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Purpose: To explore the characteristics of gut microbiota and its relationship between 
clinical manifestations in patients with type 1 narcolepsy (NT1).
Patients and Methods: Scale and polysomnography were performed in 20 NT1 patients 
and 16 healthy controls (HC group) to evaluate the clinical characteristics of NT1. Illumina 
sequencing was performed on bacterial 16S ribosomal RNA gene using V3-V4 regions to 
compare the fecal microbiota in all subjects. Associations between clinical characteristics 
and gut microbiota were analyzed using partial correlation analysis.
Results: Compared with the HC group, the NT1 group had a significantly higher ESS score, 
longer total sleep time, increased wakefulness, decreased sleep efficiency, disturbance of 
sleep structure, shorter mean sleep latency, and increased sleep-onset REM periods (all P < 
0.05). No differences in alpha and beta diversity were observed between the two groups. In 
contrast, there were significant differences at the level of class, order, family, and genus (all 
P < 0.05). LEfSe analysis showed that the relative abundance of Klebsiella in the NT1 group 
was higher than that in the HC group (P < 0.05), while the relative abundance of Blautia, 
Barnesiellaceae, Barnesiella, Phocea, Lactococcus, Coriobacteriia, Coriobacteriales, 
Ruminiclostridium_5, and Bilophila were lower (all P < 0.05). Partial correlation analysis 
revealed that partial differential bacteria in the NT1 group were correlated with total sleep 
time, sleep efficiency, stage 1 sleep, arousal index, and sleep latency (all P < 0.05).
Conclusion: Our data revealed differences in intestinal flora structure between NT1 patients 
and the normal population, thus providing a theoretical basis for future microecological 
therapy for narcolepsy. However, future larger sample size studies and different study 
designs are needed to further clarify the possible pathogenesis and potential causality of 
intestinal flora in NT1 patients and explore the new treatment strategies.
Keywords: type 1 narcolepsy, gut microbiota, 16SrRNA, high throughput sequencing

Introduction
Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness, 
cataplexy, sleep paralysis, and sleep hallucinations. Some patients may develop 
nocturnal sleep disturbance, obesity, mental and emotional disorders, and other 
problems.1–3 According to the content of hypocretin (Hcrt), narcolepsy can be 
divided into type 1 narcolepsy (NT1) (Hcrt concentration ≦ 110 pg/mL) and type 
2 narcolepsy.4 NT1, which is believed to be an autoimmune disease mediated by 
T cells, irreversibly damages hypocretin neurons and reduces hypocretin content.5,6 

Symptomatic drugs that stimulate the central nervous system are currently consid-
ered the only treatment that can help people with narcolepsy stay awake during 
the day.7
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Narcolepsy is the result of the interaction between 
genetic and environmental factors. Previous studies have 
found that carrying the HLA-DBQ1-0602 gene can 
increase the risk of narcolepsy by 200 times,8 and up to 
98% of NT1 patients are positive for this gene.9 Over 
recent years, studies have found that influenza A virus 
infection, vaccination, and streptococcal infection all 
increase the risk of narcolepsy.10–12 Streptococcus infec-
tion increases the narcolepsy risk by 5.4 times.13 In 65% 
of patients who recently experienced narcolepsy attack, 
serum anti-streptolysin O titers were increased,10 thus 
emphasizing the relevance of the infection factors in the 
role of narcolepsy onset.

High-throughput sequencing technology that uses 16S 
rRNA gene sequencing is a powerful method for detecting 
unculturable microorganisms in the gastrointestinal tract.14 

The human gut contains 1000 to 1150 species of about 100 
trillion bacteria, which are 10 times higher than the number 
of human cells and 150 times larger than the human gene 
complement in the body.15 Gut microbiota has a variety of 
physiological functions and is closely related to human 
health, affecting cell metabolism, digestion, nutrient absorp-
tion, and the development and maturation of the host’s 
immune system.16 Gut microbiota has also been closely 
associated with diseases of central nervous system, 
immune-related diseases, psychiatric diseases, metabolic 
diseases, and sleep disorders.17–24 More recently, it has 
been suggested that patients with narcolepsy are at high 
risk of gut microbiota dysregulation.23 LeComte et al23 

reported reduced beta diversity in NT1 patients compared 
to HC patients. In this study, we explored the characteristics 
of intestinal microflora of Chinese NT1 patients by 
16SrRNA gene sequencing technology so as to understand 
the effect of gut microbiota on NT1.

