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Abstract: The gut microbiota plays a crucial role in many physiological processes in the 
human body. Dysbiosis can disrupt the intestinal barrier and alter metabolism and immune 
responses, leading to the development of diseases. Over the past few decades, evidence has 
accumulated linking changes in the composition of the gut microbiota to dozens of see-
mingly unrelated conditions, including cancer. Overall, the gut microbiota mainly affects the 
occurrence and development of cancer by damaging host DNA, forming and maintaining 
a pro-inflammatory environment, and affecting host immune responses. In addition, the gut 
microbiota can also affect the efficacy and toxicity of chemotherapy, radiotherapy, and 
immunotherapy. Scientists attempt to improve the efficacy and decrease the toxicity of 
these treatment modalities by fine-tuning the gut microbiota. The aim of this review is to 
assist researchers and clinicians in developing new strategies for the detection and treatment 
of tumors by providing the latest information on the intestinal microbiome and cancer, as 
well as exploring potential application prospects and mechanisms of action. 
Keywords: intestinal flora, carcinogenesis, mechanism, therapy, fecal bacteria 
transplantation

Introduction
Currently, cancer is the leading cause of death worldwide, and its morbidity and 
mortality rates continue to rise in parallel with the increasing and aging population.1 

It is estimated that ≤20% of the global cancer burden is caused by microorganisms, 
such as Helicobacter pylori, Clostridium difficile, Epstein–Barr virus, human papil-
lomavirus, and other pathogens associated with cancer.2 As the largest microbial 
reservoir in the human body, a balanced gut microbiota is positively associated with 
health. However, dysbiosis (ie, alterations in microbial diversity and/or function) 
can contribute to the development of diseases, including various types of cancer.3,4 

Further research on the mechanisms by which the gut microbiota influences the 
occurrence and development of cancer is warranted. Nevertheless, available evi-
dence suggests that changes in the microbial composition of the specific gut 
microbiota increase host cell mutagenesis. This is achieved either by influencing 
metabolism and/or immunity to create an immunosuppressive environment that 
promotes cancer, or through an inflammatory cascade that leads to the initiation 
and progression of cancer.

The development of a precursor disease into cancer often requires years. Hence, 
screening and early identification are key to preventing the progression of disease. 
Evidence has shown that changes in the gut microbiome that occur in the early 
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stages of colorectal cancer (CRC) may be used to identify 
individuals at risk of developing colorectal adenoma (a 
precursor lesion of CRC).5 Therefore, changes in the gut 
microbiome may serve as biomarkers for precancerous 
lesions or the early detection of cancer. Moreover, the 
gut microbiome can influence the efficacy or toxicity of 
a variety of treatments, including immunotherapy.6 

Researchers are conducting clinical trials to improve the 
outcomes of cancer treatment by manipulating the gut 
microbiome. Therefore, the study of changes in the intest-
inal microbiota is of great importance for the evaluation of 
human health status, in-depth study of the pathogenesis of 
cancer, and search for new therapeutic targets and drugs. 
At present, there have been some reviews on the relation-
ship between microbes and cancer, with varying emphasis. 
Garrett retrospected how the microbiome affects cancer, 
responsiveness to cancer treatments, and cancer-related 
complications.7 Helmink et al mainly reviewed the effects 
of the gut microbiota on cancer development and 
treatment,8 while Gopalakrishnan and colleagues focused 
on immunity.9 This review summarizes the latest research 
progress on the gut microbiota and cancer in 
a comprehensive way, which includes mechanisms, treat-
ments, biomarkers, interventions, clinical trials and so on, 
hoping to help researchers and clinicians develop new 
cancer diagnosis and treatment strategies.

Gut Microbiota in a Healthy State
Gut Microbiota
The microbial community in the gastrointestinal ecosys-
tem is termed the gut microbiota.10 The gut microbiota 
consists of >10×1014 microbes, including bacteria, viruses, 
fungi, and archaea. Bacteria constitute the majority of the 
gut microbiota; the dominant species are fairly stable, 
representing four main phyla, namely Bacteroidetes, 
Firmicutes, Actinobacteria, and Proteobacteria.11 

Notably, there are significant differences in bacterial com-
position between the small intestine and the colon. Due to 
host features such as mucus, pH, bile acids, regional oxy-
gen levels, gastrointestinal transport time, and immune 
factors, as well as microbial community dynamics, the 
diversity and abundance of the gut microbiota normally 
increases from proximal to distal. The jejunal microflora is 
estimated to be 104–107 CFU/mL, and is mainly repre-
sented by Firmicutes, but also includes Actinobacteria, 
Proteobacteria, and Bacteroidetes. The ileum microbiota 
is mainly a facultative and compulsory anaerobes that 

include Bacteroides, Enterobacteria, Clostridium, 
Enterococcus, Veillonella, and Lactobacillus. The micro-
bial load is approximately 103–108 CFU/mL. Colonic 
microbiota can reach 1010–1012 CFU/mL and includes 
Firmicutes, Bacteroidetes, Lachnospiraceae, 
Bacteroidaceae, and Prevotellaceae, as well as strict colo-
nic anaerobes, such as Eubacteria, Clostridium, and 
Roseburia.12–14 Overall, the structure of the gut microbiota 
is determined by host genetics, initial microbial exposure, 
sex, diet, environmental factors, stress, and disease.15,16 

Polysaccharides (in the form of plant fibers) and their 
metabolites and short-chain fatty acids (SCFAs) have 
a positive influence on the of the gut microbiota.17,18

