cost, small 
size and relatively excellent stability.45–47 Besides, exoso-
mal glycans provide a valuable route to label exosomes 
through the interaction of lectin and glycan.48,49 Lipophilic 
cholesterol anchors can penetrate into the lipid bilayers for 
membrane modification, which have been regarded as the 
promising candidates for labeling of exosomes.50,51 In 
contrast to physical property-based isolation techniques, 
affinity-based isolation techniques exhibit much higher 
enrichment efficiency, facilitating the sensitive detection 
of exosomes.

In recent years, numerous novel biosensors with high 
sensitivity and efficiency have been established for the 
determination of exosomes by specific recognition, includ-
ing colorimetry, fluorescence, surface plasmon resonance 
(SPR), surface enhanced Raman scattering (SERS) spec-
troscopy, mass spectrometry and electrochemical, electro-
chemiluminescent (ECL) and photoelectrochemical (PEC) 
assays.4,52–59 Moreover, many works based on microflui-
dic devices implemented with optical or electrochemical 
techniques have been reported for the comprehensive 
assays of exosomes.60–64

With the growing development of nanotechnology, 
myriad nanomaterials and nanostructures have made 
a great impact on biosensing. Significant advances have 
made it possible to controllably prepare nanomaterials 
with various chemical composition, morphology and phy-
sicochemical characteristics. For example, nanomaterials 
with wonderful luminescence properties have been an 
important alternative to traditional dyes in optical assays, 
because of their excellent merits of adjustable emission 
wavelength, high luminescence quantum yield and good 
photostability. Thanks to the interesting size and shape- 
dependent localized surface plasmon resonance phenom-
enon, noble metal nanoparticles (NPs), especially gold and 
silver, have been widely used to enhance the signal inten-
sity in SPR and SERS assays. Carbon-based nanomaterials 
(eg, carbon nanotubes and graphene oxide) with a high 
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surface-to-volume ratio and high electrical conductivity 
are always employed for electrode modification to accel-
erate the electron transfer and increase the electrode sur-
face area. Moreover, recently, the photothermal and 
enzyme-mimic properties of nanomaterials have gained 
considerable interest toward the development of portable 
bioassays. Various nanomaterials-based signal amplifica-
tion strategies, coupled with different detection techniques, 
have been developed for the ultrasensitive detection of 
biomolecules, including DNA/RNA, proteins, exosomes 
and cells. In exosomes detection, there are two mainly 
objectives, including improving the capture of exosomes 
and enhancing the performance of detection methods. For 
the former, magnetic beads (MBs) as the classical materi-
als have been increasingly used to selectively capture 
exosomes from clinical samples, when being decorated 
with antibodies or aptamers.

In this review, the recent progress in nanomaterials- 
based biosensors for exosome detection was comprehen-
sively summarized. The detection techniques mainly cover 
optical and electrochemical assays (Tables 1 and 2). 
Nanomaterials are involved in semiconductor quantum 
dots (QDs), metal NPs, metal oxides and sulfides, and 
carbon-based nanomaterials. The intent of this review is 
to impart insights into the versatile roles of nanomaterials 
in assays, and illustrate their potential benefits in further 
applications.

Nanomaterials-Based Optical 
Biosensors for Exosome Detection
Fluorescence Biosensors
Fluorescence biosensors have great advantages of simple 
operation, comparable sensitivity, and multiplex target 
detection capability. Exosome can be labeled with dyes 
or dye-modified biorecognition elements through various 
targeting strategies and then determined by fluorescence 
imaging or spectroscopy.50,65–72 However, the low fluor-
escence intensities of dyes always limits the sensitivity for 
exosome detection.73 Thus, several signal amplification 
strategies have been proposed to improve the detection 
sensitivity.74,75 For example, β-galactosidase-labeled anti-
body was used to label the captured exosomes in which β- 
galactosidase acted as the reporter enzyme to catalyze the 
decomposition of fluorescein-di-β-D-galactopyranoside, 
generating a strong fluorescence signal.41,76 Combined 
with nano-interface-based microfluidic platforms, exo-
somes were effectively enriched and sensitively detected.

For homogeneous fluorescence detection, it is one of the 
most powerful strategies to convert the detection of exo-
somes into the detection of DNA or others, generally produ-
cing a “one-to-many” amplification effect.77–81 Owing to the 
flexible structure, the corresponding DNA can be ultrasensi-
tively and homogeneously detected by previously reported 
DNA-based signal amplification methods, such as terminal 
deoxynucleotidyl transferase (TdT)-mediated polymeriza-
tion and hybridization chain reaction (HCR).82–89 For exam-
ple, Gao et al reported a dual signal amplification method for 
indirect detection of exosomes based on the catalytic hairpin 
DNA cascade reaction (HDCR) and the self-assembly of 
DNA dendrimer on the surface of gold nanoparticles (Au 
NPs).90 In this work, streptavidin (SA)-modified MBs were 
labeled with biotin-modified CD63 aptamer and then bound 
with probe S through the hybridization. After the addition of 
exosomes, aptamers bound with CD63 on exosomes and the 
probe S was released to trigger the HDCR on the nanopar-
ticle surface. Then, the opened metastable hairpin (HP) 
DNA probes captured the fluorescently-labeled DNA den-
drimers. After several rounds of Y-shaped DNA assembly, 
the complexes of AuNPs, HP and DNA dendrimers were 
separated. With the aid of β-mercaptoethanol, the fluores-
cently-labeled dendrimers were released and the fluores-
cence signal was recorded for the determination of 
exosomes. This method showed an increased signal-to- 
noise ratio and had a linear detection range of 1.75×103 – 
7.0×106 particles/μL. Pan et al reported a steric hindrance- 
controlled signal-amplified fluorescent strategy for exosome 
detection.91 In the absence of exosome, cholesterol-conju-
gated DNA 1 could hybridize with SA-modified DNA 2 into 
dsDNA with blunt ends. The formed dsDNA could not been 
recognized and extended by TdT enzyme because of the 
absence of single-stranded initiator (more than three deox-
ynucleotide residues). However, when exosomes were 
added, DNA 1 was inserted into the lipid membrane through 
the hydrophobic interaction between cholesterol and lipid 
bilayer. The huge steric hindrance of exosomes strongly 
inhibited the hybridization of DNA 1 and SA-modified 
DNA 2. Therefore, SA-modified DNA 2 could be extended 
by TdT enzyme to generate abundant G-quadruplex struc-
tures, increasing the fluorescence intensity. The “signal-on” 
method maintained high sensitivity and excellent selectivity 
for the assay of complex samples. Li et al developed 
a reversible nanoplatform for fluorescent detection of urin-
ary exosomes by using a superparamagnetic conjunction and 
molecular beacon.92 As shown in Figure 1, prostate specific 
membrane antigen (PSMA) aptamer was modified on the 
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surface of superparamagnetic NPs and then hybridized with 
two ssDNA strands with the decreased hybridization energy. 
Exosome bound to the aptamer with high affinity resulted in 
the release of double amounts of ssDNA to initiate the 
amplification cycle with two hairpin DNA strands. 
Molecular beacon HP2 was opened and the fluorescence of 
probe was recovered. The two released ssDNA sequences 
with low concentration initiated the amplification cycle with 
two hairpin DNA strands. Numerous molecular beacon HP2 
were opened and the fluorescence of probe was recovered. 
The detection limit of this method was 100 particles/μL for 
the assay of urine samples.

In contrast to traditional fluorescence dyes, QDs possess 
size/component-tunable luminescence and excellent resis-
tance against photobleaching, which have been widely 
applied in bioimaging, luminescent biolabels and light-emit-
ting devices.93,94 Wu et al proposed a “one-step” strategy for 
the detection of exosomes using aptamers as the biorecogni-
tion elements and QDs as the signal-amplified reporters 
(Figure 2A).95 CD63 aptamer was anchored on the surface 
of magnetic microspheres (MMs) and tethered to the self- 
assembled DNA concatemers. Then, streptavidin (SA)-con-
jugated QDs were used to label the biotin-modified DNA 

concatemers. Exosome preferentially bound to the aptamer 
and induced the release of QDs-labeled DNA concatemers. 
After the magnetic separation, the fluorescence signal in the 
supernatant was monitored for exosome detection. Zhang 
et al prepared a biomimetic periodic nanostructure-based 
diagnostic biochip for exosome detection using QDs.96 As 
displayed in Figure 2B, glypican-1 (GPC1) antibody-mod-
ified QDs were utilized to label exosomes. When the solu-
tion was dropped on the photonic crystals-coated biochip, 
the fluorescence was significantly amplified. In addition, 
QDs-embedded silica NPs were also used to extracellular 
vesicles via membrane biotinylation strategy in lateral flow 
assay (LFA).97

Metal nanoclusters (such as Au, Ag and Cu) with 
ultrasmall size possess excellent fluorescent properties. 
Ye’s group proposed a copper-mediated signal-amplified 
method to quantify exosomes (Figure 2C).98 In this work, 
cholesterol-modified MBs were used to capture exosomes 
via the hydrophobic interaction between cholesterol group 
and lipid membrane. CD63 aptamer-modified CuO NPs 
were utilized to label exosome and Cu2+ ions were 
released under acidolysis after the magnetic separation. 
Numerous released Cu2+ ions could be reduced into 

