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Background: Secretome genes, encoding proteins secreted from the cell, are involved in the 
tumor immune response and correlated with levels of tumor mutation burden (TMB) in 
multiple tumors. This study aimed to identify core secretome genes and their potential 
association with immunomodulators and immune infiltration in high TMB groups across 
14 major solid tumors through bioinformatics analysis.
Methods: Multi-omics data for 14 major solid tumors were downloaded from The Cancer 
Genome Atlas (TCGA) database. Patients were divided into high TMB (TMB-high) and low 
TMB (TMB-low) groups using the median TMB values for each of the solid tumors. The 
CIBERSORT algorithm was conducted to estimate the proportion of 22 tumor-infiltrating 
immune cells (TIICs). Kaplan–Meier analysis and the log-rank test were utilized to screened 
prognosis-related genes. The correlations between core secretome genes and TIICs were 
analyzed using Spearman correlation coefficients.
Results: In TMB-high groups, multi-omics data analysis revealed that secretome genes were 
strongly associated with clinical characteristics, and 65 prognosis-related secretome genes 
were screened. Among the prognosis-related genes, 21 core secretome genes were identified, 
and strongly associated with five types of TIICs, namely activated NK cells, follicular helper 
T cells, CD8 T cells, and macrophages M0 and M2. Notably, three secretome genes 
(ADAMTS12, COL12A1, and COL5A2) were significantly related to immunomodulators 
and TIICs in multiple solid tumors. In addition, 12 core secretome genes were significantly 
differentially expressed between responding and non-responding patients receiving immu-
notherapy. Furthermore, core secretome genes may be involved in the PI3K/AKT signaling 
pathway.
Conclusion: We examined the prognostic significance of secretome genes and their poten-
tial association with immunomodulators and immune infiltration across 14 major solid 
tumors. In summary, three secretome genes (ADAMTS12, COL12A1, and COL5A2) may 
be pivotal mediators of immune infiltration in TMB-high patients, which may help to identify 
patients who could benefit from immunotherapy.
Keywords: secretome genes, tumor mutation burden, immune infiltration, prognosis, solid 
tumors

Introduction
The tumor secretome, a potential treasure trove of biomarkers and pharmaceutical 
targets for cancers, plays a critical role in oncogenesis and cancer treatment.1,2 

Secretome genes contribute to the hallmarks of cancer, function through the syner-
gistic effects of multiple factors, and share common mechanisms of tumor 
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progression and metastasis.3,4 Decoding the secretome 
genes in the tumor microenvironment, including chemo-
kines, cytokines, and growth factors, could provide useful 

biomarkers for predicting the immunotherapeutic 
response, immune infiltration, and immunosuppression.5,6 

Chemokines and cytokines are critical mediators of 
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immune responses and are potential targets for cancer 
immunotherapy.7,8 Furthermore, secretome genes tend to 
show a decrease in changes in expression, which is related 
to their involvement in tumor suppression and cell-matrix 
adhesion functions.9 Therefore, secretome genes may hold 
great promise as potential cancer prognostic biomarkers 
and play roles in tumor immune infiltration across various 
cancer types.

Tumor mutation burden (TMB), which is an indepen-
dent predicator for immunotherapy, can be used to deter-
mine the efficacy of immune checkpoint inhibitor therapy in 
various tumors.10,11 In diverse tumors, patient with high 
TMB exhibit prognostic correlation with poorer survival, 
but they can gain a more favorable prognosis after treatment 
with immunotherapy, representing a relevant prognostic 
biomarker.12,13 TMB levels are positively correlated with 
diverse immune-related genes and immune signatures, and 
are predisposed to be identified by immune defense 
mechanisms in patients with high TMB.14 High TMB 
level is associated with clinical outcomes and may influence 
immune cell infiltrations in various tumors.14 Tumor- 
infiltrating immune cells (TIICs), which play significant 
roles in the tumor immune environment, can act as indica-
tors of the immune response and targets of therapeutic 
strategies against tumors.15,16 The co-expression of TIICs 
and inhibitory immune-related genes is involved in resis-
tance to immunotherapy in multiple tumors.17–20 Increasing 
evidence shows that secreted factors and secretome genes in 
combination with TIICs are connected with tumor immu-
notherapy, which may offer emerging targets and predictors 
of response to immunotherapy.21–23 Thus, comprehensive 
analysis of the prognostic roles of secretome genes in TMB- 
high patients could help to identify candidate immunother-
apy biomarkers and elucidate the underlying molecular 
mechanisms involved in immune infiltration.

