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Abstract: Infections due to multidrug-resistant Enterobacteriaceae have become major 
international public health problem due to the inadequate treatment options and the 
historically lagged pace of development of novel antimicrobial drugs. Inappropriate 
antimicrobial use in humans and animals coupled with increased global connectivity 
aided to the transmission of drug-resistant Enterobacteriaceae infections. Carbapenems 
are the medications of choice for extended-spectrum beta-lactamase and AmpC produ-
cers, but alternatives are currently needed because carbapenem resistance is increasing 
globally. This review pointed to discuss emerging drug-resistant Enterobacteriaceae, its 
epidemiology and novel treatment options for infections, which date back from 2010 to 
2019 by searching Google Scholar, PubMed, PMC, Hinari and other different websites. 
The occurrence of carbapenem-resistant Enterobacteriaceae is reported worldwide with 
great regional variability. The rise of carbapenem-resistant Enterobacteriaceae poses 
a threat to all nations. Enzyme synthesis, efflux pumps, and porin mutations are the 
main methods by which Enterobacteriaceae acquire resistance to carbapenems. The 
major resistance mechanism among these is enzyme synthesis. Most carbapenem resis-
tance is caused by three enzyme groups: Klebsiella pneumoniae carbapenemase (Ambler 
class A), metallo-ß-lactamases (Ambler class B), and oxacillinase-48 (Ambler class D). 
Ceftazidime–avibactam, which was newly licensed for carbapenemase producers, is the 
most common treatment option for infections. Meropenem–vaborbactam, imipenem–rele-
bactam, plazomicin, cefiderocol, eravacycline, and aztreonam–avibactam are recently 
reported to be active against carbapenem-resistant Enterobacteriaceae; and are also in 
ongoing trials for different populations and combinations with other antibacterial agents. 
Overall, treatment must be tailored to the patient’s susceptibility profile, type and degree 
of infection, and personal characteristics. 
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Introduction
The causative agent of an infectious disease whose incidence is increasing follow-
ing its appearance in a new host population or whose incidence is increasing in an 
existing population as a result of long-term changes in its underlying epidemiology 
or the development of antimicrobial resistance has been defined as an emerging 
antibiotic-resistant pathogen.1 Carbapenem-resistant Enterobacteriaceae (CRE) 
infections result in longer hospital admissions, higher healthcare costs, and 
increased mortality than carbapenem-susceptible bacterial infections.2
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The Enterobacteriaceae family includes many bacteria 
that are commonly isolated from clinical cultures, includ-
ing Escherichia coli, Klebsiella spp., and Enterobacter 
spp. Because Enterobacteriaceae are a common cause of 
both community and healthcare-related diseases, they are 
particularly important in the context of antibiotic 
resistance.3 The Enterobacteriaceae family has developed 
through time and has an innate ability to proliferate by 
developing resistance to antimicrobial chemicals provided, 
rendering existing antibacterial ineffective, and emerging 
as resistant to carbapenem, a last-line antibiotic.4,5

In the human and animal colons, Enterobacteriaceae is 
mostly found as part of the normal flora. According to the 
World Health Organization’s antimicrobial resistance 
report, Enterobacteriaceae resistant to carbapenem are 
classified as a critical group and developing drug- 
resistant infections.6,7 According Centers for Disease 
Control (CDC) description of the antimicrobial-resistant 
pathogens, CRE such as Klebsiella species, Escherichia 
coli (E.coli) and Enterobacter species are the most crucial 
emerging resistance threats in the global.8

Bacterial infections caused by CRE, which are resistant 
to all classes of current antimicrobial drugs, have become 
a serious endpoint in the fight against bacterial infections 
in public health.9–11 Furthermore, the rise of carbapenem 
resistance and rapid dissemination of the 
Enterobacteriaceae family are referred to as “superbugs 
bacteria”.12,13

Because of the emergence of the CRE family, thera-
peutic approaches are no longer effective, and infections 
are more difficult to cure with the commonly used med-
ications. As a result, infections would spread, longer 
hospital admissions would increase economic and social 
expenses, and death would rise.14 Carbapenem-resistant 
bacteria pneumonia, urinary tract infections, septicemia, 
endocarditis, meningitis, and severe intra-abdominal 
infections are only a few of the illnesses caused by 
Enterobacteriaceae.15 Due to the synthesis of extended 
spectrum beta-lactamase (ESBL), Enterobacteriaceae 
have developed resistance to third-generation cephalos-
porins, making therapy very challenging.16 The introduc-
tion and spread of bacteria resistant to carbapenems, on 
the other hand, puts their effectiveness in threat.17,18 To 
combat this threat, the medical community turned to 
broader spectrum agents and carbapenems, which in 
turn contributed to resistance due to selection and 
increased the emergence of increasingly resistant 
organisms.19