A Balanced Gut Microbiota is Critical for 
the Host
The establishment of an intestinal microbial ecosystem 
consisting of a variety of native symbiotic species is cru-
cial for the host.19 Colonization of the intestine by micro-
organisms synchronizes with maturation of the immune 
system and plays a fundamental role in the induction, 
training, regulation, and function of the host immune 
system.20 Throughout the lifetime of an individual, the 
peaceful co-existence of intestinal symbiont microorgan-
isms is destroyed, leading to serious immune deficiency 
and increased risk of disease.21 Moreover, the gut micro-
biota regulates a series of processes at the cellular and 
molecular levels, leading to the maturation, differentiation, 
and proliferation of the intestinal mucosa.22 Interestingly, 
studies have determined that the gut microbes also play 
a significant role in processes of neurogenesis, such as 
blood–brain barrier formation, myelination, neurogenesis, 
neurotransmitter production, and microglial cell matura-
tion, as well as regulating numerous aspects of animal 
behavior.23,24 Lactobacillus and Bifidobacterium produce 
the main inhibitory neurotransmitter, aminobutyric acid, 
by metabolizing glutamate, the most abundant free amino 
acid and excitatory neurotransmitter in the brain.25

Gut microbiota can also regulate host physiological 
functions by metabolizing dietary components. Butyric 
acid is mainly generated by Faecalibacterium prausnitzii 
(F. prausnitzii), Roseburia intestinalis, Eubacterium rec-
tale, and Roseburia spp. by fermentation of dietary fiber.26 

It provides energy to colon cells, exhibits anti- 
inflammatory properties, induces cell differentiation and 
apoptosis of cancer cells, protects histone hyperacetylation 
activity, and inhibits angiogenesis.27,28 Biogenic amines 
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are another class of metabolites produced by gut microbes 
through the decarboxylation of dietary amino acids. These 
metabolites play a role in DNA stabilization and act as 
precursors of hormones, alkaloids, proteins, and nucleic 
acids.29 Furthermore, the gut microbiota is a major donor 
of acetyl groups in acetylation reactions, responsible for 
regulating gene expression.27

The human gut microbiota can synthesize at least eight 
B vitamins. Vitamin B12, which has a complex structure, 
is produced only through bacterial fermentation, while the 
absorption of vitamin K also requires the transformation of 
intestinal bacteria.30

In general, the gut microbiota can metabolize indiges-
tible ingredients in food, synthesize nutrients such as vita-
mins, control energy homeostasis, detoxify metabolites, 
regulate immune responses, promote the development of 
the nervous system, provide signals for epithelial cell 
renewal and maintenance of mucosal integrity, and secrete 
antibacterial products.18

Dysbiosis and Cancer
A balanced gut microbiota benefits host health, while 
ecological imbalance promotes the development of dis-
eases, including cancer.3,31 Dysbiosis can be caused by 
a variety of factors, such as diet, antibiotics and stress.32 

It is usually manifested by loss of symbiosis, pathogen 
proliferation, and/or reduction in alpha diversity, resulting 
in a shift of the metabolome to an inflammatory state 
conducive to carcinogenesis.32,33 Moreover, dysbiosis ren-
ders individuals vulnerable to opportunistic pathogens that 
can release toxins, resulting in genomic instability and 
potentially carcinogenic effects.34,35 It has been confirmed 
that Streptococcus bovis, Helicobacter pylori, 
Fusobacterium nucleatum (F. nucleatum), and 
Enterococcus faecalis (E. faecalis) are related to 
cancer.36–38

Gut Microbiota in the Context of Cancer
Notably, researchers have reported significant changes in 
gut microbes in various types of cancer. Jing et al reported 
that, compared with healthy controls, the proportions of 
Firmicutes and Proteobacteria were increased in patients 
with thyroid carcinoma, whereas that of Bacteroidetes was 
decreased. At the genus level, the abundance of 
Bacteroides megamonas and Trichoricaceae genera was 
decreased in patients with thyroid carcinoma.39 Goedert 
et al reported that the alpha diversity of the gut microbiota 
in postmenopausal women with breast cancer was lower 

than that observed in pairs of healthy controls. Moreover, 
the relative abundance of Clostridiaceae, 
Faecalibacterium and Ruminococcaceae was relatively 
high, whereas that of Dorea and Lachnospiraceae was 
relatively low.40 Vernocchi et al observed that numbers 
of symbiotic bacteria, such as Akkermansia muciniphila, 
Rikenellaceae, Bacteroides, Peptostreptococcaceae, 
Mogibacteriaceae, and Clostridiaceae were reduced in 
patients with non-small cell lung cancer.41 In another 
cohort study of early-stage lung cancer, Proteobacteria, 
including many harmful microorganisms, were signifi-
cantly enriched in cancer groups. Firmicutes and actino-
bacteria, which promote the production of short-chain fatty 
acids and regulate inflammation and tumorigenesis, were 
dramatically reduced. At the genus level, Ruminococcus, 
an uncharacterized genus of Lachnospiraceae and an 
uncharacterized genus of Enterobacteriaceae were 
obviously increased in the cancer group, while 
Veillonella, Faecalibacterium, Bifidobacterium, and 
Streptococcus were markedly enriched in the healthy 
controls.42