To identify favorable prognostic genes in TMB-high 
cancer patients, we performed an integrative analysis of 
the expression and genetic alteration of secretome genes 
with clinical outcomes across 14 major solid tumors from 
The Cancer Genome Atlas (TCGA) database. Then, we 
explored core secretome genes from co-expression, co- 
mutation, and protein–protein interaction (PPI) networks 
from prognosis-related genes. Utilizing immunomodulator 
genes and the abundance of TIICs, we further identified the 
relationship between core secretome genes and immune 
infiltration. In addition, we detected the common molecular 
mechanism of core secretome genes underlying the prog-
nostic capability in the TMB-high group. As secretome 

genes are strongly related to immune infiltration in TMB- 
high patients, they could be applied as prognostic biomar-
kers and immunotherapeutic targets for “high-risk” patients 
who could benefit from precise immunotherapy, and will be 
helpful in detecting the tumor immune infiltration process.

Materials and Methods
Generation of Secretome Genes from the 
Human Protein Atlas (HPA) and UniProt 
Databases
Coding genes of secretory proteins were screened from the 
HPA and UniProt databases, according to annotation infor-
mation. A total of 1708 genes were predicted to have secreted 
protein products in the HPA database (https://www.proteina 
tlas.org/), coming from four sources (HPA, SignaIP, Phobius, 
and SPOCTOPUS). In addition, 2723 secretome genes were 
downloaded from the UniProt website (https://www.uniprot. 
org) and filtered by two categories, ie, secretory protein and 
secreted protein. In total, 1507 secretome genes were identi-
fied from these two databases.

Data Collection and Preprocessing
Patient cohorts used in this study are listed in 
Supplementary Table S1. RNA-Seq gene expression data 
(RSEM algorithm, normalized_count, and scaled_esti-
mate) and relevant clinicopathological data across 14 can-
cer types were obtained from TCGA database via the Fire 
Browse website (https://gdac.broadinstitute.org/). Somatic 
mutations using Mutect2 for variant calling were down-
loaded from the GDC data portal using the TCGAbiolinks 
package,24 and mutation annotation format (MAF) files 
were analyzed using the maftools R package.25 We 
acquired available mutation driver genes from the 
DriverDBv3 database (http://driverdb.tms.cmu.edu.tw).26

Differentially Expressed Genes (DEGs) 
and Tumor Mutation Burden (TMB) 
Analysis
We analyzed mRNA expression and somatic mutation data 
of secretome genes in 14 cancer types. The mRNA-seq 
data were preprocessed by “limma” in the R package, and 
significant DEGs were identified with a false discovery 
rate (FDR) cut-off of 0.05.27 The MAF files of somatic 
mutations and TMB were processed using maftools.25 The 
total number of somatic mutations (insertion, deletion, and 
signal nucleotide polymorphism) was summed to yield 
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a mutation burden for each patient. The TMB-high group 
(samples with TMB values higher than the median TMB 
value) and TMB-low group (samples with TMB values 
lower than the median TMB values) were defined per 
cancer type based on the median TMB values of the 
relevant patients.

Evaluation of Association Between Gene 
Expression and Clinicopathological 
Features
The expression levels of secretome genes were merged 
with the corresponding clinicopathological features of 
each patient, including progression stage (stage); tumor, 
node, metastasis (TNM); percentage of tumor necrosis 
(tumor necrosis); percentage of tumor nuclei (tumor 
nuclei); tumor weight; age at initial pathological diagnosis 
(age); and percentage of tumor cells (tumor cells). The 
relationship between secretome gene expression levels and 
clinicopathological features was assessed using 
Spearman’s correlation in TMB-high groups with 
a threshold of p-value <0.05.

