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Abstract: Pancreatic cancer, with high morbidity and mortality rates, is one of the most 
malignant tumors worldwide. Despite extensive research, the prognosis remains poor. 
Autophagy, a lysosomal-mediated, highly conserved degradation process that removes 
abnormal proteins and damaged organelles from the body, is upregulated in pancreatic ductal 
adenocarcinoma. Based on differences in the tumor microenvironment and tumor stage, the 
functions of autophagy in the pathophysiology and treatment of pancreatic cancer differ. In 
the initial phase, autophagy inhibits the transformation of precancerous lesions to cancer. 
However, in the progressive stage, autophagy promotes tumor growth. Autophagy is also one 
of the main mechanisms of drug resistance during treatment. Here, we describe the role of 
autophagy in pancreatic cancer progression and discuss relevant treatment strategies for this 
disease. 
Keywords: pancreatic ductal adenocarcinoma, cell growth, migration, tumor 
microenvironment, therapy

Introduction
Pancreatic ductal adenocarcinoma (PDAC) originates from malignant pancreatic 
acinar epithelial cells and is the most common pancreatic cancer. Globally, 
PDAC is the twelfth most common malignant tumor and the seventh leading 
cause of cancer-related deaths, with a 5-year survival rate of only 9%.1 PDAC 
metastasizes early and progresses rapidly; symptoms are irregular. PDAC is 
typically diagnosed during middle or late-stage cancer. Thus, most patients 
have lost the chance of surgical resection, making chemotherapy the main 
treatment for PDAC. However, frequent drug resistance of tumor cells makes 
late chemotherapy less effective than early chemotherapy.2 The oncogene, 
KRAS, and tumor suppressor gene, TP53, are the most frequently altered 
genes in PDAC patients. Despite numerous studies on the therapeutic effects 
of inhibitors of the KRAS pathway, the results are not satisfactory. Therefore, it 
is necessary to further study targeted treatment of PDAC.

Autophagy is one mechanism of resistance in tumor therapy. It can promote cell 
survival in harsh environments, though unregulated autophagy can promote 
apoptosis.4 There are three types of autophagy: macroautophagy, chaperone- 
mediated autophagy, and microautophagy.3 Macroautophagy (hereafter referred to 
as autophagy) is the main autophagy process that is activated during cell nutrient 
insufficiency and hypoxia where it provides cells with metabolites after the encap
sulated cargo is degraded.
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Autophagy plays a complex role in tumor cells; studies 
have shown that autophagy can both inhibit cancer onset 
and promote advanced tumor growth.4 Increasing evidence 
shows that cancer cells are more dependent on autophagy 
than normal cells, and this dependence may be further 
strengthened during the treatment process.5 An increasing 
number of research groups are examining autophagy as 
a target for cancer treatment.

In this review, we introduce autophagy and focus on its 
role in the onset, development, and treatment of pancreatic 
cancer. Research on autophagy is developing rapidly, and 
the knowledge we have gained is not only helpful for us to 
understand the basic molecular mechanism of autophagy, 
but also can provide a basis for clinical decision-making of 
targeted therapy related to autophagy.

Process of Autophagy
Autophagy is a highly conserved cell stress response. 
Dr. Yoshinori Ohsumi discovered the mechanisms that 
regulate autophagy using yeast.6 Five events initiate autop
hagy (Figure 1): (1) initiation, (2) double-membrane 

nucleation and phagophore formation, (3) elongation of 
phagophores and encapsulation of cytoplasmic degrada
tion targets, (4) autophagosome fusion with lysosomes to 
form the autolysosome, and (5) degradation of the auto
lysosome cargo.7

