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Abstract: Anthraquinones (AQs) are found in a variety of consumer products, includ
ing foods, nutritional supplements, drugs, and traditional medicines, and have a wide 
range of pharmacological actions. Rubiadin, a 1,3-dihydroxy-2-methyl anthraquinone, 
primarily originates from Rubia cordifolia Linn (Rubiaceae). It was first discovered in 
1981 and has been reported for many biological activities. However, no review has 
been reported so far to create awareness about this molecule and its role in future drug 
discovery. Therefore, the present review aimed to provide comprehensive evidence of 
Rubiadin’s phytochemistry, biosynthesis, physicochemical properties, biological proper
ties and therapeutic potential. Relevant literature was gathered from numerous scientific 
databases including PubMed, ScienceDirect, Scopus and Google Scholar between 1981 
and up-to-date. The distribution of Rubiadin in numerous medicinal plants, as well as 
its method of isolation, synthesis, characterisation, physiochemical properties and 
possible biosynthesis pathways, was extensively covered in this review. Following a 
rigorous screening and tabulating, a thorough description of Rubiadin’s biological 
properties was gathered, which were based on scientific evidences. Rubiadin fits all 
five of Lipinski’s rule for drug-likeness properties. Then, the in depth physiochemical 
characteristics of Rubiadin were investigated. The simple technique for Rubiadin’s 
isolation from R. cordifolia and the procedure of synthesis was described. Rubiadin is 
also biosynthesized via the polyketide and chorismate/o-succinylbenzoic acid pathways. 
Rubiadin is a powerful molecule with anticancer, antiosteoporotic, hepatoprotective, 
neuroprotective, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antimalarial, 
antifungal, and antiviral properties. The mechanism of action for the majority of the 
pharmacological actions reported, however, is unknown. In addition to this review, an 
in silico molecular docking study was performed against proteins with PDB IDs: 
3AOX, 6OLX, 6OSP, and 6SDC to support the anticancer properties of Rubiadin. 
The toxicity profile, pharmacokinetics and possible structural modifications were also 
described. Rubiadin was also proven to have the highest binding affinity to the targeted 
proteins in an in silico study; thus, we believe it may be a potential anticancer 
molecule. In order to present Rubiadin as a novel candidate for future therapeutic 
development, advanced studies on preclinical, clinical trials, bioavailability, permeabil
ity and administration of safe doses are necessary. 
Keywords: Rubiadin, Rubia cordifolia, biosynthesis, physicochemical properties, 
anticancer, pharmacology
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Introduction
The most important translational research endeavor that con
tributes to human health and well-being is drug discovery. All 
efforts involved in changing a drug-like molecule to a final 
licensed drug product for marketing by the necessary regula
tory authorities are referred to as drug development. 
Identifying and screening of small molecules for their thera
peutic benefits and biological properties are critical phases for 
drug discovery and development. Most of the well-known 
compounds in the world has been documented in a library 
that was created over a long period of time. Among those 
compounds or small molecules, most of them are derived 
from natural resources in the past. Currently, the researchers 
have access to a wide range of chemical substances and hun
dreds of thousands of novel compounds have also been dis
covered through high-throughput and combinatorial chemical 
processes. It remains to be identified which of these millions of 
molecules have the features that will allow them to become 
drugs.

Anthraquinones (AQs) are the biggest group of compounds 
with natural colors, with over 700 chemicals identified thus far. 
Plants provided approximately 200 of these chemicals, with 

the remaining coming from lichens and fungus.1,2 AQs are 
found in all plant parts including the roots, rhizomes, fruits and 
flowers with the majority produced from 9,10-anthracene
dione. These compounds are also found in peas, cabbage, 
lettuce and beans.3 Due to their wide range of applications, 
AQs and their derivatives are among the most extensively 
utilized phytomolecules in the food and pharmaceutical indus
tries. Studies have shown that AQs have been their reported for 
antioxidant,4 antitumor,5–9 anti-inflammatory,9,10 diuretic,9 

antiarthritic,11 antifungal,12 antibacterial,13 and antimalarial14 

activities. AQ derivatives are a very useful category in the 
search for anticancer medicines. AQ-based drugs such as 
doxorubicin, valrubicin, mitoxantrone, idarubicin, and epiru
bicin have been used successfully to treat hematological and 
solid malignancies. Therefore, the AQs core continues to be a 
potential scaffold for developing novel therapeutic 
candidates.15

Rubiadin, a 1,3-dihydroxy-2-methyl anthraquinone 
(Figure 1), is primarily obtained from Rubia cordifolia Linn 
(R. cordifolia), which belongs to Rubiaceae family. It is an 
essential component in the Ayurvedic system of medicine in 
the treatment of various diseases.16 Rubiadin, which is 
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ubiquitous in many natural products, has sparked a lot of 
interest in recent years due to its excellent pharmacological 
effects including anticancer, antiosteoporotic, hepatoprotec
tive, neuroprotective, anti-inflammatory, antidiabetic, antioxi
dant, antibacterial, antimalarial, antifungal, and antiviral 
activities. Nevertheless, despite its various therapeutic effects, 
it lacks a thorough and comprehensive review, to date. Hence, 
in the present review, the phytochemistry, biosynthesis and 
physicochemical properties of Rubiadin is summarized, with 
a particular focus on its biological activity. In order to 
strengthen this review, we have carried out molecular docking 
studies with selected proteins to prove its anticancer mechan
ism. It is hoped that the scientific evidence from this review can 
serve as a solid foundation for further research and provide 
important information for developing Rubiadin as a therapeu
tic agent and health product.

Methods
Relevant literature was collected from PubMed, 
ScienceDirect, Scopus and Google Scholar. The following 
keywords were used in the search: “Rubiadin” OR 1,3-dihy
droxy-2-methyl anthraquinone OR 9,10-anthracenedione 
AND “Chemistry” OR “Biosynthesis” OR “in-vitro” OR 
“in-vivo” OR “Biological studies” OR “Pharmacological 
studies” OR “Toxicity” OR “Pharmacokinetics” OR 
“Pharmacodynamics” OR “Pharmacokinetics” OR 
“Pharmacodynamics”. An initial screening was performed 
on studies that were not written in English or did not have any 
abstracts. The review’s data was divided into two main 
categories: Rubiadin’s chemical and biological properties. 
The scientific evidence gathered is summarized and incorpo
rated following a thorough screening.