Carbapenem resistance in Enterobacteriaceae is mostly 
expressed by the synthesis of carbapenemase enzymes, 
which are encoded by numerous genotypes and can be 
transferred among Enterobacteriaceae via transferable 
genetic elements. Commonly pronounced enzymes include 
Class A Klebsiella pneumoniae carbapenemase, Class 
B metallo-β- lactamases, and Class D OXA β- 
lactamases.20 Resistance can also be developed through 
efflux pumps, permeability changes caused by the loss of 
outer membrane porin, or target mutations.21 Resistance is 
enhancement to be a continuous evolutionary process in 
the Enterobacteriaceae family. Mutation is a type of 
genetic change that occurs frequently in nature. 
Mutations in genetic structures can affect a cell’s ability 
to grow and survive in the presence of environmental 
stresses like antimicrobials.22

However, novel medications for treating CRE infection 
have just been accessible, and several more are in the 
works. While traditional drugs such as fosfomycin, tigecy-
cline, minocycline, polymyxin and other therapeutic alter-
natives are still being used as therapy for CRE infections, 
recently emerged drugs including meropenem–vaborbac-
tam, imipenem–relebactam, plazomicin, cefiderocol, era-
vacycline, and aztreonam–avibactam are more potent 
against CRE infections with fewer side effects and toxi-
cities. Moreover, copper oxide nanoparticles, phage ther-
apy and varieties of candidate vaccines have also 
influenced the development of Shigellosis infection.23

This review aims to provide an update on the rising 
carbapenem-resistant Enterobacteriaceae, its epidemiol-
ogy as well as novel treatment options against these 
increasingly resistant bacteria.24

Literature Review
Natural Habitats and Reservoirs of 
Antibiotic-Resistant Enterobacteriaceae
Carbapenem-resistant Enterobacteriaceae (CRE) infections 
can arise naturally from bacteria found in a healthy per-
son’s intestinal tract, as well as soil, water, sewage, plants 
(fruit, vegetables, and herbs), dairy products, and raw 
meat, depending on the species.25 Colonized/infected 
patients, biofilms from medical equipment, sinks/hand 
washing basins, faucets, drains, sink traps, toilets with 
a rim, sewage/drainage system, and contaminated health-
care personnel’s stethoscopes are the main reservoirs or 
sources of infection in healthcare institutions.26 Shower 
heads, bars of soap, liquid soap, artificial fingernails, 
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pools/hot tubs/water fountains, dialysis tubing, infusion 
pumps, breathing equipment, and cleaning mops all con-
tribute to a damp humid environment.25

Drug-resistant Enterobacteriaceae and/or resistance 
genes can spread in a variety of ways, depending on the 
microbe’s robustness in the environment, virulence, and 
infectious dosage, among other factors. Contact with colo-
nized patients, air, water, food, beverages, and contami-
nated equipment can all spread them. Furthermore, 
increased mobility, environmental changes, overcrowding, 
poor cleanliness, and poor infection management are all 
contributing to an increase in the rate of transmission.27

Risk Groups for Acquiring 
Carbapenem-Resistant Enterobacteriaceae
Prior and recent antibiotic use, residency in long-term 
acute care facilities, admission to an intensive care unit, 
presence of indwelling medical devices, poor functional 
status, increased age, solid organ or stem cell transplant, 
and receipt of health care in or travel to endemic areas are 
all risk factors for acquiring MDR Enterobacteriaceae.28 

Patients who need ventilators (breathing machines), urin-
ary (bladder) catheters, or intravenous (vein) catheters, as 
well as those on extended courses of particular medicines 
and those with weaker immune systems, are at risk for 
CRE infections.29