The mammalian target of rapamycin (mTORC1) is 
a serine-threonine kinase responsible for transducing 
autophagy signals;8 mTORC1 binds and phosphorylates 
Unc-51-like kinase 1 (ULK1). When a cell is deprived of 
amino acids, ULK1 is dephosphorylated and initiates 
autophagy; under low ATP conditions, AMP-activated 
protein kinase (AMPK) promotes autophagy.8 In addition, 
suppressed mTORC1 or activated AMPK can transduce 
the downstream pre-initiation complex ULK1/2-Atg13- 
FIP200-Atg101, which initiates autophagy.9

The class III phosphatidylinositol 3-kinase (PtdIns3K) 
complex nucleates autophagosomes; the complex includes 
phosphatidylinositol 3-kinase catalytic subunit type 
(3PIK3C3), phosphoinositide 3-kinase regulatory subunit 
4 (PIK3R4), vesicular protein sorting 34 (VPS34), activat
ing molecule in Beclin1-regulated autophagy protein 1 

Figure 1 Regulation of autophagy signaling pathways. Autophagy is a complex degradation process involving the following key steps: (A) initiation; (B) nucleation; (C) 
maturation; (D) fusion; (E) degradation. During initiation, low ATP, hypoxia, and amino acid deficiency lead to AMPK activation or mTOR inhibition, and the ULK complex 
forms. The ER membrane breaks off to form phagophores. In the starvation state, JNK1-mediated phosphorylation of BCL2 is blocked. BECN1 separates from BCL2 to form 
the Class III PI3K complex. BECN1 in the Class III PI3K complex interacts with the ER and participates in double-membrane nucleation to form a phagophore, which 
contains abnormal proteins and damaged organelles. ATG5 is conjugated with ATG12 and forms a complex with ATG16L, which is involved in phagophore elongation. After 
LC3 processing, it is inserted into the extended phagophore to form a mature autophagosome. Then, the autophagosome fuses with a lysosome to form the autolysosome 
and degrade the contents. 
Abbreviations: AMPK, AMP-activated protein kinase; ATG, autophagy related; TSC1/2, tuberous sclerosis complex subunit 1/2; MTORC1, mechanistic target of rapamycin 
complex 1; RB1CC, retinoblastoma 1 coiled coil; BCL, B-cell lymphoma 2; BECN1, Beclin1; AMBRA1, activating molecule in Beclin1-regulated autophagy; ER, endoplasmic 
reticulum; JNK1, c-Jun N-terminal kinase 1; VPS34, vesicular protein sorting 34; PIK3R4, phosphatidylinositol 3-kinase regulatory subunit 4; PIK3C3, phosphoinositide 
3-kinase catalytic subunit 3; ULK, unc-51-like autophagy activating kinase 1.
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(AMBRA1), Beclin1 (BECN1), and ATG14. BECN1 reg
ulates PtdIns3K complex formation during phagophore 
assembly. B-cell lymphoma 2 (BCL2) prevents BECN1 
from binding to VPS34 and inhibits autophagy. During the 
cell starvation state, JNK1-mediated phosphorylation of 
BCL2 is inhibited, and autophagy is promoted.10 VPS34 
combined with BECN1 phosphorylates phosphatidylinosi
tol (PI) to phosphatidylinositol 3-phosphate (PI3P).11 PI3P 
recruits other ATG proteins and elongates the phagophore. 
The phagophore disassembles if any of these processes are 
inhibited, preventing autophagy.

Two ubiquitin-like (UBL) systems regulate phagophore 
elongation: Atg12-Atg5 UBL and microtubule-associated 
light-chain 3 B (LC3B)-phosphatidylethanolamine (PE) 
UBL12 by E1-E2-E3 tertiary enzyme chain reaction.8 The 
E1-like enzyme Atg7 and the E2-like enzyme Atg10 form 
a covalent bond between Atg12 and Atg5. The Atg12- 
Atg5 conjugate recruits Atg16L1 to form a complex- 
Atg12-Atg5-Atg16L1, which functions as E3-like 
enzymes for LC3B-PE UBLs. LC3 is cleaved by the 
cysteine protease ATG4B to generate LC3B-I. LC3B-1 
then conjugates with the glycine residue on PE. 
A diffuse form of LC3-I is converted into the lipidated 
form LC3-II by the E1-like enzyme ATG7 and the E2-like 
enzyme ATG3.