In previous gastric cancer (GC) studies, 
Peptostreptococcus stomatis, Dialister pneumosintes, 
Streptococcus anginosus, Parvimonas micra (P. micra), 
Slackia exigua, Clostridium colicanis, and F. nucleatum 
were significantly enriched, whereas Helicobacterium was 
depleted.43–45 A recent study showed that GC patients 
presented notably different gut microbiota from healthy 
controls. At the phylum level, Chloroflexi, TM7, 
Acidobacteria, Actinobacteria, Verrucomicrobia, 
Fusobacteria, Nitrospirae, and Planctomycetes increased 
in the stool of GC patients. At the genus level, 27 genera 
were enriched, including Leptotrichia, Fusobacterium, 
Lactococcus, Prevotella, and Porphyromonas, while 
Megamonas decreased.46 Interestingly, comparing GC 
and CRC, there was no remarkable difference in the bac-
terial diversity between the cancer types. Among the 8 
phyla enriched in GC, 5 phyla were enriched in CRC, 25 
of the 28 genera showed the same trend.46 These results 
indicated that the overlap of dysbiosis in different cancers 
may be a common basis for the occurrence and develop-
ment of various cancers, which points out a new direction 
for further research on the mechanism of cancer. 
Proteobacteria, Synergistetes, and Euryarchaeota were 
abundant in the intestines of patients with pancreatic duc-
tal adenocarcinoma (PDAC). Proteobacteria accounted for 
approximately 50% and 8% of the gut microbiota of 
patients and healthy controls, respectively.47
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In a study of 52 CRC patients and 55 healthy family 
members, metagenomic sequencing showed that compared 
with controls, Coprobacillus, Peptoniphilus, Burkholderia, 
Paracoccus, Synechococcus, Porphyromonas, and 
Cyanothece were significantly enriched in colorectal can-
cer patients. At the species level, patients accumulated 
Clostridium ramosum, Roseburia inulinivorans, 
Porphyromonas gingivalis, Gemella morbillorum, and 
F. nucleatum. In addition, microbial genes were also 
reduced in CRC patients, with 624,404 genes found in 
the control group and only 585,092 genes found in CRC. 
The proportion of amino acid metabolizing bacteria in the 
gut microbiota of patients decreased.48 In 2019, the 
University of Trento analyzed five open datasets and two 
new cohorts, totaling 969 fecal metagenomes, and found 
that the gut microbiota of CRC was more abundant than 
that of the control group, partly because of the expansion 
of oral microbes. F. nucleatum, Porphyromonas asacchar-
olytica, Solobacterium moorei, Peptostreptococcus stoma-
tis, Parvimonas micra, Clostridium symbiosum, 
Streptococcus dysgalactiae, Streptococcus tigurinus, 
Streptococcus gallolyticus, and Gemella morbillorum 
were enriched in patients, while Bifidobacterium catenu-
latum and Gordonibacter pamelae were enriched in the 
healthy control group.49 Kostic et al compared the enrich-
ment of F. nucleatum in the colonic tumor-related micro-
biota of patients with CRC compared with levels recorded 
in adjacent normal mucosa.50 Other researchers found that 
the colonization rate of F. nucleatum in the lumen of 
patients with colorectal adenoma was higher than that 
observed in healthy controls. Furthermore, the coloniza-
tion of F. nucleatum in adenoma was increased compared 
with that noted in adjacent normal mucosa.51 These data 
strongly suggest that F. nucleatum is associated with CRC 
and may play a role in the early stages of disease.52 

Another study involving patients with CRC showed an 
increase in F. nucleatum and Campylobacter and 
a decrease in butyrate-producing bacteria in fecal 
samples.53

The Mechanism of Gut Microbiota 
Promoting the Development of 
Cancer
The occurrence and development of cancer is a complex 
process involving genetic mutations, the tumor microen-
vironment, and inflammatory mediators, in which gut 
microbes play an important role. Herein, we present the 

available evidence and discuss the mechanisms involving 
microorganisms causing cancer from the aspects of meta-
bolism, immunity, inflammation, etc. Various mechanisms 
interact and form a network to jointly promote the occur-
rence and development of cancer. Broadly speaking, 
mainly by affecting host metabolism, cell proliferation, 
inflammatory response, and the immune status, the gut 
microbiota regulates cancers in terms of susceptibility to 
genetic instability, initiation, progression of immune 
responses, comorbidities, and response to treatment.3,54

Increase in Host Cell Mutagenesis
At present, it is known that the gut microbiota produces 
genotoxins, free radicals, and reactive oxygen species 
(ROS) that can damage host DNA, alter cell cycle control, 
accelerate cell proliferation, and disrupt the normal pro-
cess of controlled cell death, thereby increasing the risk of 
cancer.55 For example, Helicobacter pylori colonizing the 
gastric mucosa produces a cytotoxin-associated gene 
A (CagA) oncoprotein, which leads to reprogramming of 
gastric epithelial cells, thus participating in the pathogen-
esis of gastric cancer.37 Porphyromonas gingivalis secretes 
peptide-arginine deaminase that may induce p53 and 
KRAS point mutations, which are major genetic drivers 
of pancreatic cancer.56 Colibactin produced by polyketide 
synthetase-positive Escherichia coli (E. coli) and 
Enterobacteriaceae breaks the double-strand DNA of 
host cells, while Porphyromonas spp produce ROS that 
damage the host DNA.57,58 Direct interactions of bacterial 
structural components and their metabolites (eg, hydrogen 
sulfide and para-cresol) with epithelial mesenchymal cells 
and hematopoietic cells may exert direct genotoxic effects 
and promote cancer progression.59,60 Numerous microbes, 
including B. fragilis, F. nucleatum, and E. faecalis, pro-
duce toxins that alter the normal adhesion between cells, 
thereby facilitating the transformation of resting epithelial 
cells into moving mesenchymal cells. Of note, epithelial-to 
-mesenchymal transformation is a key step in the transfor-
mation of benign tumors to malignant tumors.55 