Patients and Methods
Study Population
From January 2017 to December 2019, 20 patients with 
narcolepsy (NT1 group) from the Department of 
Neurology, Henan Provincial People’s Hospital, and 16 
healthy volunteers (HC group) were recruited. General 
information including age, sex, course of the disease, body 
mass index (BMI), Epworth Sleepiness Scale (ESS), and 
Hamilton Depression Scale (HAMD) were collected in 
both groups, and polysomnography (PSG), multiple sleep 
latency test (MSLT), Hcrt and HLA-DBQ1 * 0602 gene 
tests were performed. The NT1 was diagnosed according 

to the diagnostic criteria of the International Classification of 
Sleep Disorders (3rd edition).4 NT1 patients had no history 
of taking neuro stimulant drugs. Two patients were taking 
anticataplexy drug (venlafaxine) six months ago.

All subjects were from the same province and were 
eating similar diets. Subjects in the two groups did not 
take any drugs that could affect sleep, did not have gastro-
intestinal diseases, organic brain diseases, mental diseases, 
autoimmune diseases, or other major diseases, and did not 
take any antibiotics, probiotics, or prebiotics for at least 
one month before the examination. All subjects were able 
to provide stool samples.

PSG and MSLT
All subjects underwent sleep monitoring (PSG and MSLT) 
in our sleep center, in a quiet, comfortable, and temperature- 
controlled place. The monitoring contents included electro-
encephalogram, electroophthalmogram, electrocardiogram, 
chin and bilateral tibial anterior electromyogram, oral-nasal 
airflow, snoring, chest and abdominal movement, pulse oxy-
gen, and body movement. Overnight nocturnal polysomno-
graphy was followed by multiple sleep latency tests the 
next day. A total of 5 naps were arranged with an interval 
of 2 hours each time, and patients were asked to get up and 
stay awake after each nap of 30 minutes. The monitoring 
results were automatically analyzed by the system and cor-
rected by the sleep technician according to the Sleep and 
Related Events interpretation manual version 2.3.

Measurements of CSF Hcrt and HLA- 
DQB1*0602 Gene
The cerebrospinal fluid (CSF) samples were collected by lum-
bar puncture. CSF samples were snap-frozen and subsequently 
stored at −80°C until further analysis. CSF Hcrt was measured 
using a 125I radioimmunoassay kit (Phoenix Pharmaceuticals, 
Belmont, CA, USA).25 All samples were measured in dupli-
cate, averaged, and compared to standard CSF samples with 
known CSF hcrt levels. The HLA-DQB1*0602-specific codon 
9 amino acid was determined using PCR sequence-specific 
primer method.26 The presence of DQB1*0602 is reported as 
positive and absence as negative.

Collection and Sequencing of Fecal 
Samples
Collection of Fecal Samples
The stool samples of the NT1 and HC groups were col-
lected by sterile fecal collection tubes in the hospital. The 
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general procedure was as follows: first, urine was drained, 
and then 3–4 spoonfuls of feces were collected by sterile 
collection tubes. Then, the fecal samples were transported 
to GENEWIZ through dry ice for high-throughput sequen-
cing of 16SrRNA.

DNA Extraction, Library Construction, and Illumina 
Sequencing
DNA was extracted from the samples using a DNA 
extraction kit according to manufacturer’s Protocols. 
DNA concentration was measured using the Equalbit 
dsDNA HS Assay Kit. Using 20–30ng DNA as 
a template, a series of PCR primers designed by 
GENEWIZ were used to amplify two hypervariable 
regions, including V3 and V4 on the 16S rDNA of 
prokaryotes. Then, a linker with Index was added to 
the end of the PCR product of 16S rDNA by PCR for 
Illumina sequencing. The library was purified by mag-
netic beads; the concentration was detected by 
a microplate reader, and the fragment size was detected 
by agarose gel electrophoresis. To quantify the library to 
10nM, and PE250 double-ended sequencing was per-
formed according to the instructions of Illumina Miseq 
(Illumina, San Diego, CA, USA) instrument. The 
sequence information was read by MiSeq Control 
Software (MCS).