Identification of Core Secretome Genes
To define core secretome genes, we analyzed the relations 
between outcome-associated genes, including gene co- 
expression, mutational co-occurrence, and PPI. We applied 
log2 (normalized count + 1) to calculate the interaction of 
gene expression using Spearman’s correlation coefficients. 
The mutational co-occurrence for each pair of genes was 
determined using the SomaticInteraction function in maf-
tools. A p-value <0.05 was used as the cut-off. The Search 
Tool for the Retrieval of Interacting Genes (STRING) 
database and Cytoscape software were used to retrieve 
and reconstruct a PPI network for the prognosis-related 
secretome genes.28,29 Hub genes were selected based on 
topological degree analysis using the CytoHubba plugin.30

Assessment of Immune Infiltration
The transcripts per million (TPM) values per sample were 
obtained from scaled estimates by multiplying by 1e6. We 
used the CIBERSORT analytical tool to classify and esti-
mate the abundances of 22 immune cell types for each 
patient based on TPM values.31 The recommended model 
parameters were performed using the LM22 signature 
gene expression file and default signature matrix at 
1000 permutations. The relationships between core secre-
tome gene expression levels and the proportions of TIICs 

were further assessed using Spearman’s correlation coeffi-
cients in R package. A p-value <0.05 was considered 
statistically significant.

Survival Analyses and Clinical Enrichment 
Analysis
We used the univariate Cox proportional hazards regres-
sion model (Coxph) and log-rank test in the R “survival” 
package to examine the influence of gene expression on 
survival rate, including overall survival (OS) and disease- 
free survival (DFS). According to the Coxph results, for 
genes with p<0.05, a better survival rate was found if the 
values of the regression coefficient and log2 fold-change in 
expression changed in the opposite directions. This sug-
gests that higher expression of potential oncogenes was 
significantly related to poor prognosis. We used the 
mafSurvival function in maftools to analyze the correla-
tion between mutations and survival based on the mutation 
status of given genes, with p-values <0.05 considered to be 
statistically significant. We used clinical enrichment ana-
lysis to identify enriched mutations for core secretome 
genes with tumor stage among various groupwise compar-
isons using the maftools R package. The significance 
threshold was p<0.05.

Results
Evaluation of Prognosis-Related 
Secretome Genes in TMB-High Patients 
Across 14 Solid Tumors
We identified 1507 genes encoding secretory proteins in the 
Human Protein Atlas (HPA, https://www.proteinatlas.org/) 
and UniProt (https://www.uniprot.org/database/) databases 
for the evaluation of secretome genes. According to the 
median TMB value of each cancer, we divided cancer 
patients into TMB-high and TMB-low groups across the 
14 cancer types (Supplementary Table S1).

To screen clinically relevant prognosis-related secre-
tome genes, nine clinicopathological features of cancer 
patients were considered, comprising stage, TNM, tumor 
necrosis, tumor nuclei, tumor weight, age, tumor cells, and 
patient survival (OS and DFS). In addition, the total num-
ber of cancer types significantly associated with clinical 
outcomes for each gene was applied to screen potential 
prognosis-related secretome genes. According to the 
expression levels of 1507 secretome genes, 660 and 
1007 genes were significantly correlated with patient sur-
vival rate (OS or DFS) and tumor stage (stage or TNM), 
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respectively, in two or more cancer types. Among the 
above genes, 565 were significantly associated with both 
survival and stage in at least two cancer types (Figure 1A, 
Supplementary Table S2). These 565 candidate genes 
showed strong correlation with the other five clinical 
phenotypes (Supplementary Table S2). We next examined 
the association between genetic alterations in secretome 
genes and clinicopathological characteristics in the TMB- 
high group. Among the 1507 secretome genes, 572 were 
significantly associated with survival or stage in at least 
one cancer type, including 214 gene mutations correlated 
with survival (OS or DFS) and 497 gene alterations asso-
ciated with stage (stage or TNM) (Figure 1B, 
Supplementary Table S2). Overlapping these results with 
mutational analysis, 165 of the 572 secretome genes were 
significantly associated with survival and stage in the 
TMB-high group in at least one cancer type (Figure 1C). 
Notably, 973 of the 1507 secretome genes were identified 
as mutation drivers from the DriverDBv3 database across 

multiple cancer types.26 In conclusion, we screened 65 
potential prognosis-related genes whose expression levels 
and genetic alterations were associated with survival and 
stage in TMB-high groups (Figure 1D).