Phytochemistry of Rubiadin
Origin and Distribution
Rubiadin is primarily isolated from the root of R. cordifo
lia, a Rubiaceae family. R. cordifolia is an important 

medicinal plant used in the Ayurvedic system of medicine 
in the treatment of a variety of diseases.16 Morinda offici
nalis (M. officinalis) which is another major source of 
Rubiadin17 is a commonly used traditional Chinese medi
cine which has been used in China for many years. 
Additionally, Rubiadin is also found in a traditional med
icine named Manjisthadi churna, which consists of lesser 
cardamom, used in the treatment of hyperlipidemia in 
India’s Ayurvedic system of medicine and traditional med
ical practices.18 It is also found in some traditional 
Chinese medicines including Jia-Jian-Di-Huang-Yin-Zi 
decoction which is a seven-herb component consisting of 
Radix rehmanniae, Fructus corni, Radix morindae offici
nalis, Herba cistanches, Radix angelicae sinensis, Radix 
asparagi and Radix paeoniae alba19 as well as another 
decoction named Er Xian20 which is a six-herb component 
consisting of Herba epimedii, Radix morindae officinalis, 
Radix angelicae sinensis, Rhizoma anemarrhenae, Cortex 
phellodendri and Rhizoma curculiginis. Medicinal plants 
containing Rubiadin, Rubiadin-1-methyl ether (RBME) 
and Rubiadin-3-methyl ether are summarized in Table 1.

Medicinal Uses of R. cordifolia
R. cordifolia, also known as Indian madder or 
Manjistha, is a medicinal plant that grows in the for
ests of Pakistan, India, China, Korea, Japan and 
Mongolia.21 Based on ethnobotanical reports, its roots 
are used in the treatment of jaundice while the stems 
are used to treat snake bites and scorpion stings. It is 
also useful against diabetic foot ulcers.22 Traditionally, 
R. cordifolia is used for chronic pyrexia and puerperal 
fever, as well as a common medicine to alleviate heat 
and itching in eczema, psoriasis, herpes and scabies. 
When combined with honey, it is also deemed as 
effective against vitiligo.23 Other therapeutic effects 
include as an immunomodulator, analgesic, diuretic, 
gastroprotective, hepatoprotective, antioxidant, wound 
healing, nephroprotective and antiviral properties.24–27

Figure 1 Chemical structures of Rubiadin and its analogues. 
Note: Created with ChemDraw Ultra 8.0.
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Isolation of Rubiadin
The powdered root parts of R. cordifolia are extracted 
using a cold percolation in 50% aqueous ethanol following 

by a drying step using a rotary evaporator under a reduced 
pressure and a controlled temperature. In a separating 
funnel, the solvent-free extract is portioned with a 90% 

Table 1 List of Medicinal Plants Containing Rubiadin

Plant Source References

Rubiadin

Rubia cordifolia Dosseh et al82; Tripathi et al28; Tripathi and Sharma61; Rao et al16; Shen et al83

Morinda officinalis Liu et al84; Zhang et al85; Zhao et al86; Shi et al17

Prismatomeris connata Peng et al30

Heterophyllaea pustulata Montoya et al47 Comini et al38; Vittar et al39; Marioni et al65; Micheloud et al48; Micheloud et al49; Cogno et al37; 

Mugas et al87

Rubia tinctorum Schunck88; Kawasaki et al89; Cuoco et al90; Cooksey91

Prismatomeris malayana Tuntiwachwuttikul et al92

Lilium leucanthum Khan et al64

Hymenodictyon excelsum Rahman93

Hedyotis capitellata Ahmad et al94

Rubia peregrina Usai and Marchetti95

Morinda umbellata Chiou et al40

Prismatomeris fragrans Kanokmedhakul et al42

Morinda citrifolia Bussmann et al96

Morinda elliptica Ali et al41

Prismatomeris sessiliflora Likhitwitayawuid et al68

Ophiorrhiza shendurunii Rajan et al97

Rennellia elliptica Osman et al98

Knoxia valerianoides Yuan and Zhao99; Yoo et al100; Zhao et al101

Blumea aromatica Lan et al102

Prismatomeris tetrandra Jiang et al103

Hedyotis diffusa Huang et al104

Rhynchotechum vestitum Liu et al105

Swietenia mahagoni Haque et al106

Rubiadin-1-methyl ether

Pentas schimperi Mohr et al56

Morinda officinalis Li et al107; He et al51; Zhang et al85

Morinda coreia Chokchaisiri et al108

Heterophyllaea pustulata Comini et al70; Cogno et al37

Prismatomeris fragrans Kanokmedhakul et al42

Prismatomeris sessiliflora Likhitwitayawuid et al68

Rennellia elliptica Osman et al98

Prismatomeris tetrandra Jiang et al103

Knoxia valerianoides Zhao et al101

Paederia scandense Zou et al109

Rhynchotechum vestitum Liu et al105

Xanthophytum attopvensis Li et al110

Neonauclea calycina Tosa et al111

Rubiadin-3-methyl ether

Prismatomeris memecyloides 
Craib

Khanh et al112

Morinda angustifolia Chen et al113

Uvaria kurzii Lv et al114
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aqueous methanol and n-hexane. The n-hexane layer is 
removed and the aqueous-methanolic layer is subsequently 
dried and suspended in water for a further extraction step 
using chloroform (fraction 2) and n-butanol extractions in 
successive manner. Fraction 2 is chromatographed on a 
silica gel followed by an elution step with hexane, toluene, 
ethyl acetate and butanol (in order of increasing polarity) 
using varied solvent ratios. The column is further eluted 
with a toluene–hexane (1:1) combination, yielding a yel
low solid. The solid is purified by numerous recrystalliza
tion processes using toluene and is further validated by a 
thin layer chromatography using toluene:ethyl acetate 
(85:15) as the mobile phase (Rf = 0.58). The spots are 
finally observed under UV irradiation.16,28

Synthesis of Rubiadin
In the first step, the condensation of phthalic anhydride (1) 
and 2,6-dihydroxytoluene (2) with CH2ClCH2Cl/ 
CHCl2CHCl2 in the presence of aluminium chloride 
yielded 2-(2ʹ,4ʹ-dihydroxy-3ʹ-methyl) benzoylbenzoic acid 
(3). Then, in the second step, cyclization via dehydration 
of the compound 3 is performed in the presence of fused 
boric acid with concentrated sulphuric acid at 100 °C for 
25 min to yield Rubiadin29 (Figure 2).

Structural Characterization of Rubiadin
A very detailed structural characterization of Rubiadin is 
given below based on the values obtained from spectro
scopic methods including ultraviolet (UV), Fourier-trans
formed infrared (FTIR), 1H-nuclear magnetic resonance 
(NMR), 13C-NMR and EI-MS.30 The UV spectra of 
Rubiadin indicates a λmax at 408 nm for n-π* transition 
and at 279 and 251 for π-π* transitions. The IR spectra 
shows absorption bands at 3396 (OH), 2923, (C-H), 1661 
(C=O non-chelated) and at 1623, 1589 (C=C< aromatic) 
representing the characteristic groups of Rubiadin. It also 
shows a molecular ion peak at m/z 254.12 in EI-MS and 
analysed for a molecular formula C15H10O4.