Bioinformatics Analysis
After quality filtration, the chimeric sequence was 
removed, and the final sequence was used for OTU clus-
tering. Sequence clustering was performed using the 
VSearch (1.9.6) (sequence similarity was set as 97%), 
and the 16S rRNA reference database used for comparison 
was SILVA 132. Then, the RDP classifier (Ribosomal 
Database Program) Bayesian algorithm was used to carry 
out taxonomic analysis on the representative sequences of 
OTU, and the community composition of each sample was 
counted at different species classification levels.

Based on the results of OTU analysis, the Alpha diver-
sity index (ACE index, Chao index, Shannon index, 
Simpson index) of each sample was analyzed to obtain the 
species abundance and diversity information of each sample. 
Beta diversity analysis was visualized with Non-Metric 
Multidimensional Scaling (NMDS) to visually display the 
differences in community structure among different samples 
and groups. LEfSe analysis was used to identify statistically 
significant biomarkers between the two groups.

Statistical Analysis
General data, sleep parameters, and alpha diversity analy-
sis were performed using SPSS 22 statistical software. 
Shapiro–Wilk normality test and homogeneity of variance 
test were performed on measurement data. Measurement 
data conforming to normal distribution and homogeneity 
of variance were expressed as mean±standard deviation 
(X � S); two independent samples t-test were used. 
Measurement data conforming to normal distribution but 
not conforming to the homogeneity of variance were 
expressed as mean±standard deviation (X � S); two inde-
pendent samples t' -test were used. Measurement data that 
did not conform to normal distribution were represented 
by median (quaternary)[M(Q25, Q75)], and the Mann– 
Whitney U-test was adopted. Counting data were 
expressed as cases and compared using Fisher’s exact 
probability method. Beta diversity was visualized with 
NMDS and compared statistically with Anosim. LEfSe 
online analysis tool was used to analyze the differences 
in community structure between groups and search for 
biomarkers with statistical differences. Partial correlation 
analysis was used to analyze the correlation between the 
clinical indicators and the differential flora in NTI patients. 
P < 0.05 was considered statistically significant. All data 
visualization was performed with the R statistical pro-
gramming language.

Results
General Data
There were no statistically significant differences in age, 
gender, and BMI (all P > 0.05) between the NT1 group 
and HC group. The disease duration in the NT1 group was 
3.0 (2.0, 7.0) years. The median BMI of the NT1 group 
was 25.7kg/m2 (overweight); 8 patients (40%) had normal 
BMI, 5 patients (25%) were overweight, and 7 patients 
(35%) were obese. The average ESS score of NT1 group 
was 18.0±3.9, which was statistically different compared 
with the HC group (P = 0.000). There was no statistically 
significant difference in HAMD scores between the two 
groups (P > 0.05) (Table 1).

PSG and MSLT
Patients with NT1 slept longer during the night, had 
a shorter nocturnal sleep latency, decreased sleep effi-
ciency, increased proportion of stage 1 sleep, decreased 
proportion of stage 2 sleep, increased number of awaken-
ing and arousal index, shorter mean sleep latency, and 
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increased SOREMPs compared to the HC group (all P < 
0.05). There were no significant differences in the propor-
tion of stage 3 sleep, REM sleep, REM sleep latency, and 
sleep apnea-hypopnea index (AHI) between the two 
groups (all P > 0.05). The detailed results are shown in 
Table 1.