LC3-II inserted into the phagophore lengthens the 
membrane and forms a bilayer structure in the autophago
some. LC3 is found on both the inner and outer autopha
gosome surface membrane and is recruited into the 
phagophore by Atg5-Atg12.10

Rab7 is a member of the Ras-related protein in the 
brain (Rab) family.13 Rab7 and the homotypic fusion and 
protein sorting (HOPS)/vacuole protein sorting class 
C (Vps class C) complex interact to mediate membrane 
binding and fusion.14 In addition, the pleckstrin homology 
domain-containing family M member 1 (PLEKHM1), 
RAB7 effector, also binds to components of the HOPS 
complex. PLEKHM1 interacts with LC3 /GABARAP 
family proteins, which regulate the fusion of autophago
somes and lysosomes.15 After the autolysosome forms, it 
degrades the materials isolated inside,16 providing cells 
with nutrients to maintain homeostasis. However, the role 
of autophagy in PDAC remains to be further elucidated.

PDAC and Autophagy
Histological and cytological studies have shown that 
autophagy increases when the pancreas is afflicted with 
intravascular pancreatic neoplasia (PanIN).17 In addition, 

PDAC cells have been shown to rely on autophagy to 
obtain nutrients and energy to survive in vitro.18 Here, 
we review the role of autophagy in the onset, develop
ment, and treatment of PDAC.

Role of Autophagy in the Onset of PDAC
PDAC is induced by various factors, including inflamma
tion, gene mutations, and impaired mitochondrial function. 
Here, we review the role of autophagy in the onset of PDAC.

Autophagy regulates inflammation during PDAC 
pathogenesis. Studies have shown that knockout of autop
hagy-related genes (ATG5 or ATG7) or proteins encoding 
lysosomal function LAMP2 leads to severe acinar cell 
degeneration, pancreatic atrophy, fibrosis, and 
inflammation.19 ATG7-deficient mice were found to have 
decreased autophagic flux, increased endoplasmic reticu
lum stress, pancreatic cell degeneration, and acinar-ductal 
metaplasia (ADM) formation compared to the control.20 

ADM is a precursor to pancreatic intraepithelial neoplasia 
(PanIN), a common precancerous lesion of PDAC.21 This 
indicates that autophagy inhibition increases a patient’s 
susceptibility to PDAC.

Mutations in the Kirsten rat sarcoma virus oncogene 
are a major cause of PDAC.22 When the oncogene KRAS 
is activated, the metabolic demands of pancreatic cells 
increase. Overexpressed vacuolar membrane protein 1 
(VMP1) interacts with BECN1 and promotes pancreatic 
cell autophagy to provide nutrients for cell metabolism.23 

Administering chloroquinine, an autophagy inhibitor, was 
found to effectively reverse VMP1 overexpression and 
induce PanIN formation in Pdx1-Cre; KrasG12D; vmp1 
mice.23

Moreover, 75% of human PDAC cells have P53 
deletions.22 Rosenfeldt et al24 found that in KRAS muta
tion-driven PDAC cells, autophagy had both tumor- 
promoting and tumor-inhibiting effects, depending on the 
presence of the P53 gene. They also found that KARS 
mice lacking ATG5 or ATG7 developed low-grade malig
nant peripancreatic lesions, which did not progress to 
high-grade malignant PanIN and PDAC. Conversely, in 
mice with carcinogenic KRAS and P53 deletion, PDAC 
pathogenesis was accelerated. However, Yang et al25 

proved that chloroquine treatment or RNAi inhibition of 
autophagy inhibited PDAC cell growth, independent 
of P53.