The 1H-NMR spectrum reveals the presence of a 
hydrogen-bonded hydroxyl group at δ 13.06 (1H, s] and 
another phenolic hydrogen at δ 11.22 (1H, br.s.). The 
strong singlet for three protons at δ 2.02 is due to the 
presence of a methyl group attached to the aromatic ring 
system while the singlet at δ 7.1 for one proton is due to an 
aromatic proton in H-4 position. On the other hand, the 
multiplet between δ 7.83 and 7.88 for two protons are 
attributed to aromatic protons at H-6 and H-7 positions. 
A pair of doublet of doublets at δ 8.08 (dd, 1H, J = 1.5, 7.5 
Hz) and 8.12 (dd, 1H, J = 1.5, 7.5 Hz) are assigned to H-8 
and H-5, respectively. In its 13C-NMR spectrum, there 
were 15 signals out of which two signals at δ 186.2 and 
181.78 are due to conjugated carbonyl carbons and are 
characteristic signals of anthraquinoid nucleus. The signal 
present in the upfield region at δ 8.09 is due to the methyl 
carbon while the signal at δ 108.9 is assigned to C-2 
carbon. The two phenolic carbons appeared at δ 162.82 
and 162.46 where the carbon atoms adjacent to the phe
nolic carbons resonated at δ 107.35 (C-4) and 117.3 (C- 
9a). The remaining signals at δ 134.54 (C-8a), 134.44 (C- 
10a), 132.98 (C-4a), 132.87 (C-6), 131.70 (C-7), 126.70 
(C-5) and 126.37 (C-8) are characteristic signals off the 
unsubstituted aromatic ring of the AQ system.30

Physicochemical and Drug-Likeness 
Properties of Rubiadin
The physicochemical properties of Rubiadin are mainly 
obtained from PubChem31 and other reliable databases 
such as DruLiTo. Certain physicochemical features allow 
a molecule to be converted into a drug-like molecule: 1) 
molecule should be small enough to be transported 
throughout the body, 2) hydrophilic enough to dissolve in 
the blood stream, 3) lipophilic enough to cross fat barriers 
within the body and 4) contain enough number of polar 
groups to bind to a receptor but not too many which leads 
elimination too quickly from the body via urine to exert 
the therapeutic effect (Table 2). The drug-like properties 
(molecular weight, H-bond donors, H-bond acceptors, log 

Figure 2 Synthesis of Rubiadin. 
Note: Created with ChemDraw Ultra 8.0.
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P value and rotatable bonds) as described in Lipinski’s rule 
of five32 are calculated using Biovia Discovery studio 
19.0. Any drug-like compound should have 1) a molecular 
weight of 500, 2) a partition coefficient (log P)-value of 5, 
3) H-bond donors of 5, 4) H-bond acceptors of 10 and 5) 
rotatable bonds of 10 according to Lipinski’s rule of five. 
Since compounds that do not break Lipinski’s rule of five 
may have improved folding, polarity and molecular size, 
the drug-like molecules are assumed to have the predicted 
therapeutic benefits.33 The objective of the suggested 
method is to deliver primary evidence defining the 

potential physical properties of the compounds, rather 
than serving as a rigid screening criteria in itself, since 
Lipinski’s rule of five is an effective and valid guide for 
forecasting the potential for oral exposure to enhanced 
chemical compounds. Overall, Rubiadin appears to match 
all five of Lipinski’s drug-likeness criteria (Table 2). 
According to the data acquired from DruLiTo software, 
Rubiadin also passed the Ghose filter, Veber’s rule, blood– 
brain barrier (BBB) likeness rule, Unweighted 
Quantitative Estimate of Drug-likeness (QED), and 
Weighted QED, but failed the CMC-50 like rule and 

Table 2 Computed Physicochemical Properties of Rubiadin

Property Value/Result

Common name Rubiadin
Synonyms 1,3-Dihydroxy-2-methylanthracene-9,10-dione; 9,10-anthracenedione-1,3-dihydroxy-2-methyl-Rubiadine

Category Anthraquinone

IUPAC name 1,3-Dihydroxy-2-methylanthracene-9,10-dione
Canonical SMILES CC1=C(C=C2C(=C1O)C(=O)C3=CC=CC=C3C2=O)O

Molecular formula C15H10O4

Molecular weight 254.06 g/mol
Hydrogen bond donors 2

Hydrogen bond acceptors 4
Rotatable bonds 0

Log P (partition coefficient value) 0.809 (Predicted)

Molar refractivity 68.83
Topological polar surface area 74.6 Å 2

Percent composition C: 0.709, H: 0.040, O: 0.252

XLogP3-AA 3.1
Molar mass 254.05790880 Da

Monoisotopic mass 254.05790880 Da

Heavy atom count 19
Formal charge 0

Complexity 405

Isotope atom count 0
Atom stereocenter count 0

Bond stereocenter count 0

Covalently bonded unit count 1
Canonicalized 1

Melting point 290 °C

Boiling point 527 °C
Appearance Yellow needle shape

Solubility Ethyl acetate

Density 1.5 g/mL
Pka 6.350

Molar volume 215.17

Molecular polar surface area 74.6 Å 2

Molecular 3D-polar SASA 419.12

Molecular SASA 411.10

Molar refraction 72.28 cm3/mol
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MDDR like rule. All of the above findings indicate that it 
is a good potential therapeutic agent for a variety of 
disorders.

Biosynthesis of Rubiadin
AQs are derived from a variety of precursors and pathways 
in nature. Two biosynthesis pathways have been estab
lished: 1) the polyketide and 2) the chorismate/o-succinyl
benzoic acid pathways, despite the fact that their 
biosynthetic processes remain unknown. Rubiadin is made 
by combining phosphophenol pyruvate (PEP) with ery
throse-4-phosphate (E4P) to produce chorismate and iso
chorismate, which are then transformed to 

o-succinylbenzoate (OSB) in the presence of -ketoglutarate 
(Figure 3). Rings A and B of Rubiadin are formed through 
the synthesis of 1,4-dihydroxy-2-naphthoic acid (DHNA) 
by a ring closure of OSB–CoA. Prenylation of the DHNA 
results in naphthoquinol or naphthoquinone, which is 
involved in the synthesis of ring C. Isopentenyl pyropho
sphate (IPP), which can be generated from mevalonate 
(MVA) or 2-C-methyl-D-erythritol 4-phosphate (MEP), is 
required for the biosynthesis of AQs, including Rubiadin 
(Figure 4). In the late stages of biosynthesis, most AQs in 
the Rubiaceae undergo different alterations owing to hydro
xylation or methylation, in which groups like as hydroxy 
and methyl groups are added to Rubiadin’s ring C.34

Figure 3 Biosynthesis of Rubiadin. 
Note: Created with ChemDraw Ultra 8.0.
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Figure 4 MVA and MEP pathways for the synthesis of IPP. 
Note: Created with ChemDraw Ultra 8.0.
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Biological Activities of Rubiadin
Rubiadin has been reported to possess many biological 
activities (Figure 5) as summarized below.