F. nucleatum is often enriched in patients with CRC and 
is related to DNA methylation in inflammatory colon 
mucosa.61

Promotion and Maintenance of a 
Pro-Inflammatory Environment
It is well-established that inflammation is involved in 
carcinogenesis through mutations, genomic instability, 
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and epigenetic modifications.62 For instance, chronic 
inflammation caused by infection with Helicobacter pylori 
leads to abnormal DNA methylation in gastric mucosa and 
activation-induced cytidine deaminase through the activa-
tion of nuclear factor-κB (NF-κB) in gastric epithelial 
cells, thereby leading to mutations.63 A large number of 
studies have shown that the gut microbiota plays an impor-
tant role in the inflammatory response. For instance, 
Lactobacillus, Proteobacteria, Clostridium difficile, 
Enterococci, and B. fragilis, can impact on different 
immune cells and play pro- and anti-inflammatory 
roles.64 Microorganisms activate the inflammatory 
response, increase the recruitment of pro-inflammatory 
cells, and the secretion of cytokines, enhance oxidative 
stress, change energy dynamics, and lead to DNA damage. 
These effects eventually result in molecular changes and 
tumor transformation, as well as promote tumor growth, 
invasion, and metastasis.65 Liam et al colonized APCMin 

mice with enterotoxigenic B. fragilis (ETBF) and found 
that the B. fragilis toxin (BFT) triggered a multistep 
inflammatory cascade in colic epithelial cells (CECs).35 

This cascade is required to promote carcinogenesis 
through the interleukin-17 receptor (IL-17R), NF-κB, and 
STAT3 signaling pathways. Notably, the activation of IL- 
17-dependent NF-κB in CECs induces proximal-to-distal 
mucosal gradients of C-X-C chemokines, including 
C-X-C motif chemokine ligand 1 (CXCL1).66 This med-
iates the recruitment of immature myeloid cells expressing 
the C-X-C motif chemokine receptor 2 (CXCR2) and is 
parallel to ETBF-mediated distal colonic tumorigenesis.66 

Thus, BFT induces pre-oncogenic signaling from CEC to 
the mucosal T-helper 17 (Th17) response and selectively 
activates NF-κB in the distal colon CECs, which together 
trigger myeloid cell-dependent distal colon 
tumorigenesis.66

Using a hormone receptor-positive (HR+) breast cancer 
mouse model, Buchta Rosean et al found that a pre- 
established symbiotic disorder leads to enhanced tumor 
cell spread, and that the symbiotic disorder leads to 
increased inflammation and infiltration of myeloid cells 
in the breast.67 These results suggest that the symbiotic 
disorder has a sustained effect on the spread of HR+ breast 
cancer, and that the increased spread in mice with symbio-
tic disorder is independent of tumor growth dynamics.67 

Moreover, this evidence demonstrated that dysbiosis is 
a pre-existing host-intrinsic regulator of tissue inflamma-
tion, myeloid recruitment, fibrosis, and tumor cell prolif-
eration in HR+ breast cancer.67

Intestinal bacteria can also upregulate the levels of toll- 
like receptor (TLR), activate the cancer-related inflamma-
tory signaling pathway NF-κB, lead to the release of IL-6, 
IL-12, IL-17, IL-18, and tumor necrosis factor (TNF) α, to 
trigger persistent inflammation in the cancer microenvir-
onment, which is vital in the regulation of inflammation 
and cancer-related processes.68,69 In a cancer setting, 
inflammatory markers are responsible for cell prolifera-
tion, invasion, angiogenesis, and suppression of certain 
immune functions.70

Disruption of Immune Stability
Under pathological conditions, when the intestinal micro-
biota is disturbed or the intestinal mucosal barrier is dis-
rupted, microbial-related molecules stimulate 
macrophages and dendritic cells to produce pro- 
inflammatory cytokines. Subsequently, these cytokines 
activate adaptive immune cells and lead to the disruption 
of immune stability.71 Dysbiosis may also lead to the 
inappropriate release of cytokines (eg, IL-17 and IL-22) 
from innate lymphoid cells, resulting in chronic inflamma-
tion and susceptibility to cancer. Furthermore, abnormal 
innate lymphoid cell responses to dysbiosis may also 
influence T cell responses, further promoting chronic 
inflammation and cancer.72

F. nucleatum stimulates anti-inflammatory myeloid 
cells, interferes with natural-killer and T cells functions 
by activating T cell immunoreceptor with Ig and ITIM 
domains (TIGIT) and CEA cell adhesion molecule 1 
(CEACAM1) inhibitory receptors, and induces Wnt/cate-
nin (catenin beta 1) modulator annexin A1, thereby creat-
ing a tumor-promoting immunosuppressive environment. 
This process leads to the initiation and progression of 
CRC.73–75 B. fragilis drives the differentiation of IL10- 
secreting regulatory T (Treg) cells. Treg cells impair anti- 
cancer Th1 immunity and participate in the progression 
and aggressiveness of gliomas.70 The gut microbiota can 
also induce the expression of immunosuppressive chemo-
kines in liver cells, leading to the accumulation of mye-
loid-derived suppressor cells (MDSCs) and ultimately 
promoting the development and growth of 
cholangiocarcinoma.76 Molecular patterns associated with 
pathogenic microorganisms are also recognized by innate 
immune system cells through pattern recognition recep-
tors, including TLRs and NOD-like receptors, chronic 
activation of TLRs, promotion of cancer cell proliferation, 
and an increase in invasion and metastasis by regulating 
cytokines, metalloproteinases, and pro-inflammatory 

Cancer Management and Research 2021:13                                                                                     https://doi.org/10.2147/CMAR.S328249                                                                                                                                                                                                                       

DovePress                                                                                                                       
8285

Dovepress                                                                                                                                                            Zhou et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


integrins.77 For example, in the early stages of pancreatic 
tumors and in established PDAC, microbial-induced TLR 
activation suppresses both the innate and adaptive immu-
nity of the host.78,79 Specifically, in addition to inducing 
the transformation of pancreatic cancer stellate cells into 
fibrocytes, TLR9 also attracts immunosuppressive Treg 
cells and MDSCs into the tumor environment.80 

Lipopolysaccharide and TLR4 ligation through dendritic 
cell-dependent Th2 immune response aggravates pancrea-
tic inflammation and expedites the development of pan-
creatic tumors. Microbial-mediated ligation of TLR2 and 
TLR5 limits T-cell-mediated immunity by inducing 
a macrophage immunosuppressive phenotype.28