Figure 1 Schematic of SMC-MB platform. (A) Construction of SMC-MB platform. (B) Procedure of SMC-MB platform in exosomes analysis. (C) Principle of nonenzymatic 
amplification cycle. (D) Exosomes purification by restriction enzyme. Reprinted with permission from Li P, Yu X, Han W, et al. Ultrasensitive and reversible nanoplatform of 
urinary exosomes for prostate cancer diagnosis. ACS Sens. 2019;4:1433–1441. Copyright 2019 American Chemical Society.92
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fluorescent Cu nanoclusters with poly(thymine) as the 
template. Furthermore, Lyu et al constructed 
a luminescent nanosensor for exosome detection by using 
an afterglow semiconducting polyelectrolyte nanocomplex 
(ASPNC).69 As displayed in Figure 2D, the backbone of 
poly(phenylenevinylene) (PPV) modified with cationic 
quaternary ammonium groups was conjugated with tetra-
phenylporphyrin (TPP) for the red-shift of the emission 
and the enhancement of the afterglow signal. The posi-
tively charged ASPNC could adsorbed the quencher the 
black hole quencher 2 (BHQ-2)-labeled aptamer through 
the electrostatic interaction and the afterglow and fluores-
cence signal were quenched through the efficient electron 
transfer between the PPV backbone and BHQ-2. In the 
presence of exosomes, the specific and strong affinity 
between exosomal protein and BHQ-2-labeled aptamer 
resulted in the desorption of aptamer from the ASPNC. 
Consequently, the afterglow and fluorescence signal were 
restored.

Nanomaterials with excellent fluorescent quenching 
ability are attractive to develop “on-off” biosensors. 
Zhang’s reported a dual-signal amplification platform for 
the analysis of leukemia-derived exosomes based on roll-
ing circle amplification (RCA) and nicking endonuclease- 
assisted target recycling.88 In addition, Yu et al proposed 
a 3D DNA motor-based platform for the detection of 
exosomes by using AuNPs as the tracks.99 As shown in 
Figure 3A, AuNPs were modified with fluorescein-labeled 
substrate strands and aptamer-locked motor strands. In the 
presence of exosomes, the aptamer bound to the target 
protein and the motor strand was unlocked to trigger the 
DNA motor process. Powered by restriction endonuclease, 
the motor strands autonomously walked along the track, 
leading to the release of many fluorescent molecules. Gold 
nanorods (AuNRs) with tunable aspect ratio-dependent 
plasmonic extinction band can also be utilized to quench 
the luminescence. For instance, Chen’s group reported 
a simple paper-supported biosensor with AuNRs to quench 

Figure 2 (A) Schematic of magnetic and fluorescent bio-probes (MFBP) constructing process and sensing principle of MFBP-based quantification of exosomes. Reprinted 
with permission from Wu M, Chen Z, Xie Q, et al. One-step quantification of salivary exosomes based on combined aptamer recognition and quantum dot signal 
amplification. Biosens Bioelectron. 2021;171:112733–112742. Copyright 2021 Elsevier B.V.95 (B) Schematic of photonic crystals-assisted signal amplification for measurement 
of tumor-derived exosomes. Reprinted with permission from Zhang J, Zhu Y, Shi J, et al. Sensitive signal amplifying a diagnostic biochip based on a biomimetic periodic 
nanostructure for detecting cancer exosomes. ACS Appl Mater Interfaces. 2020;12:33473–33482. Copyright 2020 American Chemical Society.96 (C) Schematic of the 
proposed method for exosome detection based on a copper-mediated signal amplification strategy. Reprinted with permission from He F, Wang J, Yin BC, Ye BC. 
Quantification of exosome based on a copper-mediated signal amplification strategy. Anal Chem. 2018;90:8072–8079. Copyright 2018 American Chemical Society.98 (D) 
Schematic of design and sensing mechanism of ASPNC. (a) Synthetic route of ASP. Reagents and conditions: i) tris(dibenzylideneacetone)dipalladium(0) [Pd2(dba)3], tri 
(p-tolyl)phosphine (TPTP), chlorobenzene, 100°C, 24 h; ii) trimethylamine, tetrahydrofuran (THF), methanol, 24 h. (b) Illustration of the formation of ASPNC and the 
afterglow detection of exosomes. Reprinted with permission from Lyu Y, Cui D, Huang J, Fan W, Miao Y, Pu K. Near-infrared afterglow semiconducting nano-polycomplexes 
for the multiplex differentiation of cancer exosomes. Angew Chem Int Ed. 2019;58:4983–4987. Copyright 2019 Wiley-VCH.69
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the luminescence of upconversion nanoparticles (UCNPs) 
through luminescence resonance energy transfer 
(LRET).100 As illustrated in Figure 3B, the sequence of 
aptamer toward CD63 protein is divided into two flexible 
ssDNA pieces with different sequence (CP and DP). 
Branched polyethylenimine (PEI)-modified UCNPs and 
CP were immobilized on the surface of filter paper by 
the formation of Schiff base. When exosomes were 
added, CD63 on the surface of exosomes facilitated the 
combination of DP and CP together into the intact aptamer 
tertiary, resulting in the close of AuNRs and UCNPs. The 
distance between AuNRs and UCNPs was shortened to 
allow for the occurrence of LRET. However, with the 
CD63, there was no interaction between two fragments 
and the LRET could not occur.

Graphene oxide (GO) can interact with DNA or RNA 
through π-π stacking interactions and thus quench the fluor-
escence of dye-labeled DNA/RNA probe through FRET. It 
is a fascinating nanomaterial to develop DNA-based “signal 
on/off” fluorescent biosensors for exosome detection.101 

Wang et al designed a DNase I enzyme-aided signal ampli-
fication strategy for fluorescence analysis of colorectal can-
cer (CRC) exosomes based on the interaction between GO 
and aptamer.102 As illustrated in Figure 4A, the fluorescence 
of two aptamers (CD63 and epithelial cell adhesion mole-
cule or EpCAM) labeled with different fluorophores was 
quenched by GO. In the presence of exosomes, two apta-
mers were bound to the target proteins of CD63 and 
EpCAM on the surface of CRC exosomes and then released 
from the surface of GO. DNase I promoted the digestion of 
the aptamers and induced the release of exosomes to 

liberate more aptamers, thus achieving a signal amplifica-
tion. Few exosomes resulted in the release of numerous 
dyes and the restoration of fluorescence. Li et al developed 
a homogeneous magneto-fluorescent nanosensor for exo-
some analysis using GO as the quencher to reduce the 
background signal.103 As shown in Figure 4B, after exo-
somes were isolated by GPC-1 antibody-coated MBs, an 
extended CD63 aptamer was used to label the exosomes 
and the extended terminus served as a toehold to initiate the 
strand displacement, resulting in the formation of a large 
number of DNA three-way junctions (TWJ). After the 
magnetic separation, DNA TWJ in the supernatant could 
adsorb numerous positively charged derivatives of tetraphe-
nylethene (TPE) aggregation-induced emission luminogens 
(AIEgens) through the electrostatic interaction. As a result, 
an enhanced fluorescence signal was observed. Meanwhile, 
GO was added to quench the fluorescence of AIEgens- 
stained ssDNA. The novel method achieved a wide linear 
detection range and the detection limit was calculated to be 
6.56×104 particles/μL. In addition, MoS2–multiwall carbon 
nanotubes nanocomposites were employed to quench the 
fluorescence of dye-labeled CD63 antibody, which could be 
restored after the immunoreaction between exosome and 
antibody.104

As one subclass of 2D transition-metal carbides and 
carbonitrides materials, ultrathin MXenes have attracted 
much attention in biomedical applications due to their 
superior properties similar to those of GO. Based on 
their outstanding quenching efficiency, MXenes have 
been intensively utilized to construct fluorescent biosen-
sors for the detection of targets, including DNA, RNA and 

Figure 3 (A) Schematic of the exosome-triggered enzyme-powered DNA motors for exosome detection. Reprinted with permission from Yu Y, Zhang WS, Guo Y, Peng H, 
Zhu M, Miao D, Su G. Engineering of exosome-triggered enzyme-powered DNA motors for highly sensitive fluorescence detection of tumor-derived exosomes. Biosens 
Bioelectron. 2020;167:112482–112490. Copyright 2020 Elsevier B.V.99 (B) Schematic of paper-supported aptasensor based on the LRET between UCNPs and AuNRs for the 
determination of exosomes. Reprinted with permission from Chen X, Lan J, Liu Y, et al. A paper-supported aptasensor based on upconversion luminescence resonance 
energy transfer for the accessible determination of exosomes. Biosens Bioelectron. 2018;102:582–588. Copyright 2018 Elsevier B.V.100
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proteins. Recently, Liu and co-workers reported a Ti3C2 

MXenes-based self-standard ratiometric FRET platform 
for the detection of exosomes (Figure 4C).105 In the 
work, Cy3-labeled CD63 (Cy3-CD63) aptamers were 
adsorbed on the surface of MXenes by hydrogen-bond 
and metal-chelate interactions. The fluorescence of Cy3- 
CD63 aptamer was quenched by FRET and the intrinsic 
fluorescence of MXenes showed little change as a standard 
reference. Exosomes could specifically bind to the apta-
mers and induce their release from the surface of MXenes, 
thus leading to the recovery of fluorescence signal.