Toxicity Profile
One of the latest acute toxicity study reported that oral 
administration of Rubiadin (100, 200, 500 and 1000 mg/ 
kg) to Swiss albino mice using staircase/up and down 
method showed no significant toxicity.35 Furthermore, 
mice given an aqueous extract of R. cordifolia and R. 
tinctorum (Rubiadin as one of the principal constituents) 
for 14 days indicated that the highest acceptable doses 
were 3500 mg/kg and 5000 mg/kg, respectively. In another 
study, both sexes of mice were administered with R. cor
difolia root extract mixed in their diet (0–5%) for 90 days 
with no clinical signs of toxicity seen, although there were 

some changes in kidney and epidermal vaginal cyst in 
some animals based on histological analysis. Overall, the 
findings indicate that Rubiadin is safe at the investigated 
dose levels (Figure 6).

Anticancer Activity and Photodynamic 
Therapy
AQs have long been believed to have anticancer proper
ties, acting primarily through DNA damage, cycle arrest 
and apoptosis.36 Very recently, Cogno et al37 evaluated the 
photoactivity of Rubiadin on monolayers and multicellular 
tumor spheroids following a photodynamic therapy. 
Rubiadin showed photosensitizing ability on monoculture 
of colon cancer cells (SW 480) at low concentration where 
necrosis has occurred. In addition, Comini et al38 

Figure 5 Biological properties and therapeutic potential of Rubiadin. 
Note: Created with BioRender.com.
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investigated the potential role of Rubiadin and RBME as 
phototoxic agents against human breast cancer using 
MCF-7c3 cells. At 100 μM and a light exposure of 1 J/ 
cm2, both Rubiadin and RBME showed considerable 
photocytotoxicity on cancer cells. The observed cellular 
death by the photoactivated Rubiadin and RBME were 
closely related to a singlet oxygen production, with 
decreased cell viability in relation to tumor cell uptake. 
Subsequently, another study by Vittar et al39 revealed that 
Rubiadin exhibited significant photocytotoxicity on human 
cancer cells (MCF-7c3) in a concentration-dependent man
ner. Additionally, biochemical analysis revealed the invol
vement of caspase-3, PARP cleavage and DNA 
fragmentation in Rubiadin-induced apoptosis (Figure 6).

In addition to the above studies, Rubiadin also exhibited 
significant cytotoxicity against HepG2 cells, with minimum 

inhibitory concentration (IC50) values of 3.6, 4.4 and 4.8 
µM, respectively.40 It also conferred cytotoxicity towards 
the CEM-SS (T-lymphoblastic leukaemia), MCF-7 (breast 
carcinoma) and HeLa (cervical carcinoma) cell lines with 
IC50 of 3, 10 and >30 µg/mL, respectively.41 In another 
study, Rubiadin and RBME exhibited significant cytotoxi
city against NCI-H187 cells, with IC50 values of 14.2 and 
4.5 µg/mL, respectively,42 indicating its potential anticancer 
effects.

However, madder color, a food coloring made from 
Rubia tinctorum roots, has been shown to cause cancer 
in rats’ kidneys and liver. In F344 rats, treatment with 
Rubiadin (0.04%) for 23 weeks enhanced atypical renal 
tubules/hyperplasias and induced renal cell adenomas and 
carcinomas. Additionally, Rubiadin enhanced glutathione 
S-transferase placental form-positive liver cell foci and 

Figure 6 Rubiadin’s toxicity profile, anticancer activity, and photodynamic therapy. In the toxicity study, oral administration of rubiadin showed no clinical signs of toxicity 
seen indicating that the biochemical compound is safe at certain investigated dose levels. Through favorable photosensitizing ability of rubiadin, it can act as an anticancer by 
acting primarily through DNA damage, cycle arrest and apoptosis and be used in photodynamic therapy. 
Note: Created with BioRender.com. 
Abbreviations: TNF-α, tumor necrosis factor alpha; TRAF2, TNF receptor-associated factor 2; cIAPs, cellular inhibitors of apoptosis; TRADD, TNFR1-associated death 
domain protein; FADD, Fas-associated death domain protein; RIP, ribosome-inactivating protein; Bax, BCL2 associated X, apoptosis regulator; t-Bid, truncated Bid; Cyto C, 
cytochrome complex; PARP, poly (ADP-ribose) polymerase; ROS, reactive oxygen species.
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major intestinal dysplasias thus suggesting that Rubiadin 
enhances renal preneoplastic lesions, with a weaker effect 
on dysplasia. Additionally, Rubiadin may also target the 
liver and large intestine, implying that it plays a significant 
role in madder color-induced carcinogenicity.43 Based on 
another study by the same researcher, Rubiadin is a potent 
carcinogenic metabolite of madder color, targeting proxi
mal tubule cells in the outer medulla,44 although oxidative 
stress increased by lucidin-3-O-primeveroside or alizarin 
may also be involved in renal carcinogenesis by madder 
color.

From another study, the excretion of lucidin and rubia
din was observed in rats following administration of luci
dinprimeveroside (Lup). Lup was reduced to Rubiadin 
primeveroside which in turn, was hydrolyzed to 
Rubiadin, when treated with rat liver extract and nicotina
mide adenine dinucleotide phosphate (NADPH). Rubiadin 
was more potent than lucidin but has similar effect to the 
positive control 7,12-di-methylbenz[α]anthracene in the 
unscheduled DNA synthesis experiment in primary rat 
hepatocytes. The uptake of the AQs glycosides alizarin
primeveroside (Alp) and Lup results in the production of a 
rodent carcinogen 1-hydroxyanthraquinone, as well as the 
highly genotoxic compounds lucidin and Rubiadin.45

The latest scientific evidence has demonstrated that 
novel AQs can inhibit cancer by paraptosis, autophagy, 
radiosensitization, thus overcoming chemoresistance.36 

However, scientists are still far from having a full under
standing on the anticancer properties of Rubiadin, since 
some report mentioned it is also carcinogenic.43,44 Thus, 
more in vivo and preclinical research are needed to fully 
understand its apparent potential in preventing and treating 
a variety of malignancies.