Metabolic Changes
Gut microorganisms are involved in a series of metabolic 
activities of the host, and dysbiosis may alter the expres-
sion of lipid metabolism-related microRNAs, leading to 
obesity and cancer.81 It has been hypothesized that dysre-
gulation of the microbiome and microRNAs may be 
involved in the pathogenesis of cancer in the central ner-
vous system through the microbial-enteric-brain axis.82 

Furthermore, during cancer development, gut microbes 
may undergo metabolic reprogramming. For example, 
Zheng et al in a study of early non-small cell lung cancer 
found that 19 of 328 metabolic pathways detected were 
enriched in the cancer group, including steroid biosynth-
esis, cell antigens, transcription-related proteins, the ubi-
quitin system, and bile secretion. However, 12 pathways 
related to bacterial chemotaxis, G protein-coupled recep-
tors, bacterial motility proteins, flavone, flavonol biosynth-
esis and apoptosis were all reduced.42 Microbial 
metabolites or co-metabolites produced by host and micro-
bial contributions can cause inflammation and affect the 
balance of cell proliferation and death in tissues.83 Several 
bacterial metabolites (eg, SCFAs or secondary bile acids) 
and microbial-related molecular patterns (eg, lipopolysac-
charides and peptidoglycan) influence host nutrient uptake, 
metabolism, intestinal barrier, and systemic inflammatory 
responses.84 For example, members of Clostridium bac-
teria XI and XIVa convert primary bile acids (deoxycholic 
acid and cholic acid) into secondary bile acids (lithocholic 
acid and deoxycholic acid), which exert potential DNA 
damage and carcinogenic effects.85 Lithocholic acid and 
deoxycholic acid, trigger colon cancer development 
through the regulation of M3R and Wnt/β-catenin signal-
ing in order to convert normal colon epithelial cells con-
vert into CSC.86 Clostridium IV and XIVa, which include 

the genera Eubacteria, Rosa, and Cofaecium, metabolize 
dietary fiber and polysaccharides in the colon to produce 
acetic acid, which is converted to acetyl-coenzyme 
A (acetylCoA) by acetylCoA synthetase short-chain 
family member 2 expressed by cancer cells.87 This process 
stimulates the anabolic response of cancer cells and sup-
ports the growth of numerous types of cancer, including 
glioblastoma, breast cancer, ovarian cancer, and lung 
cancer.88–90

Hydrogen sulfide (H2S) is mainly produced by the 
colo-intestinal bacteria, such as E. coli and Salmonella, 
by degrading sulfur-containing amino acids. Studies have 
reported the anti-inflammatory activity of H2S in the gut, 
while others have shown harmful effects, suggesting that 
these results may be related to the environment.91 H2 

S exhibits deleterious reactions in intestinal epithelial 
cells. Relative levels of H2S in the colon directly regulate 
oxidative phosphorylation in epithelial cells and elevated 
H2S levels inhibit the electron transport chain complex 
IV.92 In addition, H2S induces genotoxic damage in epithe-
lial cells, inhibits the metabolism of SCFAs, and induces 
rupture of the mucous barrier, thereby exposing the con-
tents of the lumen to the underlying tissues.93

A better understanding of the mechanism through 
which specific microbial pathogens cause specific carcino-
genic effects may lead to the discovery of valuable bio-
markers for the diagnosis and treatment of cancer.

Biomarkers
Screening and early identification of cancer correlates with 
patient outcomes. For example, the incidence and mortal-
ity of colorectal cancer can be significantly reduced by 
screening for precancerous lesions such as adenomatous 
polyps or early colorectal cancer and appropriate treat-
ment, and the 5-year relative survival rate can reach 
about 90%.94,95 As mentioned earlier, significantly differ-
ent gut microbiota have been observed in patients with 
various types of cancer versus healthy individuals, and 
these differences may permit the use of specific bacteria 
as biomarkers.

In one study, bacterial DNA was extracted from the 
feces of 31 patients with early-stage breast cancer. Real- 
time quantitative polymerase chain reaction was used to 
amplify bacterial community specific 16S rRNA gene 
sequences. The results showed that the percentages and 
absolute numbers of Clostridium coccoides, F. prausnitzii, 
and Blautia differed significantly according to the clinical 
staging and tissue prognosis grading.96 Among patients 
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with different histoprognostic grades of breast cancers, the 
abundance of Blautia spp. bacteria increased markedly in 
parallel with grade. The total numbers of Bacteroidetes, 
Clostridium coccoides cluster, Clostridium leptum cluster, 
F. prausnitzii, and Blautia sp. were significantly higher in 
clinical stage groups II/III than at clinical stages 0/I, with 
higher percentages observed for Clostridium leptum 
cluster.30

Jia et al found that patients with intrahepatic cholan-
giocarcinoma (ICC) had the highest α-diversity and β- 
diversity of intestinal flora and increased abundance of 
Lactobacillus, Actinomyces, Peptostreptococcaceae, and 
Alloscardovia versus those with hepatocellular carcinoma 
or cirrhosis and healthy individuals.97 The plasma-fecal 
ratios of glycoursodeoxycholic acid and tauroursodeoxy-
cholic acid (TUDCA) were significantly increased in 
patients with ICC. Moreover, the combination of 
Lactobacillus and Alloscardovia was positively correlated 
with the plasma-fecal ratio of TUDCA, which could dis-
tinguish ICC from hepatocellular carcinoma, liver cirrho-
sis, and healthy individuals.97 Vascular invasion (VI) often 
leads to poor prognosis in patients with ICC. Compared 
with ICC patients without VI, those with VI had a richer 
Ruminococcaceae family, increased plasma levels of IL-4 
and decreased plasma levels of IL-6 and chenodeoxycholic 
acid. In patients with ICC, the plasma levels of taurocholic 
acid were positively correlated with those of IL-4. In two 
mouse tumor models, plasma TUDCA was inversely asso-
ciated with the abundance of Pseudoramibacter and survi-
val in patients with ICC; however, it had no effect on 
tumor size.97