The different results may be related to Rosenfeldt’s use 
of the P53 homozygous deletion model. The pancreas in 
these mice develop without functional P53, which is 
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different from the gradual progression from PanIN to 
PDAC in other models and humans. In human PDAC 
cells, there is typically only one deletion of the P53 allele. 
Moreover, inhibiting autophagy prevents oncogenic KARS 
mutations from progressing to PDAC.25 Thus, according 
to the above studies, manipulating autophagy to treat 
PDAC may depend on the KRAS oncogene status.

PDAC cells feature increased mitochondrial destruc
tion compared with normal cells.26 It is essential for cell 
homeostasis to maintain healthy mitochondria, including 
quantity and quality. Therefore, mitochondrial autophagy 
is increased in PDAC cells and it selectively degrades 
damaged mitochondria. Mitochondrial autophagy is regu
lated by PTEN-induced kinase 1 (PINK1), Parkin RBR E3 
ubiquitin-protein ligase (PRKN/PARK2), and BCL2 inter
acting protein 3 (BNIP3L/NIX).26 Xie et al showed that 
PINK1/ PRKN deficiency accelerates the onset of 
PDAC.26 However, KRAS-mediated BNIP3L overexpres
sion can increase the cell’s glucose metabolism and anti
oxidant capacity, promoting PDAC onset (Figure 2).26

In conclusion, autophagy can inhibit PDAC pathogen
esis, but can provide energy for cells, promoting PDAC 

onset when pancreatic cells have carcinogenic KRAS 
mutations.

Role of Autophagy in the Development of 
PDAC
Autophagy promotes pathogenesis by regulating cell pro
liferation, invasion, migration, metabolism, and immune 
escape. Studies have shown that the use of autophagy 
inhibitor chloroquine, or ATG5 and ATG7 inhibition by 
shRNA can inhibit human PDAC cell line growth and 
reduce tumor mass in PDAC mouse models.17 We discuss 
the complex regulatory network of autophagy and its role 
in PDAC development in the subsequent sections.

Autophagy and Activation of Pancreatic Stellate Cells
An important feature of PDAC is that fibrosis of the 
extracellular matrix increases as PDAC progresses,27 lead
ing to low tumor vascular density, severe hypoxia, and 
limited access to nutrients. As a result, cancer cells acti
vate pancreatic stellate cells (PSCs), increase the expres
sion of autophagic proteins, and secrete non-essential 
amino acids (NEAA), such as alanine, to meet the 

Figure 2 Role of autophagy regulatory factors in pancreatic tumorigenesis in mice with mutant KRAS. 
Abbreviations: ATG, autophagy related; VMP1, vacuolar membrane protein 1; BNIP3L, BCL2 interacting protein 3 like; PINK, PTEN induced kinase 1; PRKN, parkin RBR 
E3 ubiquitin protein ligase; TP53, tumor protein p53.
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metabolic needs of growing cancer cells.27 In addition, 
increased autophagy causes the PSCs to change from 
a dormant state to an active state. Activated PSCs secrete 
extracellular matrix (ECM) proteins and cytokines to 
increase the aggressiveness of tumors,28 closely correlated 
to PDAC patients’ short survival time. Administering 
autophagy inhibitors to PSCs reduced ECM protein and 
cytokine production and decreased the proliferation and 
invasiveness of PDAC cells in mice.28 This suggests that 
autophagy can promote PDAC progression by regulating 
non-tumor cells.

Autophagy and Cell Proliferation, Invasion, and 
Metastasis
PDAC cells are characterized by dysregulated proliferation 
and the ability to invade surrounding tissues, which is 
a reason for poor prognosis and high mortality. Gorgulu 
et al29 showed that in ATG5-deficient PDAC mice, tumor 
cell proliferation and migration increased. However, in 
such mice, the tumor formation was prevented. 
Interestingly, knockout of ATG5 in pancreatic cancer cell 
line increased their proliferation and migration. In human 
PDAC samples, lower ATG5 expression levels are asso
ciated with tumor migration and shorter patient survival 
times. This suggests that the expression level of ATG5 
should be considered when using autophagy inhibitors to 
treat PDAC, so as to avoid the occurrence of drug 
resistance.