In all cancer patients, we analyzed 65 potential 
prognosis-related gene expression levels in relation to 
clinical outcome with the above methods. The results 
showed that 59 genes were significantly correlated with 
clinical outcomes, and six genes (CLEC18B, COL21A1, 
FGA, KNG1, REG3G, and TG) showed weak correla-
tions with clinical outcomes in all patients 
(Supplementary Figure S1). These six genes were 
then separately explored regarding their role in tumor 
immune infiltration. In all patients, common down- 
regulated genes were closely related to tumor nuclei 
and cells, and common up-regulated genes were 
strongly associated with tumor weight, necrosis, and 
patient age (Supplementary Figure S1, Supplementary 
Table S3).

Figure 1 Prognosis-related biomarkers of secretome genes in TMB-high group across 14 cancer types. (A) Proportion of 565 secretome genes with significant association 
between gene levels and clinical outcomes across 14 solid tumors. (B) Percentage of 572 secretome genes in which genetic alterations were significantly associated with 
clinical outcomes for each clinical phenotype. Circles represent the fraction of secretome genes in which gene expression levels (A) and genetic alterations (B) were 
significantly related to clinical outcomes in different cancer types. (C) Venn diagram of 65 prognosis-related secretome genes showing associations between clinical outcome 
and expression levels and genetic alterations in TMB-high group. (D) Distribution of 65 prognosis-related secretome genes with clinical outcomes in different cancer types. 
Numbers in circles represent cancer types in which secretome genes were significantly associated with clinical outcomes. Rows represent genes, columns represent clinical 
outcomes.
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Definition of 21 Core Secretome Genes 
Based on Mutation Co-Occurrence, 
Gene Expression Correlation, and PPI in 
TMB-High Group
To explore the core roles of the above 59 prognosis- 
related genes, we analyzed their expression levels, 
genetic alterations, and PPIs. First, we determined the 
correlations in expression levels of each gene pair and 
found 9171 gene expression pairs with significant cor-
relation across 14 cancer types (p<0.05). We counted 
the total number of significant pairs in all cancer types 
for each gene and characterized the top 40 as key 
genes of the co-expression module (Figure 2A). 
Second, we identified 3759 gene pairs with significant 
mutational co-occurrence in 14 cancer types and 
screened the top 40 as key genes of the co-mutation 
module based on total occurrences (Figure 2B). Among 
them, we found four gene pairs with significant co- 
occurring mutations in seven cancer types, including 
LAMA1+RELN, APOB+COL19A1, COL12A1+IGSF10, 
and APOB+VCAN. Third, we constructed a PPI net-
work for 59 potential prognosis-related genes using 
the STRING database v11.0 and calculated the degree 
value using CytoHubba in Cytoscape. The high degree 
of core secretome genes indicates that there would be 
potential biological effects in the network. Among 
these genes, 51 genes had a complex interaction net-
work with more than one degree, and the top 40 genes 
with the highest degrees were identified as hub 
genes (Figure 2C). Finally, we defined 21 core 
secretome genes from the key genes in the above 
three interaction analyses, indicating that they may 
play important roles in the regulation of tumor prog-
nosis (Figure 2D).

Core Secretome Genes are Strongly 
Associated with Immunomodulators
Immune checkpoint genes were identified as prognostic 
biomarkers in multiple tumors, and their expression 
levels were associated with clinical parameters and 
immunotherapeutic response.32 So, we detected the 
role of the 21 core genes in the tumor immune 
response by detecting the association of their expres-
sion levels and genetic alterations with immunomodu-
latory genes (24 immune-inhibitor genes and 46 
immune-stimulator genes). According to the frequency 

of secretome genes in significant pairwise interactions, 
key immune-related genes were defined as the top 12 
and 11 genes with the highest frequency in the correla-
tions of immune inhibitors and immune stimulators, 
respectively. Among the core secretome genes, the top 
five genes (COL5A2, F8, SEMA3C, VCAN, and VWF) 
were associated with immune-inhibitor genes 
(Figure 3A) and the top seven genes (ADAMTS12, 
COL12A1, COL5A2, COL6A3, F8, FLT4, and VWF) 
were related to immune-stimulator genes (Figure 3B) 
with relevant research on gene expression and muta-
tion. Taken together, we screened nine immune-related 
secretome genes (ADAMTS12, COL12A1, COL5A2, 
COL6A3, F8, FLT4, SEMA3C, VCAN, and VWF) that 
may play prominent roles in immune infiltration, 
depending on the specific immune cells. In particular, 
three secretome genes (COL5A2, F8, and VWF) were 
found in both sets, suggesting that they may play 
a critical role in the immune response by combining 
with immunomodulator genes. At the same time, we 
assessed the performance correlations between the six 
genes mentioned above (in ‘Evaluation of Prognosis- 
Related Secretome Genes in TMB-High Patients 
Across 14 Solid Tumors’) (CLEC18B, COL21A1, 
FGA, KNG1, REG3G, and TG) and immunomodula-
tors, but found no strong correlations among them 
(Supplementary Figure S2A and B).