Emerging Carbapenem-Resistant 
Enterobacteriaceae and Mechanism of 
Resistance
Global antimicrobial resistance reports show the rising 
frequency of resistance in species belonging to the 
Enterobacteriaceae family in various sources including 
health facilities and the community. The emergence and 
dissemination of CRE is the most recent and alarming 
report globally.30 Carbapenem-resistant bacteria in the 
Enterobacteriaceae family have spread widely across 
numerous fronts. On a biological level, resistance genes 
are frequently carried on plasmids, which are easily trans-
mitted among Enterobacteriaceae. This resistant gene 
exchange can take place both within a host and in the 
environment.31,32

Antimicrobial resistance can also be caused by the 
production of antibiotic-inactivating enzymes and non- 
enzymatic mechanisms, which could be intrinsic or 
acquired.33 Increased production of intrinsic resistance 
mechanisms (either antibiotic-inactivating enzymes or 

efflux pumps) due to chromosomal gene mutations, per-
meability changes due to loss of outer membrane porin, or 
target modifications.21 Horizontal transfers of mobile 
genetic elements such as plasmids carrying resistance 
genes producing beta-lactamase enzymes, aminoglyco-
side-modifying enzymes (AMEs), or non-enzymatic 
mechanisms such fluoroquinolone resistance in 
Enterobacteriaceae are among the common mechanisms. 
Because these plasmids frequently include numerous resis-
tance determinants, a single plasmid conjugation may be 
enough to transmit multidrug resistance to the recipient 
strain.34

Carbapenem resistance in Enterobacteriaceae can be 
caused by a variety of methods, including the synthesis of 
Carbapenemase enzymes, extended spectrum beta- 
lactamases (ESBLs), AmpC enzymes (mainly plasmid- 
mediated), and porin loss, which reduces drug 
permeability.35

Enterobacteriaceae can develop resistance to one or 
more antibiotic classes that are normally effective against 
them. Klebsiella pneumoniae carbapenemase (KPC), imi-
penem’s metallo-beta-lactamase (IMP), New Delhi 
metallo-beta-lactamase (NDM), Verona integron-encoded 
metallo-beta-lactamase (VIM), and oxacillin carbapene-
mase (OXA) are among the most important acquired 
resistances.36

Acquisition and Spread of Carbapenem 
Resistance Among Enterobacteriaceae
Resistance genes can also be obtained from bacteria that 
are not resistant to antibiotics. They can be passed between 
bacteria of the same species as well as bacteria of different 
species or genera.21 Transduction, transformation, and 
conjugation are examples of horizontal gene transfer 
mechanisms. Plasmids (resistance plasmid 1 is a common 
example in Enterobacteriaceae), transposons, and other 
vectors can carry one or more resistance genes (eg, 
Tn5053).37 Resistance determinants for other antimicro-
bial classes, such as aminoglycosides and fluoroquino-
lones, may be carried by ESBLs and carbapenemase 
expressing plasmids.21

For ESBLs genes in Enterobacteriaceae families, the 
possibility of plasmid-mediated horizontal resistance gene 
transmission between livestock and humans (eg, via the 
food chain) has been observed.38–40 Furthermore, exces-
sive use of antibiotic agents, usage without prescriptions, 
and use of antibiotics in both the health care system and 
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livestock production may encourage the diffusion of resis-
tance genes, which has a direct effect on the expansion of 
antibiotic resistance.41,42

Epidemiology
Multidrug-resistant Enterobacteriaceae (MDR-E) is 
thought to have initially arisen in the 1980s, shortly after 
the widespread use of cephalosporins and other broad- 
spectrum ß-lactam antibiotics. SHV and TEM were 
among the first ESBLs found, followed by CTX-M, 
which have now expanded to become the most common 
plasmid-mediated ß-lactamases worldwide. Different car-
bapenemase-producing Enterobacteriaceae are becoming 
more prevalent in different parts of the world, according 
to epidemiological data. Carbapenem-resistant strains were 
initially discovered in the 1980s and rapidly spread over 
the world.43

New Delhi metallo-ß-lactamase-1 is the most common 
carbapenemase generating resistance in India, Pakistan, 
and Sri Lanka. KPC-producing Enterobacteriaceae, on 
the other hand, are found in the United States, Colombia, 
Argentina, Greece, and Italy, and OXA-48-like enzyme- 
producers are found in Turkey, Malta, the Middle East, and 
North Africa.44 Another study from 2011 to 2014 in the 
United States found 10% carbapenem resistance in 
Klebsiella pneumoniae and 16–36% third-generation 
cephalosporin (3rd GC) resistance in Escherichia coli.45 