Detection of CSF Hcrt and HLA- 
DQB1*0602 Gene
The level of Hcrt in CSF in all NT1 patients was <110pg/ 
mL, with an average of 10.0 (10.0, 18.4) pg/mL. All NT1 
patients were positive for the HLA-DQB1*0602 gene. 
While the CSF Hcrt of all control groups was >110pg/ 
mL, with an average of 317.4 (284.8,334.5) pg/mL, and all 
were negative for the HLA-DQB1 *0602 gene (Table 1).

Analysis of Gut Microbiota
Alpha Diversity Analysis
Alpha diversity analysis was used to analyze the abun-
dance and diversity of microorganisms in the sample. The 
abundance index, including the ACE index and Chao 
index, was positively correlated with microbial abundance. 
The diversity index included the Simpson index and 
Shannon index. Simpson index was negatively correlated 

with microbial diversity, while Shannon index was posi-
tively correlated with microbial diversity. As shown in 
Table 2, there was no statistically significant difference 
in alpha diversity between the two groups (P > 0.05).

Beta Diversity Analysis
Beta diversity reflects the difference in diversity between 
different samples and is an indicator that measures the 
similarity of microbial composition between individuals. 
Beta diversity, based on Bray-Curtis dissimilarity, was 
visualized with NMDS and compared statistically with 
Anosim. In Anosim analysis, the range of R-value was 
[−1, 1]; values closer to 0 indicated no significant differ-
ence between and within groups, while values closer to 1 
indicated that the difference between groups was greater 
than the difference within groups. As shown in Figure 1, 
there was no statistically significant difference in beta 
diversity between the two groups (P = 0.634, R = −0.018).

Differential Microbial Abundance Analyses
We used LEfSe27 analysis to identify differential micro-
biota between NT1 patients and the HC group. LEfSe 
analysis combines nonparametric Kruskal–Wallis, 
Wilcoxon rank-sum test, and Linear discriminant analysis 
(LDA) Effect Size. LEfSe analysis can directly carry out 

Table 1 Comparison of General Data and Sleep Parameters Between NT1 Group and HC Group

Items NT1 Group (n = 20) HC Group (n = 16) Test value P-value

Age (years) 19.0 (14.3, 26.8) 26.0 (18.5, 27.0) −1.516c 0.130
Male (cases) 12 10 - 1.000

Disease duration (years) 3.0 (2.0, 7.0) 0 −5.337c 0.000

BMI (kg/m2) 25.7 (20.9, 28.9) 22.7 (22.1, 25.0) −1.672c 0.094
ESS (score) 18.0±3.9 5.9±3.9 9.300a 0.000

HAMD (score) 8.7±4.7 5.8±4.7 1.871a 0.070

Hcrt (pg/mL) 10.0 (10.0, 18.4) 317.4 (284.8,334.5) −5.217c 0.000
Total sleep time (min) 566.1±103.4 504.0±52.6 2.334b 0.027

Sleep Latency (min) 4.3 (1.0, 9.1) 15.0 (10.4, 20.8) −3.427c 0.001
Sleep efficiency (%) 85.1 (73.1, 90.6) 91.6 (88.9, 93.7) −3.089c 0.002

N1 proportion (%) 19.3±10.1 3.9±2.1 6.586b 0.000

N2 proportion (%) 41.7 (34.2, 48.9) 54.9 (52.6, 58.9) −3.869c 0.000
N3 proportion (%) 18.7±9.4 18.8±3.1 −0.045b 0.965

REM proportion (%) 19.3±7.2 21.7±.9 −1.354b 0.187

REM sleep latency (min) 82.5 (3.8, 202.9) 90.0 (78.0, 110.4) −0.191c 0.848
Number of awakening (times) 25.7±12.6 7.3±4.3 6.101b 0.000

Arousal index 12.7±5.0 7.2±4.7 3.376a 0.002

AHI 1.0 (0.3, 3.9) 0.05 (0.0, 2.7) −1.658c 0.097
Mean sleep latency (min) 3.4 (1.9, 5.8) 15.4 (14.4, 16.4) −5.063c 0.000