Colorimetric Biosensors
Colorimetric biosensors have attracted extensive attention 
because of their low cost and convenient readout. The 
results can be quickly observed with naked eyes. Thus, 
colorimetric assay is of great importance for point-of-care 

testing in facility-limited settings. Normally, enzymes are 
required to catalyze the chromogenic reaction in colori-
metric assays.106,107 In traditional ELISA for the detection 
of exosomes, horseradish peroxidase (HRP) linked with 
detection antibody was always used to catalyze the reac-
tion between H2O2 and colorimetric substrate 3,3′,5,5′- 
tetramethylbenzidine (TMB).108,109 Then, the color of 
solution changes from colorless to blue. However, they 
face the problems of low reproducibility and sensitivity 
(with a minimum amount of 3 μg of purified samples).110 

Hemin/G-quadruplex with HRP-mimicking catalytic activ-
ity has also been widely used in bioassays for signal 
amplification.111,112 To improve the sensitivity, several 
strategies have been proposed for signal amplification, 
such as using immune-magnetic nanoparticles (MNPs) to 
enrich exosomes and using NPs to enhance the amount of 
enzymes for signal output.113–115 For example, He et al 

Figure 4 (A) Schematic of enzyme-aided fluorescence amplification based on GO-DNA aptamer interactions for exosome detection. Reprinted with permission from Wang 
H, Chen H, Huang Z, Li T, Deng A, Kong J. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal 
cancer exosome detection. Talanta. 2018;184:219–226. Copyright 2018 Elsevier B.V.102 (B) Schematic of homogeneous magneto-fluorescent nanosensor for tumor-derived 
exosome isolation and analysis. (a) Tumor-derived exosomes are specifically captured by GPC-1 antibody coated magnetic beads and subsequently bind with extended CD63 
aptamers, forming a bead−exosome−aptamer complexes. (b) Captured exosomes are detected in a homogeneous solution by aptamer-triggered DNA TWJs cyclic assembly 
strategy along with TPE-TA and the GO-based “turn-on” fluorescent system. Reprinted with permission from Li B, Pan W, Liu C, et al. Homogenous magneto-fluorescent 
nanosensor for tumor-derived exosome isolation and analysis. ACS Sens. 2020;5:2052–2060. Copyright 2020 American Chemical Society.103 (C) Schematic of Cy3-CD63 
aptamer was mixed with MXenes aqueous solution and then added exosomes. Reprinted with permission from Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y. Universal 
Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem. 2018;90:12737– 
12744. Copyright 2018 American Chemical Society.105
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reported the direct quantification of exosomes based on 
HCR- and HRP-mediated signal amplification.116 As 
shown in Figure 5A, after exosomes were captured by 
CD9 antibody-coated MBs, the bivalent-cholesterol- 
labeled DNA probes were added to recognize the lipid 
membrane of exosomes via the hydrophobic cholesterol 
moiety. The DNA probe triggered the HCR and then 
numerous SA-HRP conjugates were captured by the 
DNA polymer for catalyzing the chromogenic reaction. 
The proposed assay showed a detection limit of 2.2×103 

particles/μL. In addition, DNA nanoflowers were also 
employed to encapsulate HRP, thus improving the loading 
number of enzyme in signal output.117 Yang et al proposed 
a pH-responsive paper-based bioassay for the detection of 
exosomes.118 As shown in Figure 5B, after the SA-coated 
MNPs-based capture of exosomes, HRP conjugated with 
CD63 antibody catalyzed the formation of polydopamine 
film on the exosome surface, thus allowing for the binding 
of ureases.119 The captured ureases could hydrolyze urea 
into ammonia and carbon dioxide, resulting in the change 
of solution pH value from 5 to 10 and the color change of 
commercially available pH test paper. However, the utili-
zation of natural enzyme is confronted of severe disadvan-
tages of low stability, high-cost and complicated 
preparation process.

Au and Ag NPs with local surface plasmon resonance 
(LSPR) characteristics exhibit higher extinction coefficient 
than the organic chromogens. Such NPs have been widely 
used as the alternative substrates to develop plasmonic 
colorimetric methods for bioassays. The detection principles 
of NPs-based colorimetric strategies can be divided into two 
subclasses: aggregation/disaggregation and etching/growth. 

Typically, Maiolo et al presented a simple plasmonic colori-
metric strategy for the determination of exosomes.120 As 
shown in Figure 6A, AuNPs could aggregate at the lipid 
membrane of exosomes, resulting in the shift and broaden 
of LSPR absorption spectrum and the change of solution 
color from red to blue. However, in the presence of exo-
some and protein contaminants, the formation of protein 
corona around AuNPs prevented the aggregation, and the 
LSPR absorption kept unchanged. Tan and co-workers 
developed a colorimetric aptasensor for profiling of exoso-
mal proteins (Figure 6B).121 In this work, conjugation of 
aptamer with AuNPs prevented NPs from aggregation in 
high salt solution. However, the specific interaction between 
aptamer and exosome made aptamer leave the surface of 
AuNPs and resulted in the aggregation of AuNPs with the 
color change from red to blue. Liu et al reported a rapid and 
convenient colorimetric method for the detection of exo-
somes at ultralow concentrations by integrating target- 
induced proximity ligation assay (PLA) with recombinase 
polymerase amplification (RPA) and transcription-mediated 
amplification (TMA).122 As illustrated in Figure 6C, after 
two PLA probes bound to the protein LMP1 on the surface 
of exosomes, two DNA probes hybridized with each other. 
Under the RPA and TMA amplification, multiple copies of 
RNA transcripts were generated, which could induce the 
aggregation of the DNA-modified AuNPs and the change of 
solution color. Furthermore, the principle of AuNPs-based 
color assay have been introduced into LFA for rapid and 
sensitive analysis of exosomes.123–126 In addition, because 
AuNR is more sensitive to the change of local media 
environment, and the AuNR-based color change is more 
realistic, AuNR-based colorimetric assays exhibit better 

Figure 5 (A) Schematic of the colorimetric method for exosome detection by a combination of immunoaffinity separation and cholesterol-based signal amplification. 
Reprinted with permission from He F, Liu H, Guo X, Yin BC, Ye BC. Direct exosome quantification via bivalent-cholesterol-labeled DNA anchor for signal amplification. Anal 
Chem. 2017;89:12968–12975. Copyright 2017 American Chemical Society.116 (B) Schematic of magnetic capture of exosomes, HRP-mediated PDA engineering of exosomes 
and urease immobilization for point-of-care testing. Reprinted with permission from Yang Y, Li C, Shi H, Chen T, Wang Z, Li G. A pH-responsive bioassay for paper-based 
diagnosis of exosomes via mussel-inspired surface chemistry. Talanta. 2019;192:325–330. Copyright 2019 Elsevier B.V.118
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performances. Zhang et al reported the multicolor visual 
assay of exosome by the enzyme-catalyzed metallization of 
AuNR and HCR amplification.127 As depicted in Figure 7A, 
after exosomes were captured and labeled with cholesterol- 
modified DNA probes, the terminal DNA probes initiated 
the HCR assembly. Large numbers of alkaline phosphatase 
(ALP) molecules were loaded on the exosome surface to 
catalyze the production of ascorbic acid (AA) and the in- 
situ formation of silver shells on AuNRs, alongside with 
a vivid change of solution color. Moreover, Au 
nanobipyramid@MnO2 nanosheet was also used as the 
substrate for colorimetric detection of exosomes.128 

During the exosome-induced competitive reaction, a large 
amount of ALP molecules were released into the solution 
by few exosomes and the free ALP catalyzed the generation 
of AA to etch Au nanobipyramid@MnO2 nanosheet, 
accompanied with multicolor change.