Although photoactivity is known for decades, only 
recently that it resurfaced as a potential therapy option 
for cancer and microbial diseases. Its key innovative com
ponent is light as the external factor since light can acti
vate drugs locally, besides having a high level of 
selectivity and conferring minimal side effects.46 

Animals that ingest the aerial parts of H. pustulata show 
a classic primary photoensitization reaction, which is clini
cally characterized as dermatitis and, in severe cases, 
blindness. H. pustulata grows mainly in the Andes region 
of northwest Argentina. Rubiadin, a major compound in 
H. pustulata, is characterized as either a Type I or II 
photosensitizer, depending on its physicochemical fea
tures. Oral administration of Rubiadin can reproduce nat
ural in experimental animals.

The presence of Rubiadins in the serum was identified 
and quantified in the skin of experimental animals using 
high performance liquid chromatography.47 Since H. pus
tulata contains photosensitizing AQs such as Rubiadin and 
soranjidiol, the plant can cause dermal lesions through 
photosensitization.48 Another study reported that 
Rubiadin and soranjidiol should be administered between 
24 and 72 hours after H. pustulata ingestion, in order to 
coincide with the time when clinical indications are more 
noticeable. The clinical findings were validated for the 
presence of Rubiadin and soranjidiol in sera, although 
Rubiadin and soranjidiol were absent in skin samples. 
Finally, toxicological investigations on both compounds 
are important, since several recent researches have sug
gested that they could be used in photodynamic therapy.49

Rubiadin confer a favorable response to photodynamic 
therapy and therefore should be further examined. 
Additionally, any interaction between its use in reversing 
drug-resistant phenotypes and its photosensitizing effect 
should be further investigated.

Antiosteoporotic Activity
Low bone mineral density (BMD) and micro-architectural 
deterioration of bone tissue are characteristic of osteoporosis, 
resulting in increased bone fragility and fracture risk.50 He 
et al51 investigated the in vitro effect of RBME on osteoclasts 
and the underlying mechanism. RBME inhibited the expres
sion of osteoclast-related proteins such as nuclear factor of 
activated T-cells cytoplasmic 1 (NFATc1), cellular oncogene 
Fos (c-Fos), matrix metallopeptidase 9 (MMP-9) and cathe
psin K (CtsK), as determined by Western blot analyses. RBM 
also reduced the nuclear translocation of p65 and inhibited 
the phosphorylation of nuclear factor kappa B (NF-κB) p65 
and the degradation of nuclear factor of kappa light polypep
tide gene enhancer in B-cells inhibitor alpha (IκBα) indicat
ing that RBME may be a promising agent for the prevention 
and treatment of bone disorders characterized by excessive 
bone resorption, due to its ability to inhibit osteoclastic bone 
resorption by blocking the NF-κB pathway (Figure 7).

Bao et al52 investigated the in vitro effects of Rubiadin on 
bone resorption activity and its mechanism on osteoclasts 
derived from rat bone marrow cells. In a co-culture system of 
osteoblasts and bone marrow cells, Rubiadin reduced the 
formation of bone resorption pits, the number of multinu
cleated osteoclasts and the activity of tartrate resistant acid 
phosphates (TRAP) and cathepsin K. Additionally, Rubiadin 
increased the death of osteoclasts caused by macrophage 
colony stimulation factor (M-CSF) and receptor activator of 
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NF-κB ligand in bone marrow cells (RANKL). Rubiadin also 
1) increased the ratio of osteoprotegerin (OPG), RANKL 
mRNA and protein expression in osteoblasts; 2) interfered 
the c-Jun N-terminal kinase (JNK) and NF-κB signaling 
pathways; and 3) reduced the expression of calcitonin recep
tor and carbonic anhydrase/II in osteoclasts induced from 
bone marrow cells with M-CSF and RANKL in osteoclasts. 
Overall, the findings suggest that Rubiadin may be a potential 
inhibitor for bone resorption.52 Since RBME can inhibit 
osteoclast TRAP activity and bone resorption, it may be 
useful against osteoporosis.53

Xia et al54 investigated the protective effect of M. 
officinalis on glucocorticoid-induced osteoporosis 
(GIOP)-modelled rats and osteoblasts. Eight weeks after 
dexamethasone (DEX) injection and M. officinalis 

treatment in female rats aged 12 weeks, the BMD, 
micro-architecture of the trabecular bone, serum level of 
bone metabolism markers and urine metabolomics were 
assayed in vivo. The cultured osteoblasts were injured 
with DEX before the effects of M. officinalis, RBME on 
osteoblastic proliferation, differentiation and mineraliza
tion were investigated in vitro. M. officinalis increased 
BMD, improved the micro-architecture and intervened 
with bone metabolism via regulating alkaline phosphatase 
(ALP), tartrate resistant acid phosphatase (TRAP) and c-
terminal telopeptides of type I collagen (CTX-I) levels. 
The in vitro experiment showed that M. officinalis and 
RBME increased the cell proliferation, ALP activity and 
enhanced extracellular matrix mineralization in DEX- 
injured osteoblasts.54 Additionally, another study 

Figure 7 Antiosteoporotic and anti-inflammatory activities of rubiadin. Inhibition of nuclear factor kappa B (NF-κB) phosphorylation and degradation of nuclear factor of 
kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα) by RBME suggests that it could be used to treat bone disorders characterized by excessive bone 
resorption. RBME demonstrated anti-inflammatory activity by decreasing pro-inflammatory markers while increasing the apoptotic rate of macrophages. 
Note: Created with BioRender.com. 
Abbreviations: TNF-α, tumor necrosis factor alpha; IL-1ß and 6, interleukin 1 beta and 6; RANKL, receptor activator of nuclear factor kappa-Β ligand; IKKγ/NEMO, 
nuclear factor-kappa B essential modulator; IkBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; IKKα, inhibitory kappa B kinase α; NF-kB, 
nuclear factor kappa-light-chain-enhancer of activated B cells; NIK, NF-κB inducing kinase; CD40 & 163, cluster of differentiation 40 and 163; LTß, lymphotoxin beta; RelB, 
RELB proto-oncogene, NF-KB subunit; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; P13K, phosphoinositide 3-kinases; AKT, protein kinase B/ 
AKT; iNOS, inducible nitric oxide synthase; COX2, cyclooxygenase-2; MMP-7, matrix metalloproteinase-7.
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demonstrated that multiple ingredients in a traditional 
Chinese medicine decoction named Er-Xian that included 
Rubiadin has anti-osteoporotic activity.20 Although the 
data indicated that Rubiadin has action against bone tissue, 
more efficient and reliable bioassays should be urgently 
developed for thorough investigation of its antiosteoporo
tic mechanism before human clinical trials.