Transforming growth factor-β (TGF-β) promotes prolif
eration, invasion, and migration in late stage tumors.30 He 
et al30 found that TGF-β can influence TFEB expression in 
SMAD4-positive PDAC cells, thereby promoting TFEB- 
mediated autophagy. The increase in TFEB-mediated autop
hagy was negatively correlated with prognosis in patients 
with PDAC. Chen et al31 found that TGF-β induced autop
hagy effects on PDAC proliferation and invasiveness, 
dependent on SMAD4 expression. TGF-β-induced autop
hagy enhanced SMAD4-negative PDAC cell migration and 
inhibited cell growth, while the opposite effect was 
observed in SMAD4-positive PDAC cells. This suggests 
that different genetic backgrounds may differentially affect 
autophagy in PDAC.

Ubiquitin-like protein 4A (UBL4A) can act on lysoso
mal-associated membrane protein 1 (LAMP1) to inhibit 
autophagy and thus inhibit PDAC cell proliferation and 
metastasis.32 High UBL4A expression in PDAC is asso
ciated with good prognosis and prolonged patient 
survival.33 The RNA-binding protein QKI can activate 

surrounding fibroblasts to proliferate, invade, and metas
tasize, increasing autophagy in PDAC cells.33 In addition, 
MAPK can affect the interaction between PDAC and 
stroma and induce autophagy to increase PDAC cell pro
liferation, invasion, and migration.34 These results suggest 
that cell autophagy in tumor microenvironments may pro
mote PDAC cell invasion and migration.

Autophagy and Metabolism
Low vascular density during PDAC leads to severe 
hypoxia and limited nutrient utilization. Therefore, 
PDAC cells must alter their metabolic pathways to sustain 
indefinite proliferation. As mentioned above, the changes 
in mTORC1 activity and AMPK signal transduction 
enhancement increase autophagy during cell starvation. 
Additionally, TEFB overexpression can regulate Ras- 
related GTP binding D (RagD) expression, promote 
mTORC1 recruitment to the lysosome, and enhance 
tumor growth.35 TFEB stabilizes lysosomes and supports 
the nutritional requirements of PDAC cell proliferation 
which is vital for sustaining tumor growth.35 Thus, there 
is a complex relationship between autophagy and PDAC 
metabolism, which may be used to develop new treatments 
for PDAC. We focused on the regulatory mechanisms of 
autophagy in glucose metabolism, amino acid metabolism, 
and oxidative stress (Figure 3).

Glucose is an important nutrient for PDAC. Under 
aerobic conditions, PDAC uses aerobic glycolysis to pro
duce lactic acid rather than oxidative phosphorylation 
(OXPHOS).36 When PDAC cells are deprived of glucose, 
they produce large amounts of ROS to activate autophagy 
and the supply needed for growth.37 In contrast, glutathione 
peroxidase 1 (GPX1) inhibits autophagy by reducing ROS 
production, sensitizing PDAC cells to hanger-induced cell 
death.38 Although this finding indicates that GPX1 acts as 
an autophagy inhibitory protein in PDAC, the role of other 
members of the GPX family in PDAC remains unknown. 
Pyruvate kinase M2 (PKM2) is an important regulator of 
glycolysis and is downregulated in PDAC cells with low 
glucose levels; however, in PDAC cells with reduced glu
cose, low PKM2 expression upregulates AMPKα1 expres
sion and induces autophagy to promote cell survival.39 

Bryant et al found that KRAS and MAPK inhibition 
increases autophagic flux in KRAS mouse models and 
human PDAC cells and drives PDAC to become acutely 
dependent on autophagy.40,41 Thus, the combined inhibition 
of KRAS and autophagy could play a significant role in 
PDAC treatment.40
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In PDAC cells, reprogramming energy metabolism 
plays an important role in cell proliferation and tumor 
growth. We have discussed glucose metabolism above, 
but more recently amino acid metabolism, particularly 
glutamine metabolism reprogramming in PDAC cells, 
has attracted a lot of research interest.