Since Fe3O4NPs were reported to show peroxidase-like 
activity, more and more nanomaterials called nanozymes 
have proven to show catalytic ability and have been inte-
grated into colorimetric bioassays.129 Compared to the 
natural enzymes, the nanozymes show attractive advan-
tages of improved stability, low cost and ease of storage. 
Surface charge and composition are two crucial roles to 

Figure 6 (A) Schematic of nanoplasmonic assay for probing by eye protein contaminants (single and aggregated exogenous proteins, SAP) in EV preparations. Reprinted 
with permission from Maiolo D, Paolini L, Di Noto G, et al. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem. 
2015;87:4168–4176. Copyright 2015 American Chemical Society.120 (B) Schematic of the aptamer/AuNP complex for molecular profiling of exosomal proteins. (a) 
Schematic of the displacement of aptamers from gold nanoparticles by binding with exosome surface protein and the concomitant aggregation of gold nanoparticles. (b) 
Profiling of different exosome surface proteins with the aptamer/AuNP complex. Reprinted with permission from Jiang Y, Shi M, Liu Y, et al. Aptamer/AuNP biosensor for 
colorimetric profiling of exosomal proteins. Angew Chem. 2017;129:12078–12082. Copyright 2017 Wiley-VCH.121 (C) Schematic of the PLA-RPA-TMA assay. Reprinted with 
permission from Liu W, Li J, Wu Y, et al. Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect 
tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens Bioelectron. 2018;102:204–210. Copyright 2018 Elsevier B.V.122
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regulate the catalytic activity of nanozymes. ssDNA can 
improve the peroxidase-mimicking activity of 
nanozymes.130 Chen et al reported the colorimetric assay 
of exosomes through ssDNA aptamer-enhanced peroxi-
dase activity of Fe3O4NPs (Figure 7B).131 They found 
that aptamers attached on the surface of Fe3O4NPs could 
increase the affinity between NPs and TMB, thus leading 
to the enhancement of peroxidase activity. In the work, 
anion exchange method was first designed to extract exo-
somes from plasma. Then, the captured exosomes bound 
to aptamers from NPs and led to the decrease in the 
catalytic activity. Moreover, Wang et al developed the 
ssDNA-enhanced nanozyme-based colorimetric method 
for exosome detection (Figure 7C).132 They demonstrated 
that ssDNA could accelerate the intrinsic peroxidase- 
mimicking activity of graphitic carbon nitride nanosheets 
(g-C3N4 NSs) through the electrostatic and aromatic 

stacking interactions between ssDNA and TMB. 
However, CD63 on the surface of exosomes could compe-
titively bind with ssDNA aptamer and reduce the enhance-
ment of the peroxidase-mimicking activity. The method is 
sensitive and could determine exosomes in the range from 
1.9×106 to 3.38×107 particles/μL. Xia et al employed 
ssDNA-modified single-wall carbon nanotubes for the 
detection of exosomes by the same principle.133 On the 
contrary, Zhang et al reported the label-free colorimetric 
assay of exosomes based on ssDNA-inhibited oxidase-like 
activity of CuCo2O4 nanorods (NRs).134 As shown in 
Figure 7D, CuCo2O4 NRs could catalyze the oxidation of 
ABTS with O2 as the electron acceptor, instead of volatile 
H2O2. The negatively charged CD63 aptamers were 
adsorbed on the CuCo2O4 NRs through the electrostatic 
interaction and the oxidase-like activity of NRs was inhib-
ited by hindering the electron transfer between NRs and 

Figure 7 (A) Schematic of the mechanism for multicolor visual detection of exosomes based on HCR and enzyme-catalyzed metallization of Au NRs. Reprinted with 
permission from Zhang Y, Wang D, Yue S, et al. Sensitive multicolor visual detection of exosomes via dual signal amplification strategy of enzyme-catalyzed metallization of 
Au nanorods and hybridization chain reaction. ACS Sens. 2019;4:3210–3218. Copyright 2019 American Chemical Society.127 (B) Schematic of the visible detection of 
exosomes based on ssDNA-enhanced Fe3O4 NPs nanozyme activity. Reprinted with permission from Chen J, Xu Y, Lu Y, Xing W. Isolation and visible detection of tumor- 
derived exosomes from plasma. Anal Chem. 2018;90:14207–14215. Copyright 2018 American Chemical Society.131 (C) Schematic of DNA aptamer accelerating the intrinsic 
peroxidase-like activity of g-C3N4 NSs for the detection of exosomes. Reprinted with permission from Wang YM, Liu JW, Adkins GB, et al. Enhancement of the intrinsic 
peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal Chem. 2017;89:12327–12333. Copyright 2017 
American Chemical Society.132 (D) Schematic of the detection mechanism for the visible detection of exosomes based on ssDNA-enhanced Fe3O4 NPs nanozyme activity. 
Reprinted with permission from Zhang Y, Su Q, Song D, Fan J, Xu Z. Label-free detection of exosomes based on ssDNA-modulated oxidase-mimicking activity of CuCo2O4 

nanorods. Anal Chim Acta. 2021;1145:9–16. Copyright 2021 Elsevier B.V.134
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substrates. However, in the presence of exosomes, apta-
mers were released from the CuCo2O4 NRs and the oxi-
dase-like activity was restored.

Surface Plasmon Resonance Biosensors
Surface plasmon resonance (SPR) is a label-free, real-time 
sensing technique to study and quantify biomolecular 
interaction.135 It can monitor the change of refractive 
index in close proximity to the gold surface (within 200 
nm), resulting from binding event-induced increase of 
thickness. Moreover, it possesses the merits of high sig-
nal-to-noise, good compatibility with microfluidic techni-
que and advanced surface modifications. Therefore, 
exosomes with around 100 nm size and large mass can 
be detected by SPR, whose size fits within the surface 
plasmon wave depth. To date, a series of label-free SPR 

biosensors for exosome detection have been developed by 
modifying the sensor surface with antibodies specific to 
the membrane proteins on exosome.136–145 To overcome 
the slow diffusion-limited mass transfer, magnetic nano-
particles can be utilized to pre-concentrate exosomes on 
the sensor surface under an external magnetic field 
gradient.146 However, the poor sensitivity of the methods 
limits their further applications for analyzing trace targets 
in complex samples.

AuNPs can enhance the SPR signal through plasmonic 
coupling.147–150 Wang et al proposed a SPR aptasensor for 
quantification of cancerous exosomes with dual AuNPs- 
assisted signal amplification.151 As illustrated in Figure 8, 
the gold chip was functionalized with aptamers to capture 
exosomes. Aptamer/T30-modified AuNPs were further 
used to label exosomes on the Au film. The sensitivity of 

Figure 8 Schematic of dual AuNP-assisted signal amplification for SPR determination of exosomes. Reprinted with permission from Wang Q, Zou L, Yang X, et al. Direct 
quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens Bioelectron. 2019;135:129–136. 
Copyright 2019 Elsevier B.V.151
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the biosensor is very high because of the electronic cou-
pling between the gold film and AuNPs. For increasing the 
specificity, they further developed a dual-aptamers-based 
SPR strategy for the determination of human hepatic car-
cinoma (SMMC-7721) exosomes.152 In addition, combin-
ing with DNA-based signal amplification, Ding’s group 
reported a hydrogel-AuNP supramolecular sphere 
(H-Au)-based SPR biosensor for analysis of prostate can-
cer-derived exosomes.153 The H-Au network was prepared 
via the self-assembly of DNA chains and DNA-modified 
AuNPs. The PSMA-specific aptamer-functionalized MBs 
were used to transduce target exosomes into triple DNAs, 
which could initiate the terminal transferase-catalyzed 
generation of polyA tails than can bind to the H-Au net-
work on the SPR surface. This biosensor had a wide linear 
range from 1.00×102 to 1.00×104 particles/μL.

Surface Enhanced Raman Scattering 
Biosensors
Raman spectroscopy can provide a characteristic finger-
print spectrum. However, the signal intensity is always too 
weak to be distinguished. Since SERS effect was discov-
ered, a significant interest in SERS study was aroused. 
Generally, metal nanostructures or nanomaterials can be 
employed to amplify the signal through chemical and 
electromagnetic field enhancement. SERS spectroscopy 
has been used for the design of biosensors by label-free 
analysis and SERS-tag-based methods.154

Label-free SERS analysis is mainly based on the use of 
roughened or nanosized SERS substrate to enhance the 
weak Raman vibration signal of exosomal biomolecules 
with fingerprint characters. For example, Avella-Oliver 
et al reported the label-free SERS analysis of exosomes 
with large-scale substrates from recordable compact disk 
by coating it with silver.155 This cost-effective technology 
provided an alternative solution to perform SERS bioas-
says in non-specialized environments. Inspired by the con-
cept of beehives, Dong et al suggested that the Au-coated 
TiO2 macroporous inverse opal (MIO) structures could be 
used as the SERS substrates for label-free detection of 
exosomes.156 As shown in Figure 9A, different from tradi-
tional SERS substrates, the MIO structure could capture 
exosomes by its interconnected nanoscale pore networks, 
exhibiting a prominent “slow light effect” and enhancing 
the Raman signal of exosomes by the SERS effect of Au 
layer. The SERS intensity of 1087 cm−1 from the 
P-O bond within phosphoproteins on the surface of 

exosomes was used as the detection criterion. Because of 
the heterogeneity, the Raman spectra of exosomes show 
complex and inconsistent data, which are difficult to be 
classified. For this view, principal component analysis was 
employed to monitor the Raman signal, and a meaningful 
pattern for exosome analysis was obtained.157–159