Anti-Inflammatory Activity
Inflammation is a set of activities that occur in response to 
tissue damage associated with oxidative stress or other 
factors that initiate repair processes including as extracel
lular matrix remodeling and fibrosis.55 Mohr et al56 inves
tigated the anti-inflammatory efficacy of RBME using an 
in vitro model of RAW 264.7 macrophages induced by 
lipopolysaccharide (LPS). The results indicated that 
RBME decreased the levels of pro-inflammatory markers 
such as nitric oxide (NOx), interleukin (IL)-6 and IL-1 
with increased in macrophage apoptotic rate seen 
(Figure 7). The anti-inflammatory effects of Rubiadin-1- 
methyl ether was also investigated using an in vivo acute 
lung injury (ALI) induced by LPS (5 mg/kg, P.O.) by a 
similar group of researchers. Administration of RBME (3, 
10 and 30 mg/kg, P.O.) decreased leukocyte infiltration, 
fluid leakage, NOx, IL-6, IL-12p70, interferon gamma 
(IFN-γ), tumour necrosis factor α (TNF-α) and monocyte 
chemoattractant protein-1 (MCP-1) levels as well as MPO 
activity (Mohr et al, 2019). RBME also enhanced the 
levels of IL-10 in the bronchoalveolar lavage fluid 
(BALF). On the other hand, Rubiadin’s anti-inflammatory 
activity and potential mechanism of action, has yet to be 
confirmed and requires further research.

Antidiabetic Activity
Mujeeb et al57 evaluated the effectiveness of Rubiadin- 
loaded niosomes (RLN) in treating diabetic nephropathy 
(DN) that is induced by streptozotocin-nicotinamide (STZ- 
NA) in Wistar rats. In STZ-NA-induced DN rats, oral 
administration of RLN (100 and 200 mg/kg/week) mark
edly reduced blood glucose levels. Furthermore, RLN for
mulation significantly reduced urea, uric acid and 
creatinine levels while improving lipid, thiobarbituric 
acid reactive substances (TBARS), glutathione (GSH), 
superoxide dismutase (SOD) and catalase (CAT) levels in 
DN rats (Figure 8).57 Nevertheless, other than this study, 
no other evidence of Rubiadin’s anti-diabetic effectiveness 
has been found indicating that further studies are required 
to confirm Rubiadin’s anti-diabetic properties.

Hepatoprotective Activity
The hepatoprotective effect of Rubiadin was tested against 
carbon tetrachloride (CCl4)-induced liver injury in rats.16 

In CCl4-induced rats (1 mL/kg, i.p), the co-treatment of 
Rubiadin (50, 100 and 200 mg/kg, P.O.) for 2 weeks 
restored serum glutamic oxaloacetic transaminase, gluta
mate pyruvate transaminase, alkaline phosphatase (ALP), 
γ-glutamyltransferase (γ-GT), glutathione S-transferase 
and glutathione reductase levels to normal. Rubiadin also 
inhibited the development of hepatic malondialdehyde and 
the depletion of reduced glutathione level in the liver of 
CCl4-intoxicated rats in a dose-dependent manner, thus 
strongly suggesting that Rubiadin has a hepatoprotective 
effect against CCl4-induced hepatic damage in rats 
(Figure 8).16 However, more research is needed in future 
to confirm Rubiadin’s hepatoprotective potential especially 
in models that greatly mimic humans liver disease.

Neuroprotection
The significant reduction in the onset of jerks and Straub 
tail along with a significant increase in onset of clonus and 
extensor were observed with pre-treatment of Rubiadin 
suspension (100 and 250 mg/kg, P.O.) for 3 days to the 
pentylene tetrazole (PTZ)-induced (80 mg/kg, i.p.) clonic- 
tonic convulsions in mice. Pre-treatment of Rubiadin sus
pension also significantly reduced the hind limb extension 
in maximal electro shock (MES)-induced seizures induced 
by delivering an electroshock at 50 mA using an electro- 
convulsometer through a pair of ear clip electrodes in 
Swiss albino mice. Rubiadin suspension (250 mg/kg) con
ferred some anticonvulsant effects in both MES- and PTZ- 
induced epileptic seizure models35 overall indicating that 
Rubiadin is a potential neuroprotectant (Figure 8). The 
above study is a novel platform for testing Rubiadin 
against neurodegenerative disorders including 
Alzheimer’s, Parkinson’s and Huntington’s disease.

Antioxidant Activity
The antioxidant effects of AQs including Rubiadin are 
well known.58–60 Rubiadin inhibits lipid peroxidation as 
induced by ferrous sulphate and t-butylhydroperoxide 
especially in Fe2+-induced lipid peroxidation (Figure 8). 
Rubiadin’s antioxidant properties were comparatively 
higher than ethylenediaminetetraacetic acid (EDTA), tris, 
mannitol, vitamin E and p-benzoquinone.28 Based on a 
follow-up study by Tripathi and Sharma,61 Rubiadin inhi
bits lipid peroxidation in a dose-dependent manner. Apart 
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from the studies mentioned above, no in vitro or in vivo 
antioxidant investigations on Rubiadin have been reported 
making relating the findings reported in a few models to 
antioxidant potential a challenge. Further research using a 
variety of approaches, including animal models with estab
lished mechanisms of action, should be conducted in the 
future to confirm Rubiadin’s antioxidant potential.