Core Secretome Genes are Significantly 
Correlated with TIICs
TIICs indicated the prognostic relevance and reflected 
the mechanisms underlying the anti-tumor immune 
response in different tumor types.33 To clarify the 
role of core genes in immune infiltration in the TMB- 
high group, we examined the correlation between the 
infiltration levels of 22 immune cells and core gene 
expression levels across 14 solid tumors. We found that 
their expression levels were mainly positively corre-
lated with the fractions of two TIICs (ie, macrophages 
M0 and M2) and negatively correlated with the 
fractions of three TIICs (ie, follicular helper T cells, 
CD8 T cells, and activated NK cells) (Figure 4). 
Meanwhile, five core genes (ADAMTS12, COL12A1, 
COL1A2, COL5A2, and POSTN) were significantly cor-
related with the above TIICs in more than six cancer 
types. A high infiltration level of CD4 memory resting 
T cells was associated with high expression levels of 
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core genes in fewer cancer types (Figure 4), and had 
a moderate correlation with the remaining 
TIICs (Supplementary Figure S3A). Consistent with 
the above results, six genes (CLEC18B, COL21A1, 
FGA, KNG1, REG3G, and TG) showed a poor correla-
tion with the abundance of 22 immune cells 
(Supplementary Figure S3B).

Identification of Common Features in 
Core Secretome Genes
To further explore the potential role of core secretome 
genes in immune infiltration, we detected several common 
features and potential molecular mechanisms of core 
secretome genes. Evidence from the current literature sug-
gests that the expression levels of the core secretome 

Figure 2 Identification of core genes through co-expression, mutation co-occurrence, and protein–protein interactions across 14 solid tumors in TMB-high group. (A) 
Gene co-expression analysis of 59 prognosis-related secretome genes among 14 solid tumors. Numbers represent cancer types with significant gene pairs. These genes were 
divided into three groups according to the frequency of secretome genes in significant gene pairs (red represents high group, green represents median group, and black 
represents low group). (B) Mutation co-occurrence analysis of 59 prognosis-related secretome genes across 14 cancer types. Genes were divided into three groups 
according to the frequency of secretome genes in significant gene pairs, ie, red squares indicate high group and green squares indicate median group. (C) PPI network of 52 
secretome genes constructed via STRING and Cytoscape. (D) Venn diagram of 21 core secretome genes from key genes based on co-expression modules, co-occurrence of 
mutation, and PPI analysis.
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genes may be important prognostic biomarkers in various 
cancer types (Figure 5A, Supplementary Table S4). 
Furthermore, they may be involved in the PI3K/AKT 
signaling pathway, which recruits cell infiltration and 
improves the outcome of immunotherapy.34 Based on the 
above results, we speculate that core secretome genes may 

regulate immune infiltration via the PI3K/AKT signaling 
pathway. In addition, 13 core secretome genes were sig-
nificantly differentially expressed in extracellular vesicles 
of three cancer types (ie, colorectal, liver, and pancreatic 
cancer) between tumor patients and healthy controls from 
the BBCancer database (http://bbcancer.renlab.org). 

Figure 3 Correlations of 21 core secretome genes with immunomodulator genes in TMB-high group across 14 cancer types. (A) Heatmap showing correlations among 21 
core secretome genes (bottom) and 24 immune-inhibitor genes (right). (B) Heatmap showing correlations among 21 core genes (bottom) and 46 immune-stimulator genes 
(right). Numbers in (A and B) show cancer types with significant gene pairs.
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Notably, 12 core secretome genes showed significant dif-
ferential expression (p<0.05) between responding and non- 
responding patients receiving immunotherapy, suggesting 
that they may sensitive to immune checkpoint blockade 
(Figure 5B).35 According to the GeneCards database, one 
transcription factor (POLA2R) was present in the core 
secretome genes, suggesting that a common molecular 
mechanism for these genes may be involved in the 
immune response of solid tumors (Figure 5C). Using the 
clinicalEnrichment function of the maftools package, our 
results showed that 15 secretome genes exhibited signifi-
cant enrichment for somatic mutations in stage II, demon-
strating that the mutation frequencies of these genes were 
significantly higher in stage II compared with the other 
three stages (Figure 5D).