Au and Ag nanomaterials with LSPR have been utilized 
as the SERS-active nanotags to enhance the signal intensity 
of Raman dyes. With immunomagnetic beads and for the 
capture of exosomes, several aptamer or antibody-modified 
SERS nanotags have been developed for exosome detection 
via the formation of antibody-exosome-aptamer sandwich- 
type immunocomplexes.160–163 Microfluidic Raman 
biochips were also fabricated to isolate and determine exo-
somes in situ.43 Typically, Wang’s group reported an effec-
tive approach for the detection of exosomes by 
simultaneously profiling multiple protein biomarkers on 
the surface.164 As shown in Figure 9B, three specific nano-
tags for antibody modification were prepared and labeled in 
the filtered conditional exosome-suspension medium. Then, 
the antibody-modified CD63-conjugated MBs were added 
for the sandwich-like immunoassays. The heterogeneous 
antigens expressed on diverse exosomes limited the applica-
tions of the methods based on the antigen-antibody/aptamer 
interaction. Liu’s group proposed a general, facile, and 
robust strategy to label exosomes with maleimide (Mal) 
tags by the hydrophobic insertion.165 As shown in 
Figure 9C, maleimide-terminated DSPE-PEG (DSPE- 
PEG-Mal) as labeling probe was inserted into the lipid 
membranes. Mal group could be conjugated with the thiol- 
containing species (1,6-hexanedithiol) via the click chemis-
try and further bound to bare AuNPs for SERS analysis. 
Wang’s group developed a SERS biosensor for multiple 
assays of exosomes with gold layer-coated MBs as SERS 
probes which were modified with three different types of 
Raman reporters and aptamers.166 Besides, Kwizera et al 
presented a method for exosome detection by using cationic 
AuNRs as SERS tags to label exosomes through the elec-
trostatic attraction.167 The “hot spots” generated in the 
AuNP-AuNP junctions due to the plasmon coupling effect 
can intensify the Raman signal of SERS molecules. For this 
view, Ning et al reported the multiple SERS assays of 
exosomes using gold-silver bimetallic nanotrepangs, in 
which different Raman reporter molecules were confined 
in the interfaces of gold core and silver shell.168 Zhang 
et al designed a novel Raman probe for the assays of exo-
somes by assembling AuNPs in triangular pyramid DNA 
(TP-DNA).169 As illustrated in Figure 9D, TP-DNA was 
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prepared through the hybridization of four X-shaped DNA 
sequences and then the positively charged AuNPs and 
Raman reporter molecules were entrapped through the elec-
trostatic interactions. Besides, laser-tweezers Raman spec-
troscopy has also been employed to determine exosomes 
with individual nanoparticle for signal enhancement.170

Nanomaterials-Based 
Electrochemical Biosensors for 
Exosome Detection
Electrochemical Biosensors
Electrochemical biosensor has been recognized as an 
excellent platform for biological sample analysis due to 
its advantages of high sensitivity, low cost, rapid response 
and low sample volume.171,172 Several classic 

electrochemical techniques are frequently utilized in bioas-
says, including amperometry, voltammetry, impedimetry 
and field effect transistor. Nanomaterials mainly play two 
vital roles in these techniques: as the electrode substrate to 
improve the electron transfer and as the functional nano-
tags for signal amplification.173

Direct Detection
Direct electrochemical detection is achieved by monitoring 
the change of electrical conductivity of electrode by the 
target-induced electrical signal change.174–177 The method 
can quantify exosomes without labeling step, thus shorten-
ing the response time. For example, Tan and co-workers 
presented an electrochemical aptasensor for direct determi-
nation of cancerous exosomes by using DNA nanotetrahedra 
to immobilize aptamer on the electrode surface to improve 

Figure 9 (A) Schematic representation of detection process and design inspiration of the Au-coated TiO2 MIO SERS probe. Reprinted with permission from Dong S, Wang 
Y, Liu Z, et al. Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma. ACS Appl Mater Interfaces. 2020;12:5136– 
5146. Copyright 2020 American Chemical Society.156 (B) Schematic representation of preparation of three types of SERS nanotags and molecular phenotype profiling of 
exosomes using SERS nanotags and CD63 antibody-functionalized MBs. Reprinted with permission from Zhang W, Jiang L, Diefenbach RJ, et al. Enabling sensitive phenotypic 
profiling of cancer-derived small extracellular vesicles using surface-enhanced Raman spectroscopy nanotags. ACS Sens. 2020;5:764–771. Copyright 2020 American Chemical 
Society.164 (C) Schematic of exosomes engineering based on a hydrophobic insertion strategy with DSPE-PEG-Mal. Reprinted with permission from Di H, Zeng E, Zhang P, 
et al. General approach to engineering extracellular vesicles for biomedical analysis. Anal Chem. 2019;91:12752–12759. Copyright 2019 American Chemical Society.165 (D) 
Schematic representation of assembling AuNPs in triangular pyramid DNA. Reprinted with permission from Zhang X, Liu C, Pei Y, Song W, Zhang S. Preparation of a novel 
Raman probe and its application in the detection of circulating tumor cells and exosomes. ACS Appl Mater Interfaces. 2019;11:28671–28680. Copyright 2019 American 
Chemical Society.169
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the accessibility of exosomes.178 Davis’s group reported an 
immunosensor for the analysis of exosomes by electroche-
mical impedance spectroscopy.179 Vaidyanathan developed 
a multiplexed device to detect exosomes by alternating 
current electrohydrodynamic induced nanoshearing.180

AuNPs with good electrical conductivity and easy of 
functionalization have been widely utilized to modify the 
sensor electrode. Cucurbit[7]uril with excellent supramo-
lecular recognition ability toward ferrocene (Fc) has been 
widely used as the receptor in electrochemical analysis. 
Liu et al reported a label-free electrochemical aptasensor 
for exosome detection based on the host-guest interaction 
between cucurbit[7]uril and Fc.181 As illustrated in 
Figure 10A, cucurbit[7]uril was immobilized on the 
AuNPs-modified electrode for the capture of Fc-labeled 
CD63 aptamer. The aptamer bound to the target exosome 
with high affinity can be released from the electrode sur-
face, thus resulting in the decrease of electrochemical 
signal. Sun et al developed a dual-signal and intrinsic 
self-calibration aptasensor for direct detection of 
exosomes.182 As shown in Figure 10B, ITO slice was 
modified with Fc-doped metal-organic frameworks (ZIF- 
67) by electrodeposition and black phosphorus nanosheets 
(BPNSs). Then, the methylene blue-labeled ssDNA apta-
mers were adsorbed on the electrode surface. The platform 
exhibited dual redox-signal responses from methylene blue 
and Fc. In the presence of exosomes, the aptamers were 
desorbed from the electrode surface, leading to the 
decrease of redox current of methylene blue. In this pro-
cess, no significant change was observed for the current of 

Fc. The intrinsic self-calibration aptasensor showed 
a detection limit down to 0.1 particles/μL.

Field effect transistor (FET) biosensor is a promising label- 
free detection tool, which can monitor the microelectrical 
signal caused by the interaction between target and recognition 
element on the sensing interface.183 Yu et al designed 
a reduced graphene oxide (rGO)-based FET biosensor for 
electrical and label-free quantification of exosomes.184 In 
this paper, 1-pyrenebutanoic acid succinimidyl ester was mod-
ified on the rGO surface through the π-π stacking interaction 
between pyrene and graphene. Then, CD63 antibody was 
covalently immobilized on the FET surface. The net carrier 
density changed with the introduction of negatively charged 
exosomes, thus leading to the left shift of the Dirac point.

Sandwich-Like Methods
Although the label-free electrochemical method is simple, 
it shows poor sensitivity and selectivity. Therefore, differ-
ent types of sandwich-like methods were developed for 
bioassays. Generally, the electrode was modified with 
a biorecognition element to capture exosome, and the 
another biorecognition element modified with a signal 
reporter was added to recognize the captured exosome 
and produce an electrical signal. Enzymes and electroac-
tive molecules are usually used as the signal reporters for 
signal amplification.185 For example, Doldan et al reported 
an electrochemical immunosensor for the determination of 
exosomes using HRP-conjugated antibody.186 An et al 
designed an electrochemical aptasensor for the detection 
of tumor exosomes by the HCR assembly to linking 
numerous HRP molecules for catalytic redox 

Figure 10 (A) Schematic representation of the electrochemical aptasensor for exosomes capture and release based on specific host-guest interactions between cucurbit[7] 
uril and Fc. Reprinted with permission from Liu Q, Yue X, Li Y, et al. A novel electrochemical aptasensor for exosomes determination and release based on specific host- 
guest interactions between cucurbit [7]uril and ferrocene. Talanta. 2021;232:122451–122458. Copyright 2021 Elsevier B.V.181 (B) Schematic representation of the 
construction process and application of a dual-signal and intrinsic self-calibration aptasensor of exosomes based on a functional hybrid thin-film sensing platform 
aptamer-BPNSs/Fc/ZIF-67/ITO. Reprinted with permission from Sun Y, Jin H, Jiang X, Gui R. Assembly of black phosphorus nanosheets and MOF to form functional hybrid 
thin-film for precise protein capture, dual-signal and intrinsic self-calibration sensing of specific cancer-derived exosomes. Anal Chem. 2020;92:2866–2875. Copyright 2020 
American Chemical Society.182
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reactions.187 He and co-workers reported an electrochemi-
cal aptasensor for the analysis of exosomes by hemin/ 
G-quadruplex-assisted rolling circle amplification.188 

Generally, nanomaterials can act as nanocarriers, nanoe-
lectrocatalysts and electroactive tags for signal amplifica-
tion in sandwich-like electrochemical assays.