Sleep onset REM periods (times) 4.0 (3.3, 4.8) 0 −5.405c 0.000

Notes: aIs the t value (obtained by two independent samples t-test), bIs the t' value (obtained by two independent samples t'-test), and cIs the Z value (obtained by Mann– 
Whitney U-test). -: Gender calculation using Fisher’s exact probability method, no test value. 
Abbreviations: ESS, Epworth sleepiness Scale; HAMD, Hamilton Depression Scale; REM, rapid eye movement; AHI, apnea hypopnea index.
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a statistical test and difference analysis on the classifica-
tion level of phylum/class/order/family/genus/species 
simultaneously, and more emphasis is placed on finding 
robust differences between groups, namely biomarkers. In 
LEfSe analysis, there are two thresholds for screening 
marker species, ie, P < 0.05 and LDA ≥ 2 (default, the 
higher the LDA is, the more strict the LDA is). Only when 
these two conditions are met simultaneously, the taxon can 
be considered a marker species.

This analysis revealed significant differences in bacter-
ial clades from class to species level (except phylum level) 
between NT1 patients and the HC group (Figures 2–4). In 
the NT1 group, the relative abundance of Klebsiella was 
higher than that in the HC group (LDA = 3.19, P = 0.047), 
while the relative abundance of Blautia, Barnesiellaceae, 
Barnesiella, Phocea, Lactococcus, Coriobacteriia, 
Coriobacteriales, Ruminiclostridium_5, and Bilophila 

were lower than that of HC group (all LDA > 2, P < 
0.05) (Table 3).

Partial Correlation Analysis
Considering that gender, age, and course of the disease can 
affect the flora, the confounding factors were controlled, 
after which we conducted a partial correlation analysis 
between the differential flora and the clinical data (Sleep 
parameters and scale assessment) in NTI patients. The 
results showed that the Hcrt level was negatively corre-
lated with the number of SOREMPs (r = −0.763; P < 
0.05). The relative abundance of Coriobacteriales, 
Coriobacteriia, and Blautia were negatively correlated 
with total sleep time (r = −0.510, −0.510, −0.489; P < 
0.05). The relative abundance of Coriobacteriales and 
Coriobacteriia were negatively correlated with sleep effi-
ciency (r = −0.592, −0.592; P < 0.05). The relative abun-
dance of Lactococcus was positively correlated with stage 
1 sleep and negatively correlated with arousal index (r = 
0.617, −0.522; P < 0.05). The abundance of Klebsiella was 
positively correlated with sleep latency (r = 0.547; 
P < 0.05).

Discussion
This study found significantly higher ESS score, longer 
total sleep time, increased wakefulness, decreased sleep 
efficiency, disturbance of sleep structure, shorter mean 
sleep latency, and increased sleep-onset REM periods in 
patients with NT1 compared to healthy controls. 
Moreover, there were no significant differences in alpha 
and beta diversity between the NT1 and HC groups; yet, 
a significant difference was found at the level of class, 
order, family, and genus between the two groups (except at 
the phylum level). The relative abundance of Klebsiella in 
the NT1 group was higher than that in the HC group, while 
the relative abundance of Blautia, Barnesiellaceae, 
Barnesiella, Phocea, Lactococcus, Coriobacteriia, 
Coriobacteriales, Ruminiclostridium_5, and Bilophila 
were lower than in the HC group. In addition, a partial 

Table 2 Alpha Diversity Analysis

Alpha Diversity Index NT1 Group HC Group Test value P-value

ACE 151.2±25.8 150.8±35.9 0.034a 0.973
Chao 157.2±30.7 153.1±33.1 0.383a 0.704

Simpson 0.9 (0.9, 0.9) 0.9 (0.9, 0.9) −0.557b 0.577

Shannon 4.7 (4.5, 5.0) 4.9 (4.6, 5.2) −0.605b 0.545

Notes: aIs the t value (obtained by two independent samples t-test), and bIs the Z value (obtained by Mann–Whitney U-test).