In a case-control study of CRC, polymerase chain 
reaction was performed on fecal samples obtained from 
60 patients and 60 healthy volunteers using neu and BFT 
(BFT-1, BFT-2, and BFT-3 are enterotoxin isotypes) as 
marker genes.98 The frequency of B. fragilis in the CRC 
and control groups was 58.3% and 26.6%, respectively. 
The detection rate of the BFT gene in patients with CRC 
was significantly higher than that observed in the control 
group. Furthermore, the presence of the BFT gene was 
significantly higher in patients with CRC stage III than 
in those with stage II.98 The detection rate of the enter-
otoxin isotype BFT-2 was higher in patients with CRC 
versus healthy controls. This evidence suggested that the 
detection of ETBF may be a potential marker for the 
diagnosis of CRC.98

In two recent cohort studies, Löwenmark et al found 
that the abundance of P. micra was significantly higher in 

fecal samples obtained from patients with CRC than in 
those collected from controls.99 In the Faecal and 
Endoscopic Colorectal Study in Umeå, Sweden (FECSU) 
cohort, the sensitivity and specificity of P. micra in feces 
for the detection of cancer were 60.5% and 87.3%, respec-
tively. In the U-CAN cohort, these values were 56.7% and 
92.6%, respectively.99 Moreover, added microbial markers 
F. nucleatum, clbA + bacteria, and fecal hemoglobin 
enhanced the sensitivity of the assay; nevertheless, the 
specificity was reduced. Therefore, P. micra, as 
a candidate microbial marker for non-invasive screening, 
had the potential to improve diagnostic performance.99

Clinical Application of 
Microorganisms
In 1928, Fleming accidentally discovered penicillin (a 
product of mold that has antibacterial effects) in an experi-
ment involving Staphylococcus bacteria.100 This discovery 
introduced a new era of using microbes against disease. 
With the development of science and technology, the use 
of microorganisms or their metabolites to treat diseases 
was established. For example, fecal microbiota transplan-
tation (FMT) is a common treatment for recurrent 
Clostridium difficile colitis with a good safety profile.101 

Intrabladder injection of Bacillus Calmette–Guerin has 
also become the standard treatment for moderate- to high- 
risk non-muscularly invasive bladder cancer.102 In the 
following section, we focus on the influence of gut micro-
biota on the efficacy of treatment against cancer and its 
utility in this setting.

Gut Microbes Influence the Treatment of 
Cancer
In the course of cancer treatment, the gut microbiota 
regulates the efficacy and toxicity of chemotherapy 
through various mechanisms, such as translocation, 
immune regulation, metabolism, enzyme degradation, 
and diversity reduction; these mechanisms are collectively 
referred to as the timer mechanism framework.103 For 
example, cyclophosphamide damages the intestinal barrier 
and increases intestinal permeability. Enterococcus hirae 
is transferred from the small intestine to secondary lym-
phatic organs and increases the intratumoral CD8/Treg 
ratio.104 Barnesiella testinihominis accumulates in the 
colon, increases the number of INF-γ-producing γδTcells 
in the tumor bed, shifts the immune system to a pro- 
inflammatory state, and synergically enhances the efficacy 
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of cyclophosphamide.104 The Th17 response is reduced in 
sterile or antibiotic-treated tumor-bearing mice with can-
cers resistant to cyclophosphamide.105 Oxaliplatin exerts 
its anti-cancer activity through ROS. Intestinal microor-
ganisms stimulate bone marrow cells to produce ROS.106 

In the absence of intestinal microorganism involvement, 
the production of microbial-dependent ROS is reduced, 
eliminating the cytotoxicity of oxaliplatin in mice and 
preventing the killing of cancer cells.107 Moreover, 
F. nucleatum promotes resistance to oxaliplatin and 
5-fluorouracil (5-FU) by coordinating TLR to activate 
miRNA expression and the autophagy network.38 

Bacteroides and Clostridium, which produce β- 
glucosidase, are associated with the accumulation of diar-
rhea-inducing metabolites induced by irinotecan and 5-FU 
chemotherapy, while Raoultella planticola effectively 
inactivates doxorubicin by it deglycosylation to 7-deoxy-
doxorubicinol and 7- deoxydoxorubicinolone under anae-
robic conditions.108,109 Inactivation of gemcitabine, 
a chemotherapy drug for PDAC, depends on the expres-
sion of a specific subtype of the bacterial enzyme cytidine 
deaminase, which is common in gamma-proteobacteria.110

In addition to chemotherapy, the gut microbes also 
influence the effectiveness of radiation therapy. 
Researchers used vancomycin to treat mouse models of 
melanoma and lung cancer expressing the E6/7 of human 
papillomavirus and cervical cancer. The changes in gram- 
positive intestinal flora reshaped the tumor microenviron-
ment, increased the antigen presentation of draining lymph 
nodes, and improved the anti-tumor effect of 
radiotherapy.111 Indole-3-propionic acid (IPA) is derived 
from intestinal microorganisms and is a tryptophan dea-
mination product with intracellular signaling activity.112 

Xiao et al found that IPA exerted a radio-protective effect 
on mice, which was attributed to the lower level of sys-
temic inflammation, reduced myelosuppression, restora-
tion of hematopoietic organ function, and improvement 
of gastrointestinal function and epithelial integrity in 
mice treated with IPA after irradiation.113 Ferreira et al 
reported that enteropathy in patients who received pelvic 
radiotherapy was related to the composition of intestinal 
microbes, with increased abundance of Clostridium, 
Rosesporium, and Phascolarctobacterium in patients who 
had toxic reactions.114