Because of their excellent biocompatibility and large sur-
face area, AuNPs have been widely used to carry various 
biomolecules (such as proteins, DNA and RNA) for different 
biological applications. Jiang et al reported an electrochemical 
aptasensor for exosome detection using AuNPs and enzyme 
for signal amplification.189 As showed in Figure 11A, aptamer- 
modified DNA nanotetrahedron (NTH) was employed to mod-
ify the electrode, avoiding the problem of the entanglement of 
aptamer and the spatial hindrance effect. Aptamer and biotin 
were modified on AuNPs through the interaction between 

polyA10 and AuNPs. After the formation of sandwich-like 
complexes, numerous avidin-HRP conjugates were immobi-
lized on the biotin-labeled AuNPs to catalyze the reduction of 
TMB and H2O2.

Due to their high specific surface area, flexible poros-
ity, and tunable framework structure, metal−organic fra-
meworks (MOFs) have attracted wide attention in 
comprehensive applications, including catalysis, sensors 
and energy conversion and storage. The porosity endows 
MOFs with the ability to carry plenty of enzyme or elec-
troactive molecules. Sun et al reported a label-free and 
enzyme-free electrochemical biosensor for the detection of 
glioblastoma-derived exosomes using Zr-based MOFs.190 

As displayed in Figure 11B, Zr-MOFs (UiO-66) prepared 
from metal ions and organic ligands through 
a hydrothermal method were utilized to load numerous 

Figure 11 (A) Schematic of the electrochemical aptasensor for exosomes detection by using AuNPs and enzyme for amplification. Reprinted with permission from Jiang J, 
Yu Y, Zhang H, Cai C. Electrochemical aptasensor for exosomal proteins profiling based on DNA nanotetrahedron coupled with enzymatic signal amplification. Anal Chim 
Acta. 2020;1130:1–9. Copyright 2020 Elsevier B.V.189 (B) Schematic of the fabrication process of MB@UiO-66-based nanoprobe and the electrochemical biosensor for the 
detection of GBM-derived exosomes. Reprinted with permission from Sun Z, Wang L, Wu S, et al. An electrochemical biosensor designed by using Zr-based metal-organic 
frameworks for the detection of glioblastoma-derived exosomes with practical application. Anal Chem. 2020;92:3819–3826. Copyright 2020 American Chemical Society.190 

(C) Schematic of identification of PD-L1+ exosomes based on HRCA-responsive PVP@HRP@ZIF-8. Reprinted with permission from Cao Y, Wang Y, Yu X, Jiang X, Li G, 
Zhao J. Identification of programmed death ligand-1 positive exosomes in breast cancer based on DNA amplification-responsive metal-organic frameworks. Biosens 
Bioelectron. 2020;166:112452–112460. Copyright 2020 Elsevier B.V.192 (D) Schematic of the fabrication process of COFs-based nanoprobes and the mechanism of the EC 
biosensor for exosomes detection. Reprinted with permission from Wang M, Pan Y, Wu S, et al. Detection of colorectal cancer-derived exosomes based on covalent organic 
frameworks. Biosens Bioelectron. 2020;169:112638–112645. Copyright 2020 Elsevier B.V.193
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electroactive methylene blue molecules. After the capture 
of exosomes by the peptide-modified electrode, methylene 
blue-loaded Zr-MOFs were anchored by exosomes. Zr- 
MOFs interacted with phosphate groups in the phospholi-
pid bilayer of exosomes with high affinity via the 
formation of Zr-O-P bonds. The concentration of exo-
somes could be determined by measuring the electroche-
mical signal of methylene blue inside of MOFs. Recently, 
Gu et al presented a biofuel cells-based self-powered bio-
sensor for exosome detection, in which two types of MOFs 
(ZIF-8 and UiO-66-NH2) were utilized to load glucose 
dehydrogenase and electroactive molecules (K3 

[Fe(CN)6]), respectively.191 Taking the advantage of exo-
genous stimulus-responsive property, Cao et al reported an 
electrochemical biosensor for the detection of programmed 
death ligand-1 positive (PD-L1+) exosomes based on DNA 
amplification-responsive MOFs.192 As illustrated in 
Figure 11C, HRP-encapsulated ZIF-8 was prepared by 
biomineralization-facilitated method and then coated with 
PVP, which remained intact at weak alkaline pH and 
would be broken at acidic pH. After the capture of PD- 
L1+ exosomes by immune-MBs, the anti-PD-L1-linked 
DNA strands were added to label exosomes and the 
DNA parts initiated the hyperbranched rolling circle 
amplification (HRCA). The released H+ ions caused the 

change of the environment pH to weak acidity, thus lead-
ing to the disassembly of MOFs. HRP molecules were 
released to increase the electrochemical response.

As an emerging kind of porous crystalline materials, 
covalent organic frameworks (COFs) exhibit great appli-
cation potential in bioassays. Li’s group reported a COFs- 
based aptasensor for the analysis of CRC exosomes.193 As 
shown in Figure 11D, spherical COFs with high porosity 
were utilized to load para-sulfocalix[4]arene hydrate 
(pSC4)-modified AuNPs and a large amount of HRP mole-
cules to form HRP-pSC4-AuNPs@COFs. pSC4 could spe-
cifically bind with various amino acid residues on the 
exosome surface. AuNPs could accelerate the charge 
transfer of carriers. CD63 aptamer was anchored on the 
surface of Au electrode to capture exosomes. Then, HRP- 
pSC4-AuNPs@COFs were added to recognize the cap-
tured exosomes and HRP catalyzed the oxidation of 
TMB by H2O2, generating a high electrochemical signal.

Nanozymes can catalyze the redox reaction between 
H2O2 and substrate in colorimetric assays, which can be 
converted into electrochemical assays with improving sen-
sitivity. For example, Boriachek et al reported the direct 
isolation and subsequent detection of exosomes using 
gold-loaded ferric oxide nanocubes (Au-NPFe2O3NC).194 

As shown in Figure 12A, the Au-NPFe2O3NC was 

Figure 12 (A) Schematic of the assay for direct exosome isolation and detection from cell culture media based on Au-NPFe2O3NC. Reprinted with permission from Boriachek K, 
Masud MK, Palma C, et al. Avoiding pre-isolation step in exosome analysis: Direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide 
nanozymes. Anal Chem. 2019;91:3827–3834. Copyright 2019 American Chemical Society.194 (B) Schematic of the electrochemical biosensor for exosomes activity detection signal 
amplification strategy by using in situ generation of Prussian blue. Reprinted with permission from Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y. Ti3C2 MXene mediated 
Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta. 2021;224:121879–121886. Copyright 2021 Elsevier B.V.195 (C) 
Schematic representation of the two-step isolation and analysis of exosomes and microsomes: (a) capture step where vesicles are immobilized on aptamer-modifi ed sensors, (b) 
electrochemical detection of the captured exosomes/microsomes with Cu and AgNPs. Reprinted with permission from Zhou YG, Mohamadi RM, Poudineh M, et al. Interrogating 
circulating microsomes and exosomes using metal nanoparticles. Small. 2016;12:727–732. Copyright 2016 Wiley-VCH.197
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modified with CD63 antibody for the capture of exosomes. 
After magnetic separation, the complex of Au- 
NPFe2O3NC and exosomes was attached on the placental 
alkaline phosphatase (PLAP) antibody-functionalized 
screen-printed electrode. The signal was measured by the 
Au-NPFe2O3NC-catalyzed reaction between TMB and 
H2O2.

Wang and co-workers developed a sensitive electroche-
mical biosensor for exosome detection through the in-situ 
generation of electroactive Prussian blue (Fe[Fe(CN)6]) on 
the surface of MXenes.195 As illustrated in Figure 12B, the 
CD63 aptamer-modified poly(amidoamine)-AuNP electrode 
was used to capture exosomes. Then, aptamer-conjugated 
MXene was used to recognize the captured exosomes. 
MXene on the exosome surface served as a reducing carrier 
to induce in-situ generation of Prussian blue, simplifying 
the synthesis process. Prussian Blue could produce electro-
chemical signal at a low potential without the interference 
of electroactive species. The detection limit of this method 
was 229 particles/μL. QDs with a large amount of metal 
ions can also be utilized as the signal transduction labels for 
the assays of exosomes.196 After acid-assisted dissolution, 
numerous Cd2+ ions were released, which could be quanti-
fied by anodic stripping voltammetry (ASV). Moreover, 
metal NPs such as Ag and Cu can be utilized as the signal 
reporters because they can be directly electrochemically 
oxidized to produce a typical electrochemical peak. 
Kelley’s group reported the electrochemical detection of 
exosomes/microsomes with anti-EpCAM aptamers-modi-
fied AgNPs and anti-PSMA aptamers-modified CuNPs 
(Figure 12C).197 After exosomes and microsomes were 
captured from VCaP cells through a simple centrifugation 
procedure, aptamers-functionalized NPs were added to label 
the captured exosomes. Then, linear sweep voltammetry 
(LSV) was used for the direct electrochemical oxidation 
of AgNPs or CuNPs.