Another study using clinical isolates in Europe found that 
K. pneumonia is resistant to third GC in 31% of the cases, 
while E. coli is resistant to carbapenem in 8% of the cases 
and third GC in 12% of the cases.46

Before 2001, the Greek System for Antibiotic Resistant 
Research showed a carbapenem resistance rate of 1%; by 
2008, this had risen to 30% in hospital wards and 60% in 
intensive care units. According to data from the European 
Centre for Disease Prevention and Control’s EARS-Net, 
678 (62.3%) of 1088 Greek K. pneumoniae isolates were 
carbapenem-resistant in 2014.47 In the state of Israel, in 
2008 and 2013, two cross-sectional nationwide surveys of 
CP Enterobacteriaceae (CPE) in Israeli post-acute-care 
hospitals revealed a considerable drop in the overall inci-
dence of carbapenem resistance among Enterobacteriaceae 
isolates (184 of 1147 isolates (16%)). KPC-carrying 
K. pneumoniae, on the other hand, remained the most 
common CPE, with a growing proportion of ST258 
K. pneumoniae strains (120 of 184 (65%) in 2008 versus 
91 of 113 (80%) in 2013).48

The Meropenem Annual Drug Susceptibility Data 
Gathering surveillance system mentioned 57 isolates in 
2006, with 9.5% of the gathering characterized as clonal 
blaKPC-producing Klebsiella strains, representing a two-
fold increase from the previous year; most isolates were 
from states in the Mid-Atlantic US Census division, and 
hospital prevalence rates ranged from 2.4% in Ohio to 
9.5% in Pennsylvania; most isolates were from states in 
the Mid-Atlantic.49,50 The spread of KPC-producing bac-
teria across the United States is clear; according to the 
same surveillance program, 28 of 195 Enterobacteriaceae 
isolates (14.4%) tested from 26 US medical centers had 
blaKPC-2 or blaKPC-3 by 2010, with 9 of the 28 discov-
ered in Texas.51 In Egypt and other African countries, 
carbapenem resistance is common and spreading, with 
more than half of hospitals (64%) having at least one 
CRE isolate and half (47.9%) of Enterobacteriaceae iso-
lates being CRE, which is greater than estimates from 
other Arab, African, and Asian countries.52

In general, all countries are at risk of being victims to 
the emergence of carbapenem-resistant Enterobacteriaceae 
infection with growing prevalence has been reported 
worldwide.74

Prevention and Control
Infections can be controlled by using a multidimensional, 
coordinated strategy and following infection prevention 
principles. Specifically, by reducing CRE transmission 
from person to person.75 Essentially, avoiding unnecessary 
or misuse of invasive equipment such as indwelling urin-
ary catheters or IV lines, medical staff hand washing, 
greater barrier measures, and isolation of patients colo-
nized or infected with carbapenemase producers. 
Infection management strategies are primarily focused on 
stopping the spread of such organisms from patient to 
patient. Apart from that, the main issues are healthcare 
professionals’ hand hygiene, the use and cleaning of med-
ical equipment, and environmental colonization; early 
implementation of active surveillance through rectal 
screening for CRE carriage on hospital admission, envir-
onmental cleaning, staff education, case notification/flag-
ging, and contact tracing are all necessary to prevent 
spreading and outbreaks of carbapenemase-producing bac-
teria spread and outbreaks.6

Generally, educating health care workers, using infec-
tion control and antimicrobial stewardship, and active 
surveillance for halting the chain of transmission should 
all be part of a proactive approach to tackling 
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antimicrobial resistance at a regional, national, and inter-
national level.53

Principal Treatment Options
For infections caused by ESBL and AmpC producers, 
carbapenems are the preferred treatment options. CRE, 
on the other hand, are resistant to practically all beta- 
lactams, with a few exceptions, and older antibiotic groups 
that have acceptable action. As a result, CRE therapy 
options are more limited, with older treatments such as 
aminoglycosides, polymyxins, a glycylcycline, and 
Fosfomycin being particularly effective.76 Although poly-
myxins are effective against CRE, they have nephrotoxi-
city and neurotoxicity as adverse effects, as well as poor 
effectiveness against Proteus, Providencia, Morganella, 
and Serratia infections.77