Figure 1 NMDS ordination plot. Each point in the figure represents a sample, the 
yellow point represents the NT1 group, and the green point represents the HC 
group. The closer the two points are, the more similar the microbial composition is. 
Stress < 0.2 indicates that NMDS can accurately reflect the degree of difference 
between samples.
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correlation analysis showed that Hcrt was negatively cor-
related with sleep-onset REM periods; total sleep time was 
negatively correlated with the abundance of 
Coriobacteriales, Coriobacteriia, and Blautia; sleep effi-
ciency was negatively correlated with Coriobacteriales 
and Coriobacteriia; Lactococcus was positively correlated 
with stage 1 sleep and negatively correlated with arousal 
index, and sleep latency was positively correlated with the 
abundance of Klebsiella.

Clinical and Electrophysiological 
Characteristics of NT1
The results of this study revealed no significant differences 
in age, gender, BMI, and HAMD scores between the NT1 
group and HC group. Nevertheless, the ESS score of the 
NT1 group was significantly increased compared with that 
of the HC group. Previous studies have shown that patients 
with narcolepsy are more likely to be obese (their BMI 
was 10–20% higher than the general population).28–30 Our 
study revealed no significant difference in BMI between 
the two groups: the median BMI of the NT1 group was 
25.7kg/m2 (representing overweight); 8 cases (40%) had 
normal BMI, 5 cases (25%) were overweight, and 7 cases 
(35%) were obese, which might be related to sample size. 
Previous studies have found that 30% of NT1 patients are 
accompanied by depression and other emotional 
problems,31 which is believed to be related to the effect 
the disease was having on patients.7 Yet, this was not 
found in this study; the inconsistencies may be related to 
the disease course (the average disease course is 3 years). 
Besides, the significant increase in ESS in this study 
indicated that NT1 patients suffer from daytime 
sleepiness.32

This study revealed that compared with the HC group, the 
NT1 group had longer total sleep time, shorter nocturnal 
sleep latency, decreased sleep efficiency, increased propor-
tion of stage 1 sleep, decreased proportion of stage 2 sleep, 
increased number of awakening and arousal index, shorter 
mean sleep latency, and increased SOREMPs. There were no 
significant differences in the proportion of stage 3 sleep, 
REM sleep, REM sleep latency, and AHI between the NT1 
group and the HC group. Previous studies have reported that 
NT1 patients have fragmented sleep, increased wakefulness, 
and disturbed sleep structure at night,2 which is consistent 
with the results of this study. In this study, the mean sleep 
latency of NT1 patients was 3.4 (1.9, 5.8) min, and the 
number of SOREMPs was 4.0 (3.3, 4.8) times, which met 
the international diagnostic standard of NT1.4 Previous stu-
dies reported that approximately 30% of NT1 patients were 
associated with Obstructive sleep apnea.33 This study did not 
find differences in AHI between NT1 and HC groups, which 
may be related to the fact that obesity was not obvious in NT1 
patients in this study.

Gut Microbiota of NT1
In the present study, we found no changes in Alpha diver-
sity and Beta diversity, which symbolize the homeostasis 
of gut microbes, between the NT1 patients and the HC 
group. The intestinal flora of the two groups were mainly 
composed of Firmicutes, Bacteroidetes, Proteobacteria, 
and Actinobacteria. Yet, the comparison between NT1 
and HC groups at the level of class, order, family, and 
genus showed statistical differences; however, these differ-
ences accounted for a relatively low proportion in the 
whole, suggesting that overall intestinal microecology did 
not significantly change during NT1. The difference in 
some bacteria may be related to the disease duration. As 

Figure 2 Histogram of LDA score distribution. This figure shows the significantly different species with LDA scores greater than the default (default 2.0). In the bar chart, 
the red represents the HC group, the green represents the NT1 group, and the length represents the LDA score, namely the contribution degree of the significantly 
different species to the different groups.
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a T cell-mediated immune disease, NT1 may go through 
great environmental changes at the beginning of the dis-
ease, which may lead to intestinal microbiota disturbance. 
Furthermore, with the extension of the disease duration, 
just like the infection indicators can only be detected in the 
recent onset of narcolepsy patients,10 intestinal microbiota 
changes may not be as obvious as at the beginning of the 
disease. Yet, due to the rarity of the disease and inadequate 
inspection equipment, narcolepsy is usually diagnosed in 
a later stage;34 thus, it is difficult to collect stool samples 
from disease onset.