Magneto-Electrochemical Detection
The immobilization of recognition probes on the electrode 
may suppress the effective recognition between exosome 
and probe and thus decrease the sensitivity. MBs have 
been widely used for the capture of exosomes and can be 
integrated into electrochemical biosensors. MBs can not 
only simplify the detection procedures, but also concen-
trate the captured exosomes on the electrode. MBs mod-
ified with antibody (immune-MBs) have been used to 
isolate and enrich exosomes. MBs-based electrochemical 
techniques for immobilization-free detection of exosomes 

have been developed.198,199 Lee’s group designed an inte-
grated immuno-magneto-electrochemical sensor for exo-
some detection (Figure 13A),200 in which MBs were 
modified with CD63 antibodies to directly capture exo-
somes in plasma. Next, the captured exosomes were recog-
nized by the HRP-labeled detection antibodies. HRP could 
catalyze the reaction between TMB and H2O2, thus gen-
erating a strong electrochemical signal. To meet the need 
of portability and sensitivity, Ye’s group reported a two- 
stage magnetic-based microfluidic platform for on-chip 
isolation and detection of exosomes.201 As illustrated in 
Figure 13B, a staggered Y-shaped micropillar mixing pat-
tern was applied to create an anisotropic flow for improv-
ing the capture efficiency. Tumor-derived exosomes 
captured by Tim4-coated MBs were immobilized on the 
ITO electrode. The ssDNA in a hairpin structure consisted 
of aptamer and mimicking DNAzyme sequence was 
employed to label exosomes. After the recognition, hairpin 
was opened and a G-quadruplex formed with hemin was 
utilized as NADH oxidase and HRP-mimicking DNAzyme 
simultaneously. In addition, CdSe QDs were utilized as the 
signal labels instead of unstable enzymes for exosome 
detection by an anodic stripping voltammetry.196

Owing to the flexible structure, aptamer can hybridize 
with other DNA sequences that can initiate the DNA- 
based signal amplification or DNA nanomachines.202,203 

Therefore, exosome detection can be converted into the 
analysis of DNA, whose amount is proportional to the 
number of exosomes. This strategy avoids the direct detec-
tion of exosomes on the electrode and many methods can 
be developed to sensitively determine DNA.204 For 
instance, Dong et al reported a highly sensitive electro-
chemical biosensor for exosome detection based on apta-
mer recognition-induced release of multi-DNA and cyclic 
enzymatic amplification.205 As shown in Figure 14A, apta-
mer-messenger DNA (mDNA) complexes were first mod-
ified on the MBs. LNCaPcell-derived exosomes bound to 
aptamer with high affinity, resulting in the release of three 
kinds of mDNA sequences. After the magnetic separation, 
the released mDNA in the supernatant initiated the Exo 
III-assisted cyclic enzymatic amplification reaction, lead-
ing to the sharp decrease in the amount of Ru(NH3)6

3+ on 
the surface of Au electrode. Zhao et al reported 
a ratiometric electrochemical biosensor for the detection 
of exosomes by target-triggered 3D DNA walker and 
Exonuclease III-assisted cyclic enzymatic 
amplification.206 As displayed in Figure 14B, MBs were 
modified with high-density of DNA as 3D DNA walker 
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scaffold. The DNA sequence consisted of CD63 aptamer 
and DNAzyme substrate. In the presence of exosomes, the 
recognition of CD63 aptamer on the MBs and EpCAM 
aptamer on the swing arm simultaneously bound to differ-
ent target proteins on the same exosome, leading to the 
close proximity effect between DNAzyme and substrate. 
After the hybridization, DNA walkers were initiated and 
a large number of oligonucleotide fragments were 
released, which could be sensitively detected by the 
Exonuclease III-assisted cyclic enzymatic amplification.

To improve the capture efficiency, dual aptamers-mod-
ified MBs were employed to efficiently capture 
exosomes.207 As illustrated in Figure 14C, after the cap-
ture of tumor exosomes, the cholesterol-modified DNA 
probe was anchored on the exosome membrane through 
the hydrophobic interaction, triggering DNA tetrahedron- 
based hyperbranched HCR to generate sandwich com-
plexes. The complexes could sequestrate a large amount 

of Ru(NH3)6
3+ by electrostatic interactions, thus reducing 

the amount of Ru(NH3)6
3+ in the solution after the mag-

netic separation. This caused the change of current ratio of 
[Fe(CN)6]3− to Ru(NH3)6

3+.

Electrochemiluminescent Biosensors
As a powerful technique, ECL has been applied in various 
bioanalysis due to the remarkable advantages of low back-
ground signal, high sensitivity and wide detection range. 
To meet the need of ultrahigh sensitivity, loading of 
numerous luminophores into nanomaterials can boost the 
ECL efficiency and improve the analysis sensitivity.208 

Feng et al designed an aptamer-binding DNA walking 
machine for sensitive ECL detection of tumor exosomes 
by employing Ru(bpy)3

2+-loaded silica NPs as the signal 
reporters.209 To date, several nanomaterials have been 
utilized as the ECL emitters for diverse biosensing. For 
example, Sheng and co-workers developed an ECL 

Figure 13 (A) Schematic of the integrated immuno-magneto- electrochemical sensor for exosomes detection. Reprinted with permission from Jeong S, Park J, Pathania D, 
et al. Integrated magneto-electrochemical sensor for exosome analysis. ACS Nano. 2016;10:1802–1809. Copyright 2016 American Chemical Society.200 (B) Schematic of the 
Exo PCD-chip and the electrochemical Sensor on the Surface of ITO Electrode. Reprinted with permission from Xu H, Liao C, Zuo P, Liu Z, Ye BC. Magnetic-based 
microfluidic device for on-chip isolation and detection of tumor-derived exosomes. Anal Chem. 2018;90:13451–13458. Copyright 2018 American Chemical Society.201
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aptasensor for the analysis of exosomes by the 
G-quadruplex/hemin DNAzymes-induced quenching of 
RCL signal of Eu3+-doped CdSQDs.210 Zhang et al 
designed a sensitive g-C3N4-coated liquid metal nanop-
robe-based ECL sensing strategy for exosome detection 
on the multivalency interface (Figure 15A).211 In the 
nanoprobe, Galinstan NPs accelerated the electrode trans-
fer and suppressed the g-C3N4 passivation during the 
electrochemical reduction processes, thus enhancing the 
ECL signal. Moreover, the antibody-modified PAMAM- 
Au NPs were used to modify the electrode for multivalent 
recognition of exosomes with high capture efficiency. This 
method achieved a detection limit of 31 particles/μL for 
the determination of HeLa cell-derived exosomes. To sim-
plify the operation procedure and reduce the contamina-
tion, Guo et al reported the QDs-based homogeneous ECL 
sensing of exosomes with stimuli-responsive DNA micro-
capsules and target recycling system.212 As illustrated in 
Figure 15B, CdS QDs-loaded CaCO3 microcapsules were 
sealed by DNA-assembled stimuli-responsive shell layers. 
Then, the core CaCO3 was removed by treatment with 
EDTA and the DNA shell-coated CdS QDs microcapsules 

were formed. The presence of exosomes initiated the nick-
ing endonuclease (Nt.BbvCI)-assisted target recycling and 
the crosslinked DNA shells were disintegrated. The 
released QDs were determined by ECL technique. The 
established method with dual-amplification exhibited 
a wide detection range of 5×104 to 1×108 particles/μL.

Nanomaterials with excellent catalytic properties have 
been increasingly utilized in the development of ECL 
biosensors. For example, MXenes have been concerned 
in the areas of catalysis, biosensor and supercapacitors, 
owing to their excellent electron transfer ability and 
unique catalytic ability. Wang and co-workers reported 
a MXenes-catalyzed ECL biosensor for the assay of 
exosomes.213 Fang et al proposed a self-enhanced ECL 
and photothermal dual-mode biosensor for exosome 
detection.214 As shown in Figure 15C, MXenes were 
employed to carry black phosphorus (BP) quantum dots 
(BPQDs), Ru(dcbpy)3

2+ and CD63 antibody. In the nano-
composite, BPQDs not only catalyzed the oxidization of 
Ru(dcbpy)3

2+, but also acted as the coreactants. The inte-
gration of BPQDs and Ru(dcbpy)3

2+ into MXenes could 
shorten the distance and amplify the ECL signal. 