Because tigecycline has a higher binding affinity with 
ribosomal sites than tetracycline, it has been shown to be 
an effective therapeutic against Enterobacteriaceae that 
are resistant to tetracycline.78 Tigecycline is effective 
against practically all ESBLs and multidrug-resistant 
(MDR) E. coli isolates, as well as the vast majority of 
ESBL and MDR Klebsiella isolates. However, their activ-
ity against Proteus, Providencia, and Morganella is 
limited.78 Nevertheless, due to its low penetration and 
quick tissue diffusion after being intravenously adminis-
tered, tigecycline has unsatisfactory clinical effects in both 
urinary tract and main blood infections, making it 
ineffective.79

Fosfomycin is an antibacterial drug that works against 
CRE by inhibiting the enzyme UDP-N-acetylglucosamine 
enol pyruvyl transferase (MurA), which catalyzes one of the 
first steps in bacterial cell wall production. However, it has 
limited use to treatment for lower urinary tract infections. In 
vitro and retrospective investigations suggest that, at least 
for KPC infections, combined therapy with a carbapenem 
(eg, polymyxin–carbapenem or aminoglycoside–carbape-
nem) is more effective.80

In the case of OXA-48 and NDM infections, a recent 
retrospective observational analysis concluded that com-
bined therapy with colistin is the best treatment option. 
Because existing antimicrobial medicines have limitations, 
new and effective antimicrobial drugs are required for CRE 
infections.81 Except for the monobactam aztreonam, aztreo-
nam/avibactam MBLs can hydrolyze any beta-lactams 
(ATM). However, due to the fact that MBL-producing 
Enterobacteriaceae frequently produce serine-lactamases, 
which can hydrolyze aztreonam, aztreonam is only effective 

against about 30% of these isolates. As a result, combining 
ATM with a -lactam/-lactamase inhibitor like ceftazidime– 
avibactam (CAZ-AVI) has proven to be an appealing com-
bination with synergistic in vitro efficacy, especially against 
infections that produce both metallo- and serine- 
lactamases.82 Cefiderocol is a new siderophore cephalos-
porin that enters the bacterial cell via iron transporters, 
avoiding resistance induced by porin channel mutations 
and efflux pump overproduction. Cefiderocol also has 
other chemical structural characteristics that offer greater 
efficacy against Gram-negative bacteria that are difficult to 
treat, as well as stability against hydrolysis by different 
beta-lactamases in vitro, including MBL.83

Scientists are concentrating on developing new anti-
bacterial medications to address these pressing challenges 
b-lactamase inhibitor (NB-BLI) which is avibactam com-
bination with ceftazidime. Ceftazidime–avibactam (CAZ- 
AVI) is an intravenous cephalosporin/beta-lactamase, 
which is currently available on the market, and it is also 
being tested in conjunction with aztreonam and 
ceftaroline.84

Contrasting to other β-lactamase inhibitors, avibactam 
is not a β-lactam. Rather, its diazabicyclooctane structure 
mimics a β-lactam and is capable of hindering β- 
lactamases belonging to Strider classes A and C, and 
some class D enzymes.85 Despite not possessing antibac-
terial activity on its own, avibactam broadens the spectrum 
of ceftazidime’s activity. In isolates of E. coli, 
Enterobacter spp., and Klebsiella spp. that are carbape-
nem-resistant or express extended-spectrum B-lactamases, 
AmpC, OXA-48, KPC, and other resistance mechanisms, 
this combination enhances sensitivity to ceftazidime by 
16- to 1024-fold.85,86

Despite the fact that combination therapy is now the 
gold standard for treating CRE infections, resistance, treat-
ment failure, and toxicity have prompted the development 
of new therapeutic approaches.87 Unfortunately, several 
drugs with anti-CRE activity are in late-stage research. 
Among these under pipelines agents are plazomicin, rele-
bactam + imipenem, eravacycline, zidebactam and mero-
penem + novel β-lactamase inhibitor. Each drug is detailed 
in Table 2.