Autophagy supplies glutamine to PDAC cells through 
micropinocytosis.39 Glutamine is broken down into ammo
nia and glutamic acid in the mitochondria. The latter is 
converted to the TCA cycle-intermediates α-ketoglutarate 
(α-KG) and DMKG42 which promote PDAC growth. 
Thus, autophagy supplies glutamine to PDAC cells and 
promotes PDAC growth.43 However, in PDAC cells, α- 
KG can activate mTORC1 to reduce autophagy.44 When 
chronic mTORC1 inhibition leads to amino acid defi
ciency, TFEB expression is increased to activate autop
hagy. This suggests a dynamic balance between glutamine 
metabolism and autophagy to ensure the growth of PDAC 
cells.

The branched-chain amino acids (BCAAs) leucine, 
isoleucine, and valine are three essential amino acids 
(EAAs) that cannot be synthesized in the cell and must 

be obtained from the diet.42 Interestingly, leucine, which is 
a mTORC1 agonist, promotes PDAC growth. Solute car
rier family 38 member 9 (SLC38A9) transports leucine 
from lysosomes into the cytoplasm. Wyant et al45 found 
that in cells lacking SLC38A9, lysosomal leucine levels 
remained essentially unchanged, even though whole-cell 
leucine levels were reduced compared to the control. This 
revealed that the leucine utilization of PDAC cells depends 
on the interaction between autophagy and lysosomal 
proteolysis.

PSCs in tumor microenvironments also influence 
autophagy and amino acid metabolism in PDAC. PDAC 
cells induce PSC autophagy to supply alanine.27 Alanine 
can be converted to pyruvate to provide a carbon source 
for the TCA cycle or promote lipid biosynthesis and 
synthesize non-essential amino acids such as serine and 
glycine. Thus, autophagy induced by cancer cells and PCS 
interaction supports the metabolic demands of PDAC 
cells and promotes tumor growth. In the progressive 
stage of PDAC, the cells are in a state of oxidative stress. 
Tumor cells produce a large amount of ROS which 
damages DNA and accelerates PDAC development. 

Figure 3 Autophagy maintains the metabolism and function of PDAC cells. Autophagy pathways are modulated by different metabolic conditions (eg, oxidative stress, low 
glucose, and low amino acids) in which cellular components are degraded. In this process, bioenergy intermediates are reused, thereby promoting cell survival. 
Abbreviations: AGER, advanced glycosylation end-product specific receptor; AMPK, AMP-activated protein kinase; BECN1, beclin 1; GPX1, glutathione peroxidase 1; 
HMGB1, high mobility group box 1; mTOR, mechanistic target of rapamycin; PKM2, M2 splice isoform of PKM (pyruvate kinase M1/2); PDAC, pancreatic ductal 
adenocarcinoma; PINK, PTEN-induced kinase 1; PRKN, parkin RBR E3 ubiquitin protein ligase; ROS, reactive oxygen species; SREBF1, sterol regulatory element binding 
transcription factor 1; ULK1, unc-51-like autophagy activating kinase 1.
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Elevated ROS levels can inhibit mTORC1 and activate 
autophagy.46 High mobility group box 1 (HMGB1) is 
a novel BECN1 binding protein expressed during 
autophagy.47 In PDAC cells, the induction of autophagy 
depends on the REDOX state of HMGB1. When HMGB1 
is reduced, it binds to advanced glycation end products 
(RAGE) receptors, induces BECN1 dependent autophagy, 
and promotes pancreatic tumor cell line survival.48 The 
zinc chelator, TPEN, can disrupt the mitochondrial func
tion of PDAC cells and cause oxidative stress. 
Meanwhile, TPEN inhibits lysosomal activity and inhibits 
autophagy, leading to PDAC cell apoptosis.49 In conclu
sion, there is a complex relationship between oxidative 
stress, ROS and autophagy.