Figure 14 (A) Schematic of the highly sensitive electrochemical biosensor for exosomes detection based on aptamer recognition-induced multi-DNA release and cyclic 
enzymatic amplification. Reprinted with permission from Dong H, Chen H, Jiang J, Zhang H, Cai C, Shen Q. Highly sensitive electrochemical detection of tumor exosomes 
based on aptamer recognition-induced multi-DNA release and cyclic enzymatic amplification. Anal Chem. 2018;90:4507–4513. Copyright 2018 American Chemical Society.205 

(B) Schematic of the ratiometric electrochemical biosensor for the detection of exosomes by target-triggered 3D DNA walker and Exo III-assisted cyclic enzymatic 
amplification. Reprinted with permission from Zhao L, Sun R, He P, Zhang X. Ultrasensitive detection of exosomes by target-triggered three-dimensional DNA walking 
machine and exonuclease III-assisted electrochemical ratiometric biosensing. Anal Chem. 2019;91:14773–14779. Copyright 2019 American Chemical Society.206 (C) 
Schematic of the ratiometric immobilization-free electrochemical sensing system for tumor exosome detection in the absence (a) and in the presence (b) of the tumor 
exosomes. Reprinted with permission from Yang L, Yin X, An B, Li F. Precise capture and direct quantification of tumor exosomes via a highly efficient dual-aptamer 
recognition-assisted ratiometric immobilization-free electrochemical strategy. Anal Chem. 2021;93:1709–1716. Copyright 2021 American Chemical Society.207
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Moreover, both MXenes and BPQDs with good photother-
mal property can be used as the photothermal probes. The 
dual-mode biosensor exhibited a linear range of 1.1×102 ~ 
1.1×107 particles/μL. However, the stabilizers for regulat-
ing the structure and morphology and biomolecules for the 
specific recognition may block the active sites and hinder 
the electron transfer. Thus, Zhang et al reported an ECL 
biosensor for exosome detection based on the in-situ for-
mation of AuNPs on the aptamer-modified MXenes 
(Figure 16).215 MXenes were modified with CD63 aptamer 
to identify exosomes. After the capture of exosomes, apta-
mer-conjugated MXenes were adsorbed on the surface of 
exosomes. MXenes with large surface area and strong 
reduction ability could induce the in-situ formation of 
AuNPs on their surface without the addition of extra 

reducing agents. AuNPs with catalytic surface greatly 
enhanced the ECL signal of luminol. The proposed bio-
sensor showed a detection limit down to 30 particles/μL. 
In recent years, g-C3N4 was used not only as the carrier of 
luminol, but also as a catalyst to promote the reaction of 
luminol with H2O2, thus amplifying the ECL signal for 
exosome detection.216

Photoelectrochemical Methods
A photoelectrochemical (PEC) process involves in the 
photocurrent as the detection signal generated by photo-
electrochemically active materials under light illustration. 
The separation of the excitation source (light) from the 
detection signal (electric current) endows PEC biosensors 
with low background signal, high signal-to-noise ratio and 

Figure 15 (A) Schematic of the ECL biosensor for exosomes based on multivalent recognition and signal amplification strategy by anti-GPC1-g-C3N4@Galinstan-PDA 
nanoprobe. Reprinted with permission from Zhang Y, Wang F, Zhang H, Wang H, Liu Y. Multivalency interface and g-C3N4 coated liquid metal nanoprobe signal amplification 
for sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal Chem. 2019;91:12100–12107. Copyright 2021 Elsevier B.V.211 (B) 
Schematic of the prepared process of CdS QDs-loaded DNA microcapsules integrated with target recycling amplification for homogeneous ECL detection of tumor 
exosomes. Reprinted with permission from Guo Y, Cao Q, Zhao C, Feng Q. Stimuli-responsive DNA microcapsules for homogeneous electrochemiluminescence sensing of 
tumor exosomes. Sens Actuat B Chem. 2021;329:129136–129142. Copyright 2019 American Chemical Society.212 (C) Schematic of the dual-mode biosensor for exosomes 
detection based on MXenes and black phosphorus quantum dots. Reprinted with permission from Fang D, Zhao D, Zhang S, Huang Y, Dai H, Lin Y. Black phosphorus 
quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing. Sens Actuat B Chem. 2020;305:127544–127552. Copyright 2020 Elsevier 
B.V.214
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excellent stability. Photosensitive materials play a vital 
role in the fabrication of PEC biosensors. Typically, Li’s 
group designed a cathodic PEC aptasensor for the detec-
tion of exosomes using p-typeNiO/BiOI/AuNP composites 
sensitized by CdSe QDs.217 In this work, BiOI with 
a narrowbandgap (1.8 eV) was immobilized on the NiO- 
modified ITO to sensitize the wide band gap of NiO (3.6– 
4.0 eV). Then, AuNPs were deposited on the surface to 
conjugate EpCAM aptamers through the formation of Au- 
S bonds. DNA2-modified QDs were bound to the elec-
trode surface through the hybridization, which sensitized 
the nanocomposite and improved the photocurrent inten-
sity. In the presence of exosomes, aptamer bound to the 
EpCAM protein on the surface of exosomes, resulting in 
the release of QDs and the decrease of the photocurrent. 
Meanwhile, exosomes on the electrode surface hindered 
the electron transfer between electrode and electron accep-
tor, leading to the further attenuation of the photocurrent 
signal.

Other Methods
Chemiluminescence is generated from the exergonic che-
mical reaction, in which an intermediate molecule in sing-
let excited state undergoes radiative decay. 
Chemiluminescence biosensors can sensitively detect tar-
gets of interest in the dark without any extra input 
energy.218 Zhong’s group reported a chemiluminescence 
strategy for rapid isolation and quantification of exosomes 
based on CuS-enclosed microgels.219 As displayed in 

Figure 17, CuS NPs were in-situ generated in porous 
microgel, which further modified with streptavidin and 
antibody. After interaction with exosomes, microgels pro-
moted the isolation of exosomes through membrane filtra-
tion. A large number of Cu2+ ions were liberated and 
catalyzed the reaction between H2O2 and luminol derivate, 
producing strong a chemiluminescence signal. Moreover, 
Wang et al reported a chemiluminescence immunoassay 
for exosome detection by using antibody-conjugated 
superparamagnetic iron oxide particles (SIOPs) and acri-
dinium ester as the signal label.220

Mass spectrometer (MS) is an effective tool to char-
acterize the content of biomolecules at high 
throughput.221 However, the low sensitivity limits its 
utilization in detect low concentration of exosomes at 
the early stage of cancers. The element-labeling strategy 
endow MS with the advantages of high selectivity and 
signal amplification. In this detection principle, nanoma-
terials not only act as matric materials for exosomes 
capture, but also can amplify MS signal due to the large 
amount of elements in nanomaterials.222–227 Recently, 
Zhang et al reported an ultrasensitive inductively coupled 
plasma−mass spectrometry (ICP-MS) method for the 
detection of exosomes by using UCNPs as element 
labels.228 As shown in Figure 18, three different elements 
(Y, Eu, and Tb) doped UCNPs modified with three dif-
ferent aptamers were linked to AuNPs, forming three 
statellite-like nanoassemblies. Exosomes with surface 
proteins could trigger the release of the corresponding 

Figure 16 Schematic of the ECL biosensor for exosomes detection based on in situ formation of AuNPs decorated MXenes nanoprobes Reprinted with permission from 
Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y. In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated 
chemiluminescence detection of exosomes and their surface proteins. Anal Chem. 2020;92:5546–5553. Copyright 2020 American Chemical Society.215
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aptamers conjugated with UCNPs from AuNPs. Then, the 
released UCNPs in solution were detected by ICP-MS. 
Finally, this sensitive and high-throughput method could 
distinguish exosomes from seven different cell lines.

Conclusions
In this review, we have systematically reviewed various 
nanomaterials-based techniques for exosome detection. 

The unique characteristics of nanomaterials make them 
fascinating materials for signal transduction and biosensor 
development. Moreover, the sensitivity and selectivity of 
biosensors for exosome detection have greatly improved by 
integration with various elaborate DNA or enzyme-based 
signal amplification strategies. In spite of significant pro-
gress in exosome detection, there are still some challenges 
to be addressed. For example, stability of nanomaterials and 

Figure 18 Schematic of ultrasensitive inductively coupled plasma−mass spectrometry method for the detection of exosomes by using UCNPs as element labels. Reprinted 
with permission from Zhang XW, Liu MX, He MQ, Chen S, Yu YL, Wang JH. Integral multielement signals by DNA-programmed UCNP-AuNP nanosatellite assemblies for 
ultrasensitive ICP-MS detection of exosomal proteins and cancer identification. Anal Chem. 2021;93:6437–6445. Copyright 2021 American Chemical Society.228

Figure 17 Schematic of CuS-microgel synthesis and the CuS-microgel-based assay for exosome quantification. Reprinted with permission from Jiang Q, Liu Y, Wang L, 
Adkins GB, Zhong W. Rapid enrichment and detection of extracellular vesicles enabled by cus-enclosed microgels. Anal Chem. 2019;91:15951–15958. Copyright 2019 
American Chemical Society.219
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selectivity for complex samples should be improved by 
appropriate modification with biocompatibility polymers 
or others. Biorecognition elements used in bioassays may 
suffer from the digestion of enzymes in real samples. For 
transforming research in laboratory into clinical practice, it 
is the key obstacle to develop standardized technical speci-
fications, including collection of biological samples, isola-
tion of exosomes from liposy and detection operation. It is 
beneficial to enhance the comparability of results and estab-
lish a reliable and comprehensive dataset for future study on 
exosomes. The cost-effective and high-throughput isolation 
and detection of exosomes is helpful to simultaneous iden-
tify a large amount of clinical samples. We believe that 
nanomaterials-based detection of exosomes will make 
greater progress with the collective and unremitting efforts 
of different fields such as chemistry, materials science and 
clinical diagnosis.
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