Overall, therapy must be tailored to the patient’s sus-
ceptibility profile, type and degree of infection, and perso-
nal characteristics. Beyond those unique treatment options, 
nano-strategies (using nanoparticles) to combat multidrug- 
resistant bacteria, such as carbapenem-resistant 
Enterobacteriaceae, and other strategies, such as phage 
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therapy and vaccine strategies, are being developed to 
overcome these types of resistance.96–98

Ceftazidime–avibactam (CAZ-AVI), ceftolozane–tazo-
bactam (TOL-TAZ), meropenem–vaborbactam (MER- 
VAB) and imipenem/cilastatin–relebactam (IMI-REL) 

are recently reported to be active against 
Enterobacteriaceae, including ESBL-producing, AmpC- 
producing and carbapenemase producing isolates; and 
are also in ongoing trials for different populations and 
combinations with other antibacterial. Moreover, β- 
lactam–sulfone β-lactamase inhibitor combinations 
including cefepime–tazobactam and cefepime–enmetazo-
bactam (AAI101), β-lactam–diazabicyclooctane β- 
lactamase inhibitor combinations including cefepime– 
zidebactam (WCK 5107), aztreonam–avibactam, sulbac-
tam–durlobactam (ETX2514), meropenem–nacubactam 
(FPI-1465) and cefpodoxime proxetil-ETX0282; and β- 
lactam–boronate β-Lactamase inhibitor combinations 
such as cefepime–taniborbactam (VNRX-5133) and 
QPX7728 are in development processes and under clinical 
trials, which could be promising future treatment options 
against ESBL and carbapenemase-producing bacteria.99

Possibly in the future many clinical trials and investi-
gations have looked into the efficacy and resistance pat-
terns of CAZ/AVI. Interestingly, the International Network 
for Optimal Resistance Monitoring (INFORM) studied 
more than 30,000 strains of Enterobacteriaceae obtained 
from patients with diverse bacterial illnesses and found 
that these microbes were more susceptible to the CAZ/AVI 
combination (99.5%).100

Ceftazidime–avibactam is the primary treatment for 
CRE infections that produce OXA-48-like proteins. 
Ceftazidime–avibactam, meropenem–vaborbactam, and 
imipenem–cilastatin–relebactam have action against 
Enterobacteriaceae that produce KPC enzymes, which 
are the most frequent carbapenemase in the US.101

Nanoparticles
Because of their bactericidal properties, nanoparticles 
(NPs) have increased in popularity in recent years and 
have demonstrated broad-spectrum antibacterial efficacy 
against pathogenic microorganisms.96 Nanoparticles typi-
cally kill bacteria, causing damage to membrane load cells 
and their integrity, as well as the production of free oxygen 
radicals. They can usually be given effectively as antibac-
terial agents. The bactericidal action of graphene oxide/ 
Cu/Ag NPs against E. coli and K. pneumonia has recently 
been discovered, possibly because to a synergy between 
several harmful pathways.102 Copper oxide nanoparticles 
have also been identified as a potential antibacterial agent 
for the treatment of Shigella spp.103

Table 1 Summary of the Global Prevalence of Carbapenem- 
Resistant Enterobacteriaceae

Study Area Prevalence of 
CRE

Authors 
(Reference)

Europe and 

America

Belgium 3.46%, [53]

Turkey 2.8%, [54]

USA 5.7%, 0.08%, [30,55]

Latin 
America

6.6%, [56]

Russia 11.6%, [57]

Australia 0.1% [58]

Poland 17.3%, [59]

Italy 7.5%, [59]

Greece 7.4%, [59]

Romania 5.0% [59]

Asia India 13.95%, 12.26% 
and 37.9%

[60–62]

Pakistan 69%, [63]

Kuwait 8%, [64]

China 18.1% [65]

Saudi 
Arabia

1.77% [66]

Malaysia 5.76% [67]

South 

India

8% [68]

Thailand 97% [69]

Africa Nigeria 15.2% [62]

Ethiopia 12.12% [70]

Uganda 28.6% [12]

Egypt 62.7%, 54.5% [52,71]

Senegal 5.1% [72]

Morocco 2.8% [73]

Ethiopia 16.2% [70]
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Phage Therapy
Phage therapy is increasing in popularity due to a number 
of benefits, including high specificity to target bacteria 
without affecting the human body’s normal microflora, 
replication at the infection site, bactericidal activity against 
antibiotic-resistant bacteria, and fewer side effects than 
other therapies. Because phages are self-limiting, they 
can linger on target sites at a low level after killing their 
bacterial targets.97 The use of phages as an alternative to 
antibiotics for treating MDR S. dysenteries isolated from 
wastewater has been studied104 despite the fact that there 
have been no reports of serious side effects during the long 
history of phage therapy in humans.