The application of immune checkpoint inhibitors 
represents an important advance in cancer therapy. 
Immune checkpoint inhibitors, which bind to immune 
checkpoint proteins to relieve tumor-induced inhibition 

of T cell function, have been approved for the treatment 
of a variety of malignancies, including melanoma, lung 
cancer, stomach cancer, Hodgkin’s lymphoma, ovarian 
cancer, and more.115 Studies using mouse tumor models 
have shown that the gut microbiota composition is vital 
for promoting anti-tumor immune responses to anti- 
cytotoxic T-lymphocyte-associated protein 4 (anti- 
CTLA-4) and anti-programmed cell death-ligand 1 (anti- 
PD-L1) monoclonal antibodies.116,117 Several mouse 
models of melanoma have shown that the effectiveness 
of programmed cell death protein 1 (PD-1) inhibitors is 
reduced under aseptic conditions and increased in the 
presence of Bifidobacterium.118 This activates antigen- 
presenting cells, thereby promoting the accumulation of 
activated CD8+ T cells in the tumor 
microenvironment.117 The efficacy of PD-1/PD-L1 
blockade in non-small cell lung cancer, renal cell carci-
noma, and urothelial carcinoma was partially offset by 
bacterial ablation.119 Another study found that antibiotic- 
induced dysbiosis was associated with a reduced PD-1 
blocking effect and poor clinical efficacy. The survival 
time of anti-PD-1 monoclonal antibodies was positively 
correlated with the relative abundance of Akkermansia, 
one of the most abundant bacteria in the ileum of healthy 
individuals.120 In addition, transfer of intestinal microbes 
in patients with cancer who had responded to immu-
notherapy and oral supplementation of Akkermansia 
improved the efficacy of immunotherapy.120 

Furthermore, in a study of tumor-bearing mice, bacterial 
ablation significantly reduced the therapeutic efficacy of 
CTLA-4 blocking, while the use of B. fragilis showed 
potential to overcome resistance to anti-CTLA-4 immu-
notherapy in germ-free mice.120

A study of 39 patients with metastatic melanoma who 
underwent immune checkpoint therapy also showed 
a significant correlation between the microbial content 
and response to immunotherapy.121 Bacteroides thetaio-
taomicron, F. prausnitzii, and Holdemania filiformis were 
abundant in the intestines of responders to cancer 
immunotherapy.50 Transfer of the feces of patients with 
melanoma into mice demonstrated that FMT could 
improve the effectiveness of immunotherapy and, thus, 
optimize existing therapies.118

With further research into the mechanisms of these 
relationships, the composition of the gut microbiota is 
a potential biomarker for predicting individual therapeutic 
outcomes and a target for improving these outcomes.122
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Manipulation of Gut Microbes to 
Interfere with Cancer
Scientists have proposed several ways to take advantage of 
gut microbes for the prevention and treatment of cancer, as 
well as the mitigation of the toxic side effects of che-
motherapy and radiotherapy. These approaches to achiev-
ing better clinical outcomes for patients with cancer 
undergoing immunotherapy include dietary modifications 
and use of probiotics, selected antibiotics, and FMT 
(Table 1).

Studies have shown that a reduction in the consump-
tion of animal fat reduced the abundance of harmful 
Bacteroidetes species, while a high-fiber diet increased 
the number of microorganisms producing SCFAs, such as 
Eubacterium rectale, Roseburia species, and 
F. prausnitzii.123 High consumption of whole grains was 
associated with an increase in the number of SCFA- 
producing microorganisms (eg, Roseburia, Lachnospira) 
and a decrease in pro-inflammatory microorganisms (eg, 
Enterobacteriaceae). Consumption of fermented foods 
may also contribute to a protective metabolic environment 
due to their probiotic content, particularly Lactobacillus 
casei CRL431.124

Probiotics can prevent the proliferation of pathogenic 
bacteria, regulate gut microbiota and metabolism, maintain 
the integrity of intestinal barrier, reduce intestinal inflam-
mation, enhance immune response, bind or inactivate car-
cinogens, so as to protect against tumors.125,126 For 
example, Lactobacillus acidophilus and Bifidobacterium 
bifidum both strengthen the intestinal epithelial tight junc-
tion barrier and prevent against intestinal inflammation, 
and the former was induced in TLR-2 dependent and 
a strain-specific manner, while the latter was NF-κB inde-
pendent in targeting the TLR-2 pathway.127,128 In addition, 
Parisa et al using in vivo and in vitro studies that bifido-
bacterium inhibits CRC by down-regulating HER-2, 
EGFR, and PTGS-2 (COX-2).129 Chou et al used azoxy-
methane/dextran sulfate sodium to induce colitis- 
associated CRC in ICR mice. After 14 weeks of treatment 
with Lactobacillus fermentum V3 (1´108 CFU/d) (5 days/ 
week, once a day), Compared with the control group, the 
levels of lactobacillus in feces were significantly 
increased, and the abundance of harmful bacteria, 
Bacteroides and Akkermansia, was markedly decreased. 
Pro-inflammatory factors such as IL-1α, IL-1β, and IL-6 
were dramatically reduced. The infiltration of CD68+ 
macrophages in tumors was reduced, and tumor growth 

was observably inhibited.130 More recently, Chung et al 
synthesized stable synthetic probiotics using Pediococcus 
pentosaceus and P8 therapy protein that ameliorated 
azoxyMethane and Dextran sodium sulfate-induced coli-
tis-associated CRC impaired flora, while tumor growth and 
tumor volume were significantly inhibited.131 

Furthermore, Lactobacillus kefiri LKF01 is safe and effec-
tive in preventing severe diarrhea in cancer patients receiv-
ing 5-FU or capecitabine-based treatment.132