LEfSe analysis identified statistically significant biomar-
kers between the two groups. It revealed that the relative 
abundance of Klebsiella was higher than that in the HC 
group, while the relative abundance of Blautia, 
Barnesiellaceae, Barnesiella, Phocea, Lactococcus, 
Coriobacteriia, Coriobacteriales, Ruminiclostridium_5, and 
Bilophila were lower than that in HC group. Klebsiella is 
a conditional pathogen and a pro-inflammatory bacterium 
found in the human intestine and respiratory tract, where it 
can cause bronchitis, pneumonia, meningitis, and other infec-
tious diseases.35–37 Blautia is a gut microbial genus that 
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Figure 3 Histogram of species distribution at the phylum level.
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produces butyric acid and acetic acid and has an anti- 
inflammatory effect.38 The increase of Klebsiella and the 
decrease of Blautia further suggest that the incidence of 
NT1 is related to the inflammatory response.

A previous study suggested that Coriobacteriia was 
associated with depressive symptoms in an inflammation 
model of depression,39 and Phocea has been associated 
with anxiety and motor function in Parkinson’s rats.40 

Therefore, we speculated that emotional problems in 
NT1 patients might be related to these two bacteria.

Previous studies also found that the number of 
Barnesiella was positively correlated with lean body 
weight in mice (ie, fat-free body weight, mostly bone 
and muscle).41,42 Blautia was negatively correlated with 
visceral fat accumulation,43 and significantly decreased in 
obese children.38 Furthermore, Bilophila and Lactococcus 
have been shown to be related to obesity.44,45 The obesity 
in patients with NT1 may be mediated by the above four 
bacteria. Previous studies also found that intestinal 
Klebsiella, Blautia, and Ruminiclostridium_544 are all 
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associated with inflammatory response, and NT1 with 
a genetic susceptibility,46,47 infection induction48,49 and 
T cell-mediated autoimmune disease.49 Gut microbiota 
can exert a great influence on the brain immune function 
through the brain-gut axis.50 The changes in the abundance 
of intestinal flora mentioned above may be involved in the 
pathogenesis of NT1.

Correlation Between Clinical Features of 
NT1 and Gut Microbiota
Since most patients with NT1 are accompanied by obesity, 
which is closely related to intestinal bacteria,17,51,52 we 
examined the relationship between obesity and intestinal 
bacteria of NT1, and BMI was not taken as a covariable in 
the present study. Partial correlation analysis was con-
ducted between the different flora of NT1 and abnormal 
clinical features. We found that the Hcrt level was nega-
tively correlated with the number of SOREMPs. 
Coriobacteriales, Coriobacteriia, and Blautia were nega-
tively correlated with total sleep time; Coriobacteriales 
and Coriobacteriia were negatively correlated with sleep 
efficiency; Lactococcus was positively correlated with 
stage 1 sleep and negatively correlated with sleep arousal 
index; Klebsiella was positively correlated with sleep 
latency.

Previous studies have shown that NT1 patients have 
fragmented sleep at night and are prone to frequent 
awakenings.2 A low level of Hcrt can easily lead to sleep- 
wake instability,53 and sleep disruption may be one of the 

causes of daytime sleepiness.54 In this study, the content of 
Hcrt in the NT1 group was extremely low; Hcrt was 
negatively correlated with the number of SOREMPs, and 
the proportion of REM sleep at night was lower than that 
in the HC group, although there was no statistical differ-
ence. It is speculated that a low level of Hcrt leads to 
awakenings at night, frequent interruption of REM sleep at 
night, and more SOREMPs due to REM sleep pressure. At 
present, no study reported on sleep structure and the above 
different bacteria in NT1 patients. The different bacteria 
found in this study are mostly related to mood, obesity, 
and inflammation, and the association between these bac-
teria and sleep fragmentation is still unclear. In addition, 
inflammatory factors can lead to increased sleep.18 Further 
studies are needed to confirm whether inflammation- 
related bacteria in NT1 contribute to sleepiness symptoms. 
Furthermore, NT1 is a T-cell-mediated immune disease. 
Whether these inflammation-related bacteria have an 
important role in its onset needs to be confirmed in the 
acute phase of NT1. In this study, no statistically signifi-
cant correlation was observed between depression score 
and mood-related microflora in NT1 patients, nor between 
BMI and obesity-related microflora, which may be related 
to the fact that there were no statistically significant differ-
ences in HAMD score and BMI between the two groups in 
the present study.