We described the complex relationship between autop
hagy and PDAC metabolism, and the potential for com
bining metabolic pathway manipulation and autophagy to 
treat PDAC in the future. However, the specific regulatory 
mechanism between PDAC autophagy and metabolism 
requires further study.

Autophagy and Immune Response
Yang et al established a PDAC mouse model expressing 
AtG4BC47A to inhibit autophagy and found that macro
phage infiltration of the tumor increased and partially 
mediated tumor regression.50 This suggests that autophagy 
is an immune response by the PDAC cells. Furthermore, in 
PDAC cells, the major histocompatibility complex class 
I (MHC-1) can present endogenous antigens to CD8+ 

T cells to identify cancer cells for destruction.51

Interestingly, PDAC cells express low levels of 
MHC-1 but are highly enriched in autophagy-related 
autophagosomes and lysosomes compared to human 
pancreatic ductal epithelial (HPDE) cells.52 This autop
hagic MHC-1 degradation mediated by NBR1 was 
increased, and the antigenicity was significantly 
decreased.51 This impaired antigen presentation and pro
moted immune evasion of the tumor. However, after 
autophagy inhibition, the PDAC cell MHC-1 expression 
was restored, which promoted CD8+T cell proliferation 
and activation and enhanced tumor cell cytotoxicity 
in vivo and in vitro.52 Moreover, after inhibiting autop
hagy MDSCs, CD4+ T cells and CD103+ DCs also 
changed, but their specific roles in PDAC remain 
unclear.52 Therefore, the relationship between autophagy 
and the immune responses of PDAC cells will be the 
focus of future research.

Autophagy as a Therapeutic Target 
for PDAC
PDAC is difficult to cure and often recurring. Currently, 
the main treatment methods are surgery, chemotherapy, 
and radiotherapy. However, frequent drug resistance in 
PDAC is a major cause of poor patient treatment out
comes. This may be because autophagy helps tumor cells 
respond to a variety of stresses, including hypoxia, low 
pH, and reduced nutrient supply. Therefore, it is vital to 
understand the mechanism of autophagy to improve 
PDAC treatment.

Currently, the gold standard for PDAC chemotherapy 
combines FOLFIRINOX and nab-paclitaxel with 
gemcitabine.53 Some studies have found that increased 
autophagy may be responsible for developing resistance to 
chemotherapeutic drugs. Gemcitabine and 5-fluorouracil 
induce apoptosis and increase autophagy.54,55 Combining 
chloroquine and gemcitabine or 5-fluorouracil can signifi
cantly inhibit tumor growth.55 Meanwhile, AMPK inhibition 
can enhance the toxicity of gemcitabine or 5-fluorouracil 
toxicity to the tumor.54 Clinical studies have also shown 
that administering gemcitabine combined with hydroxy
chloroquine is more effective than gemcitabine alone.56

SMAD4 gene depletion induces autophagy by increas
ing ROS levels.57 SMAD4-depleted PDAC cells were 
resistant to radiotherapy and this resistance was found to 
be reversed by administering autophagy inhibitors.57 This 
suggests that autophagy plays a role in the resistance of 
PDAC cells to radiotherapy.