Vaccine Strategies
To prevent infection by Shigella spp., a number of candidate 
vaccines have been developed, the majority of which are still 
being tested for safety and immunogenicity. Vaccination 
provides protection in humans and animals, according to 

current studies.98 Glycoconjugate vaccines, such as recom-
binant glycoconjugate, synthetic glycoconjugate, and 
O-polysaccharide covalently coupled to immunogenic car-
rier proteins, are potential candidates for Shigella 
vaccinations,105 vir G-based live attenuated (WRSS1, 
WRSs3, WRSf3, WRSf2G12, WRSf2G15 and WRSd1) 
recombinant outer-membrane proteins, live attenuated 
vaccines,106 invasion-plasmid antigens B, C, and D.107 In 
addition to this, DNA-based vaccines, Ty21a typhoid vac-
cine expressing Shigella LPS,108 and whole-cell-killed and 
Shigella trivalent inactivated whole-cell and heat-killed 
multi serotype Shigella109 as well as novel antigen candi-
dates, such as triacylated S-LPS, GMMA protein particles 
currently have been developed.98 However, there is no 
licensed vaccine available against this pathogen.

Conclusion and Recommendations
Finally, it is clear that carbapenem resistance in 
Enterobacteriaceae has developed substantially, posing 

Table 2 List of Antibiotics Used for CRE Infection Treatment and Under Pipeline Development for Future Treatment of CRE 
Infections

RX. of CRE Action Mechanism Mechanism of Action S/E Authors

Antibiotics from 

the past

Fosfomycin Inhibitor of cell wall production Appearance of resistance [88]

Aminoglycosides Protein synthesis inhibitor Appearance of resistance [15]

Colistin Inhibit Cell membrane production Other serious side effects include 

nephrotoxicity

[87]

Tigecycline Protein synthesis inhibitor Low concentration in tissue [89]

Double 

treatments

Ertapenem with meropenem/ 

doripenem

Cell wall production inhibitor [90]

Ceftazidime or avibactam Cell wall production inhibitor/ß- 

lactamase inhibitor

Appearance of resistance [91]

Meropenem or vaborbactam Cell wall production inhibitor or ß- 

lactamase inhibitor

Inadequate clinical data [91]

New treatments Plazomicin Protein production inhibitor Unreactive against MBL-producers [92]

Eravacycline Protein production inhibitor Phase 3 RCT [86]

Imipenem or relebactam Cell wall production inhibitor or ß- 
lactamase inhibitor

Phase 3 RCT [93]

Cefiderocol Cell wall synthesis inhibitor Phase 3 RCT [94]

Zidebactam ß-Lactamase inhibitor Phase 3 RCT [87]

Nacubactam ß-Lactamase inhibitor Phase 3 RCT [95]

Abbreviations: ß-Lactamase, Beta lactamase; CRE, carbapenem-resistant Enterobacteriaceae; MBL, metallo-β-lactamase; RCT, randomized clinical trial; RX, treatment; S/E, 
side effects.
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a serious threat to global health. CRE have once again 
become a concern to civilization, as evidenced by 
a steady stream of publications describing resistant 
strains and sometimes novel resistance mechanisms. 
Dissemination and acquisition can go undetected, posing 
serious problems for infection control. Because the 
Enterobacteriaceae are a typical part of the gut micro-
biota, people might be colonized asymptomatically and 
unintentionally serve as a reservoir for spreading the 
bacteria to others; a subset of people will get illnesses 
as a result of these bacteria. Drug resistance mechanisms 
are varied and adaptable in these bacteria, making con-
trol and early identification of CRE infections difficult. 
As a result, a holistic approach must be adopted, which 
includes continued health-care professional education, 
infection control, interrupting the infection chain, anti-
microbial stewardship in both humans and animals, and 
increased regional and international collaboration to 
slow the emergence of resistances. Existing antibiotics 
such as Fosfomycin, aminoglycosides, and colistin are 
currently used as therapeutic options for CRE infections, 
while Avibactam combined with carbapenem-containing 
regimens is a newly developed antibiotic. Plazomicin, 
eravacycline, cefiderocol, zidebactam, and nacubactam 
are among the novel agents in development as new 
agents for various Enterobacteriaceae.
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