Antifungal Activity
AQs and their derived compounds are well documented for 
their antifungal properties.62,63 Bacillus velezensis is a plant- 
growth-promoting rhizobacterium with enormous potential for 
agricultural development. Bacillus velezensis Lle-9 which is 
isolated from Lilium leucanthum bulbs has shown antifungal 
activities against plant pathogens such as Botryosphaeria 
dothidea, Fusarium oxysporum, Botrytis cinerea and 
Fusarium fujikuroi. The presence of Rubiadin and other anti
microbial compounds in the bacterial culture can assist in 
isolating Bacillus velezensis Lle-9’s antifungal activity.64

Marioni et al65 who investigated the antifungal effects of 
Rubiadin and RBME on Candida tropicalis confirmed that 
both compounds reduced biofilm formation and had an anti
fungal effect as mediated by oxidative and nitrosative stress 
under irradiation, with a significant increase in endogenous 
ROS and superoxide dismutase (SOD) activity. Rubiadin, in 
particular, altered the pro-oxidant-antioxidant balance. The 
most prominent effect of irradiation was oxidative stress, 
which altered the pro-oxidant-antioxidant balance and may 
contribute to an irreversible cell injury in the biofilm. 
Rubiadin is also an excellent synergistic combination with 
Amphotericin B indicating that the photosensitizing 
Rubiadin is a promising therapy option for Candida 
infections.65 A follow-up study suggested that the O2•− 

formed by an electron transfer quenches the Rubiadin and 
RBME excited states and is the main photosensitizing 
mechanism involved in the photo-induced antibiofilm 
activity.66 Additionally, RBME behaves exclusively as a 
photosensitizer.67

Figure 8 Rubiadin’s efficacy as an anti-diabetic, hepatoprotective, neuroprotective, and antioxidant. Rubiadin significantly decreased blood glucose and other serum 
biomarkers associated with the kidney and liver when taken orally, allowing them to return to normal levels. Rubiadin has also been identified as a potential neuroprotective 
and antioxidant compound, as it inhibits lipid peroxidation in dose-dependent manner in mice suffering from maximal electroshock (MES)-induced seizures. 
Note: Created with BioRender.com.
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The antifungal activity of Rubiadin has been evaluated 
against three fungi such as Aspergillus ochraceus, 
Aspergillus niger and Candida lipolytica where it showed 
moderate antifungal activity against Aspergillus ochraceus 
[minimum inhibitory concentration (MIC) of >80 µg/disc] 
(Figure 9).41 Overall, the findings suggest that Rubiadin and 
RBME have antifungal activity against a variety of patho
genic Aspergillus and Candida species. Rubiadin has the 
potential to be employed as a lead compound in the investi
gation for the development of a potential antifungal agent.

Antimalarial, Antibacterial and Antiviral 
Activities
Rubiadin and RBME have been shown to have antimalar
ial activities with IC50 values of 13.00 and 1.56 µg/mL, 
respectively.68 The number of Plasmodium falciparum 

parasites (schizonts) decreased significantly in a dose- 
dependent manner with almost a 100% of inhibition by 
RBME (30 µg/mL)69 indicating that they have the poten
tial to be developed as antiplasmodial agents. Rubiadin 
and RBME showed antibacterial activity against 
Staphylococcus aureus with MIC of 32–64 and >256 µg/ 
mL, respectively. The mechanism of action seems to 
involve an increase in the levels of superoxide anion 
O2•− and/or singlet molecular oxygen 1O2.70 In another 
study, Rubiadin was investigated against hepatitis B virus 
(HBV) using HepG2.2.15 cells. Rubiadin inhibited HBV 
DNA replication and lowered hepatitis B e antigen 
(HBeAg) as well as hepatitis B core antigen (HBcAg) 
levels. It also decreased HBV x (HBx) protein expression 
and reduced intracellular free calcium suggesting that it is 
a promising anti-HBV drug candidate (Figure 9).30

Figure 9 Rubiadin’s antifungal activity against Candida tropicalis confirmed that the compound inhibited biofilm formation and exerted antifungal activity with a significant 
increase in endogenous ROS and SOD activity. Additionally, rubiadin and RBME showed antimalarial and antibacterial properties, as the number of Plasmodium falciparum 
parasites (schizonts) and Staphylococcus aureus were significantly decreased. Rubiadin was tested against hepatitis B virus (HBV), and the results indicated that it inhibited 
HBV DNA replication, decreased hepatitis B e antigen (HBeAg) and hepatitis B core antigen (HBcAg) levels, HBV x (HBx) protein expression, and intracellular free calcium. 
Note: Created with BioRender.com. 
Abbreviations: ROS, reactive oxygen species; SOD, superoxide dismutase; H2O2, hydrogen peroxide; CAT, catalase; GPx, glutathione peroxidase; H2O, water; O2, oxygen; 
O2·–, superoxide anion radical; 1O2, singlet molecular oxygen.
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Pharmacokinetics of Rubiadin
AQs which are absorbed mostly through the intestines and 
are primarily distributed in tissues and organs that receive 
good blood supply are transformed into another AQ, leading 
to potential pharmacological and/or toxicological effects.71 

The main components of Morinda officinalis are Rubiadin 
and RBME. To investigate the pharmacokinetics and tissue 
distribution of these two compounds in rat plasma and tis
sues, Shi et al17 used an ultra-performance liquid chromato
graphy-tandem mass spectrometry (UPLC-MS/MS). When 
compared to the findings from Morinda officinalis without 
wood (MO), the salt-processed Morinda officinalis (SMO) 
groups had significant increase in the maximum concentra
tion (Cmax) and area under the curve (AUC0-t) indicating 
that salt steaming can increase Rubiadin’s and RBME’s 
bioavailabilities. Rubiadin had a time to maximum concen
tration (Tmax) of 1.5 h, which was longer than RBME, 
although RBME had the highest Cmax, particularly in the 
SMO extract. Additionally, the small intestine had the high
est concentrations of both Rubiadin and RBME. 
Nevertheless, due to the limited study focus on Rubiadin’s 
pharmacokinetic features, a comprehensive assessment of 
Rubiadin’s absorption, distribution, metabolism and excre
tion profiles remains lacking.

Absorption, Distribution, 
Metabolism, Excretion, and Toxicity 
(ADMET) Properties of Rubiadin
The variable nearest neighbor (vNN)-ADMET webserver 
was used to predict ADMET properties72 of Rubiadin and 
to build new models based on vNN methodology. The 
parameters were classified as effects on the liver toxicity 
profile, metabolism, membrane transporters function, 
hERG (cardiotoxicity) activity, MMP (mitochondrial toxi
city assay), mutagenicity (AMES test), and the maximum 
recommended therapeutic dose (MRTD). According to the 
unrestricted prediction model of the program, Rubiadin 
causes drug-induced liver injury (DILI) but not cytotoxi
city, whereas the restricted model has no high confidence 
prediction. Rubiadin may produce positive findings for the 
human liver microsomal (HLM) stability assay and 
according to the unrestricted applicability domain, it may 
be rapidly metabolized. Rubiadin has the potential to inhi
bit the CYP 1A2, 2D6, 2C9, and 2C19 enzymes, but not 
the CYP 3A4 enzymes, as predicted by both models. 
Rubiadin has been found to have no effect on membrane 
transporters such as BBB and P-glycoprotein (P-gp). 

Rubiadin causes mutations and may cause mitochondrial 
malfunction, according to the results of the AMES and 
MMP assays. The MRTD for Rubiadin was found to be 
665 mg/day, as predicted by the software.