In a recent study, inhibiting KRAS-RAF-MEK-ERK 
signal transduction increased autophagy.40 After ERK 
inhibition, tumor cells were increasingly dependent on 
autophagy for nutrients. Furthermore, PDAC development 
in vivo and in vitro was demonstrably affected after 
administering a combination of an ERK inhibitor trameti
nib and chloroquine.40 In pancreatic cancer cell lines, the 
death rate in cells was found to increase by administering 
a combination of trametinib and chloroquine, compared 
with chloroquine alone. After administering this treatment 
protocol, the graft in MIA-PaCa2 xenograft mice had 
regressed and a patient with metastatic pancreatic cancer 
who had failed to respond to all standard treatment proto
col had a reduction in tumor marker cancer antigen 19–9 
(CA19–9) and overall tumor burden.58 These results pro
vide evidence for a new combination regimen to treat 
PDAC, suggesting that autophagy plays an important role 
in treating pancreatic cancer.
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Autophagy plays an important role in the success of 
PDAC treatment. The preclinical study of targeted autop
hagy treatment of PDAC has achieved gratifying results. 
However, results in clinical studies have been disappoint
ing. Therefore, maximizing the effect of autophagy in the 
treatment of pancreatic cancer patients is a challenge for 
future research.

Conclusion
The understanding of autophagy’s regulatory mechanisms 
has deepened over the past decade with the discovery of 
new regulatory networks and transduction pathways. The 
pathophysiological role of autophagy in cancer, specifi
cally pancreatic cancer, has also been explored. Changes 
in autophagy play an important role in the onset and 
development of pancreatic cancer. This is not only 
reflected in cancer cells but also in non-cancer cells in 
the tumor microenvironment. Moreover, autophagy func
tions in PDAC are regulated by oncogenes (eg, KRAS) 
and tumor suppressor genes (eg, TP53).

Autophagy plays a complex role in cancer, and our 
current knowledge remains very limited. Benign lesions 
in autophagy defective mice are prevented from transform
ing into pancreatic cancer. Because autophagy provides 
nutrients for pancreatic cancer growth, this finding in 
autophagy defective mice suggests that the autophagy 
process can be an effective intervention target to prevent 
and treat pancreatic cancer.

Targeted autophagy therapy for pancreatic cancer has 
achieved great success in preclinical studies, but its clin
ical application in humans has yielded disappointing 
results. This discrepancy may be due to the following. 
First, our understanding of the specific role of autophagy 
at the molecular level and how it affects tumors is cur
rently very limited. Second, mouse models do not accu
rately replicate human pancreatic cancer pathology. 
Finally, autophagy is essential for cell homeostasis, and 
the systematic application of autophagy inhibitors may 
interfere with its normal function in tissues.

Autophagy is thought to be a mechanism by which tumor 
cells maintain their high metabolic level in a nutrient-poor 
environment. Autophagy also helps tumor cells cope with 
multiple stresses (ie, hypoxia, low pH, and reduced nutrient 
supply). Inhibition of autophagy may be an important direc
tion of targeted therapy for pancreatic cancer in the future, 
and the development and use of autophagy inhibitors should 
be a priority. In particular, designing such autophagy inhibi
tors that do not penetrate the blood-brain barrier can reduce 

nerve toxicity. In addition, it is important to develop inhibi
tors that do not affect autophagy of non-cancerous cells 
around pancreatic cancer, but do affect tumor cell growth 
and reduce the ability of cancerous cells to metastasize.

Because genetic alterations can affect autophagy, it will 
be important to collect tumor or blood samples from PDAC 
patients prior to treatment with autophagy inhibitors to 
assess the dependence of pancreatic cancer cells on autop
hagy. Autophagy inhibition has a positive effect only when 
tumor changes occur. Clinically, autophagy inhibitors should 
be applied to patients with a definitive diagnosis of pancrea
tic cancer. In addition, because autophagy inhibitors are 
applied to the whole body, researchers should consider the 
long-term potential toxic effects on normal cells and tissues 
when developing and applying drugs. In conclusion, explor
ing the mechanism of autophagy inhibitors and elucidating 
their interactions with other anti-tumor drugs in pancreatic 
cancer will provide new methods and ideas for the clinical 
treatment of pancreatic cancer.
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