Prebiotics are usually fibers or polyphenols that cannot 
be digested by the host and are selectively used by gut 
microbes to produce health benefits.133 Common prebio-
tics include fructose oligosaccharide, inulin, and galactose 
oligosaccharide, which in high doses can increase the 
abundance of Lactobacillus and Bifidobacterium.133 In 
a mouse model of melanoma, supplementation with inulin 
or mucin enhanced anti-tumor immune activity through 
significant changes in intestinal flora, thereby inhibiting 
tumor growth.134 In addition, inulin may limit the growth 
of colon tumors.29 In mice fed with inulin, the growth of 
colon cancer was inhibited and Akkermansia muciniphila 
was significantly enriched. Moreover, Akkermansia muci-
niphila was also associated with a therapeutic response to 
anti-PD-1/PD-1 immunotherapy.29,120

Intriguingly, studies have shown that exercise can inde-
pendently alter the gut microbiome. Among premenopau-
sal women, those performing 150 min of moderate aerobic 
exercise per week (in line with the recommendations of 
the World Health Organization) had higher levels of 
Akkermansia muciniphila, F. prausnitzii, and Roseburia 
hominis than those who were sedentary. These species 
play health-promoting roles, such as maintaining the 
intestinal barrier.135

In FMT, the functional flora in the feces of healthy 
individuals is transplanted into the gastrointestinal tract of 
patients to reconstruct the new intestinal flora and treat 
intestinal and extraenteral diseases. As an effective means 
for reconstructing the intestinal flora, FMT has been used 
in the treatment of and exploratory research on infection 
with Clostridium difficile, inflammatory bowel disease, 
obesity, and other bacteria-related diseases.2,136,137 

Furthermore, it is regarded as a breakthrough in medical 
research. The safety profile of FMT has also been demon-
strated in a number of studies. In an academic medical 
center, Navalkele et al performed a retention enema for 
fecal microbiota transplantation in 47 patients with recur-
rent Clostridioides difficile infections, including 17 immu-
nocompromised patients, which proved safe and 
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effective.138 In 2017, a male patient with Philadelphia- 
positive acute lymphoblastic leukemia had a serious infec-
tion (β-lactamase-producing E. coli, Clostridium difficile, 
and carbapenemase-producing Enterobacteria) that 
occurred before preparation for hematopoietic stem cell 
transplantation; the symptoms of the infection improved 
after undergoing FMT.139

Currently, research is focused on a more targeted 
approach, namely the precise adjustment of the gut micro-
biota. For instance, this approach involves the development 
of a drug that specifically targets Fusobacterium, the pro-
duction of a vaccine, or the use of phage infection to pre-
cisely destroy this harmful microorganism.118 Some 
researchers are concerned that toxic microbes may pass 
through the screening process. Therefore, they are focusing 
on well-characterized and laboratory-grown microbial for-
mulations that use properly designed combinations of bac-
teria. In addition to their specific safety advantages, these 
microbial formulations can also be modified and extended 
by evaluating performance and other indicators.140

Prospects and Challenges
Over the years, numerous studies have shown that the gut 
microbiota is inextricably linked to cancer. Overall, 
researchers have found significant changes in the gut 
microbiota of patients with various cancers, in which 
specific bacteria and/or microbiota characteristics may 
serve as biomarkers for cancer screening and prognosis 
prediction. The gut microbiota influences the occurrence 
and development of cancer through mutation, metabolism, 
immunity, and other pathways. Regulating gut microbes 
through diet, probiotics, FMT, and more can influence 
cancer and response to treatment. With the development 
of metagenomics and metabolomics deep sequencing tech-
nology, and the establishment of multidisciplinary colla-
borative networks, research on the gut microbiota is 
continuously expanding. This lays a solid foundation for 
investigators to better understand the composition and 
function of this complex ecosystem. Meanwhile, decoding 
the relationships among intestinal flora, metabolism, 
immune system, cancer progression, and response to treat-
ment will deepen the current understanding of the mechan-
ism of cancer development.

Despite intensive efforts, there are numerous chal-
lenges to overcome. Most experts acknowledge that the 
causal relationship between the human microbiome and 
cancer remains to be determined. Current microbiome 

studies lack prospective cohort designs. Hence, it is 
impossible to determine the role of the gut microbiota 
in the initiation and development of diseases. 
Meanwhile, different geographic populations exhibit dif-
ferent microbial compositions, the fecal, luminal, and 
mucosal microbiota vary greatly, and many intestinal 
bacteria are not culturable.141,142 Microbiome research 
studies have a high degree of heterogeneity in terms of 
descriptive methods, techniques used, depth of classifi-
cation, and lack of information on confounders. 
Therefore, standardization of microbiome research meth-
ods (from sample collection to bioinformatics analysis) 
is urgently needed to improve the comparability of find-
ings. Furthermore, current studies are not characterized 
by sufficiently high resolution to identify individual 
microbial species or communities that are carcinogenic 
and tumor suppressing. Thus, these investigations are 
frequently limited to recognizing associations between 
diseases and phyla and genera.143 In addition, although 
probiotics are generally considered safe, sepsis has been 
observed in severely immunocompromised individuals 
following supplementation with Bacillus subtilis, as 
well as in critically ill patients who received 
Lactobacillus rhamnosus GG.144 Therefore, the safety 
of usage of live bacteria for the treatment of cancer 
warrants further investigation. Finally, numerous experi-
ments reported thus far were conducted on animals; 
hence, we should be cautious in extrapolating these 
results to humans.

Screening of specific gut microorganisms from differ-
ent cancers as biomarkers to assess the risk and/or extent 
of disease in patients, as well as develop new, simple, and 
highly sensitive non-invasive tests has shown great poten-
tial. The prevention of cancer by fine-tuning the gut micro-
biota may be another adjuvant or primary therapy with 
great potential after surgery, radiotherapy, chemotherapy, 
or targeted therapy, paving the way for improved outcomes 
in such patients.
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