Apart from the parameters listed above, the toxicity 
estimation software tool (TEST) was used to estimate 
Rubiadin toxicity using quantitative structure–activity 
relationships (QSARs) approaches.73 By employing 
TEST and QSAR techniques, the oral rat LD50 mg/kg 
(predicted value) of Rubiadin was found to be 1307.13, 
3502.50, and 487.82 mg/kg, respectively, to consensus 
method, hierarchical clustering technique, and nearest 
neighbor technique. There is a possibility that the muta
genicity assay will be positive, as shown by the software 
when all three QSAR techniques are used. According to 
the consensus approach, hierarchical clustering technique, 
and nearest neighbor technique, the predicted value of the 
mutagenicity assay was 0.98, 0.97, and 1.00, respectively.

Molecular Docking of Rubiadin 
Against the Cancer Target Proteins
Molecular docking is a computational tool that can predict 
how a ligand will attach to a protein with a known three- 
dimensional structure. Docking may be used to do computer- 
generated screening on enormous collections of compounds, 
rate the outcomes, and offer structural models for in what 
manner the ligands inhibit the target, which is tremendously 
beneficial in the search for new inhibitors. There are no 
literature about molecular docking studies describing the 
interaction of Rubiadin with molecular targets involved in 
cancer development. To circumvent this constraint, we 
employed protein-ligand molecular docking to assess the 
Rubiadin’s binding mechanism and interaction energy with 
four important enzyme targets, which were identified in this 
research as being responsible for variety of cancers.

A number of cancer treatments have been evaluated in 
clinical trials to see if they can inhibit the cMET receptor 
tyrosine kinase, and resistance mutations in the cMET gene 
are beginning to be identified in a number of these medications. 
Molecular investigations are still required to further understand 
individual cMET modifications at the molecular level, parti
cularly in terms of small molecule identification.74 In certain 
cancers, chromosomal translocation, amplification, or point 
mutations in the anaplastic lymphoma kinase (ALK) gene 
cause the tyrosine kinase to be constitutively activated. This 
gene has been found as a potential target for molecular docking 
studies, and it will be investigated extensively.75 PI5P4Ks have 
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been shown to play a role in the growth of cancer cells as well 
as the development of other disorders. Due to a lack of effec
tive and selective small drugs on the market, targeting these 
kinases for therapeutic purposes has gotten little attention.76 

Hsp90 and Hsp90 have been linked to cancer and neurological 
disorders, although determining their precise role in these 
diseases has been difficult due to a lack of specific pharmaco
logical studies.77 The protein with the PDB IDs 3AOX, 6OLX, 
6OSP, and 6SDC were extracted from the protein data bank to 
commemorate the above four targets.

Molegro Virtual Docker (MVD) 6.0 was used to conduct 
the molecular docking study.78 The docking procedure 
includes the following steps. MVD was used to import the 
molecules, including protein and ligand (Rubiadin). In the 
protein molecule, potential binding sites and the configura
tion of the search space were determined. The Docking 
Wizard was used to run a docking simulation. The Pose 
Organizer and the ligand energy inspector tool were used to 
inspect the docking results, and the results were tabulated and 
the docked view was extracted (Table 3). The MolDock score 
with the lowest values was discovered to have the highest 
binding affinity to the target proteins. Rubiadin affinity for 
cancer targets was found to be 6SDC>6OLX>3AOX>6OSP, 
according to the report obtained. This result strengthens the 
anticancer potential of Rubiadin and that could help to 
enlighten this biologically active compound to the next 
level of drug discovery and development.

Cosmetic Formulation Containing 
Rubiadin
Rubiadin has been used as an active ingredient in a cream 
formulation conducted by a group of Korean researchers. 
The researchers reported that it had an excellent anti- 
allergy effect by inhibiting β-hexosaminidase secretion 
and the expression of caspase-1. The cream has been 
patented and relates to a cosmetic composition comprising 
ceramide, which can relieve atopic symptoms, additionally 
conferred by its moisturizing effect.79

Possible Structural Modifications in 
Rubiadin
Currently, it remains unclear whether the bioactivities of 
Rubiadin can be improved via structural modifications. 
Some analogues of Rubiadin have been isolated or synthe
sized using methylation and acylation reactions, which are 
possible due to their phenolic hydroxyl groups. The side- 
chain modifications is an impetus for further efforts to 

increase the therapeutic potential of this class of com
pounds (Figure 10). For example, Rubiadin analogues 
1–3 have been synthesised and their cytotoxic activities 
against MCF-7 and K-562 cancer cell lines and the struc
ture–activity relationship have been described.80 The 
structure–activity relationship suggested that methoxy 
and hydroxyl groups are important for the cytotoxicity 
and selectivity of the substituted AQs. Further RBME 4 
and Rubiadin-3-methyl ether 5 were isolated from differ
ent medicinal plants and some of their biological activities 
were investigated (Table 1). Additionally, Rubiadin-1- 
methyl ether-3-O-β-primeveroside 6 has been isolated, 
characterised and reported from Pentas lanceolata.81

The in silico design of more potent Rubiadin deriva
tives can be used as a way forward for novel drug dis
covery and development. Nevertheless, in vitro and in vivo 
studies should be conducted in future to confirm the safety 
and efficacy of all semi-synthetic derivatives of Rubiadin. 
Additionally, more studies relating to its structure–activity 
relationship (SAR) are warranted in the future to obtain 
several other novel compounds derived from Rubiadin.

Conclusion and Future Perspectives
In this review, the presence of Rubiadin in medicinal 
plants and its isolation, synthesis, structural characteriza
tion, physicochemical properties, along with its biosynth
esis are described in detail. Additionally, the scientific 
updates on its biological and therapeutic potentials have 
been provided. Accumulating evidence provided by var
ious preclinical studies has shown that Rubiadin can be a 
promising anticancer, anti-osteoporotic, hepatoprotective, 
neuroprotective, anti-inflammatory, antidiabetic, antioxi
dant, antibacterial, antimalarial, antifungal and antiviral 
drug candidate for further development. Rubiadin was 
proven to have the highest binding affinity to the cancer 
targeted proteins in an in silico study, thus we believe it 
may be a potential anticancer molecule. The in silico 
findings indicate that Rubiadin has a high ligand-potenti
ality for a wide range of macromolecules, leading us to 
believe that it may interact with a variety of other enzymes 
or proteins that were not included in this simulation. It is 
hoped that this review will stimulate further investigations 
on Rubiadin in relation to its pharmacokinetics, pharma
codynamics, clinical and SAR studies, which can help 
accelerate the development and utilization of Rubiadin as 
a promising drug candidate in the near future.
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