At present, only a few studies reported on the intest-
inal microbiota in NT1 patients,23 while there is still 
a lack of research on the intestinal microbiota of narco-
lepsy in China. LeComte et al23 found no statistically 
significant difference in alpha diversity between NT1 
patients and the HC group, while beta diversity 
decreased in NT1 patients. Comparison of microbial 
abundance at different taxonomic levels revealed only 
a few differences in OTU levels, which were no longer 
statistically significant after adjusting for BMI values. 
This indicated that the overall intestinal microecology 
of NT1 patients does not significantly change, which is 
consistent with our conclusions. The reasons why Beta 
diversity analysis and differential microbial abundance 
analysis were inconsistent between these studies may be 
due to the following: first, recruited patients were from 
different countries; geographical location, ethnicity, diet, 
lifestyle, and other aspects may affect the composition of 
intestinal flora.55 Second, the BMI of NT1 patients 
enrolled in a previous study23 was higher than that of 
the control group, and the observed difference was sta-
tistically significant. Previous studies have found that 

Table 3 Differential Microbial Abundance Analyses at Different 
Taxonomic Levels

Domain LDA Score P-value

More abundant in NT1 individuals

Genus Klebsiella 3.19 0.047

More abundant in HC individuals

Class Coriobacteriia 2.26 0.018

Order Coriobacteriales 2.26 0.018
Family Barnesiellaceae 2.52 0.011

Genus Lactococcus 2.37 0.041

Genus Phocea 2.39 0.006
Genus Ruminiclostridium_5 2.00 0.026

Genus Barnesiella 2.46 0.023

Genus Blautia 3.25 0.048
Genus Bilophila 2.00 0.030

Abbreviations: NT1, Type 1 narcolepsy; HC, healthy controls; LDA, linear dis-
criminative analysis.
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obesity is closely related to the intestinal flora.17,51,52 

Finally, unlike their study, none of our patients had 
recently taken medication for narcolepsy. According to 
some estimation, more than a quarter of 1000 drugs we 
used, most of which were not antibiotics, are likely to 
affect gut flora.56

This study has some advantages and limitations. 
The advantage of this study is that the diagnosis of 
the included patients was clear, and the Hcrt content of 
all the patients was less than 110pg/mL, which met the 
diagnostic criteria of NT1. All the patients came from 
our province, thus having similar dietary structures and 
no racial differences. None of the patients had recently 
taken drugs to treat NT1, ruling out the possible effects 
of drugs on intestinal microbes. The major study lim-
itations are: firstly, the sample size was small; thus, 
a subgroup analysis was not carried out. However, the 
incidence of NT1 in the Chinese population has been 
reported to be only 0.033% (1 in 2500 people).57 The 
rarity of the disease proves the rationality of this study 
to explore the intestinal microbiota of NT1 in China on 
a small scale. In addition, our study lacks a detailed 
assessment of the lifestyle and diet of the subjects, 
lacks collection of inflammatory indicators in blood 
or cerebrospinal fluid, and fails to successfully include 
the control group with positive HLA-DBQ1*0602 
gene, which may further improve the influence of con-
founding factors and deepen understanding of intestinal 
microbiota in the pathogenesis of NT1.

In conclusion, we found some differences in intest-
inal flora structure between NT1 patients and normal 
people, thus providing a theoretical basis for future 
microecological therapy for narcolepsy. However, 
future larger sample size studies and different study 
designs need to be carried out to further clarify the 
possible pathogenesis and potential causality of intest-
inal flora in NT1 patients and explore the new treat-
ment strategies.
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