Discussion
In this study, we provided a comprehensive description of 
the clinical outcome of secretome genes and revealed that 
core genes may play important roles in immune infiltration 
in TMB-high patients across 14 solid tumors. Utilizing the 
expression levels and genetic alterations of secretome 
genes, we identified 65 prognosis-related genes that were 
significantly associated with clinical outcomes across var-
ious types of cancer in TMB-high patients. Among them, 

21 core secretome genes were observed by performing 
dimensional analysis, and significantly related with 
immune modulator genes and TIICs in multiple solid 
tumors. Furthermore, we found differentially expressed 
core genes for immunotherapy. The results of functional 
enrichment analysis suggested that core genes were related 
to the PI3K/AKT signaling pathway.

Immunomodulator genes may reflect the status of 
immune topographies and act as potential targets for immune 
checkpoints.36,37 The expression levels of immunomodulator 
genes are associated with clinical outcomes and infiltration 
levels of immune cells.38 By combining expression data and 
genetic alteration profiling, we inferred essential immuno-
modulator genes and showed that core genes may be better 
predictors of immune infiltration and immunotherapy. Our 
findings showed that the expression levels of 21 core genes 
were closely related to the most widely studied immune 
inhibitors (CTLA4 and PDCD1) and novel immune inhibi-
tors (LAG3 and TIGIT), which are therapeutic targets in 
clinical and preclinical studies.39,40 From the core secretome 
genes (Figure 3A and B), we identified five immune- 
inhibitor genes (CD96, IL10RB, PDCD1, PVRL2, and 
TIGIT) and two immune-stimulator genes (CD276 and 
IL2RA) as the highest frequency immune-modulator genes 
in significant gene pairs. Identifying core secretome genes 

Figure 4 Correlations of 21 core secretome genes with TIICs in TMB-high group across 14 cancer types. Relationships among 21 core secretome gene expression levels 
and fractions of nine immune infiltration cells. Red and blue numbers indicate positive and negative correlations, respectively. Numbers show cancer types with significant 
gene pairs.
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associated with immune checkpoint genes may help to elu-
cidate the resistance mechanism to immune checkpoint inhi-
bition in the tumor microenvironment. These results suggest 
that the above immunomodulators may be targets for 

immune checkpoint blockade and that core secretome 
genes may facilitate the tumor immune response.

The prognostic outcomes of immunotherapy are 
linked to TIICs in various types of cancer, and these 

Figure 5 Functional analysis of 21 core genes. (A) Circos plot of 21 core genes based on function and differential expression in extracellular vesicles of three cancer types. 
Outer circle represents 21 core genes identified as potential biomarkers of different cancer types in previous studies. Middle circle represents 21 secretome genes showing 
differential expression in extracellular vesicles of three cancer types from the BBCancer database (http://bbcancer.renlab.org/). Inner circle represents 11 core secretome 
genes that may function in tumorigenesis through the PI3K/AKT signaling pathway. (B) Twelve core secretome genes sensitive to immunotherapy. (C) Predicted transcription 
factors of 21 core secretome genes from the GeneCards database. (D) Fifteen core secretome gene mutations were significantly enriched in stage II.
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could be used as potential predictive biomarkers for can-
cer immunotherapy.41,42 Our results demonstrated that 
there is a high correlation between core gene expression 
levels and infiltration of five TIICs, which indicated that 
five core genes (ADAMTS12, COL12A1, COL1A2, 
COL5A2, and POSTN) may be involved in regulating 
tumor immune infiltration in TMB-high patients. M2 
macrophages correlated with an increase in the expres-
sion levels of core secretome genes, suggesting that they 
were poor prognostic factors in most cancer types.43,44 

The core gene expression levels were negatively corre-
lated with the infiltration of follicular helper T cells, CD8 
T cells, and activated NK cells. These infiltrating immune 
cells play a pivotal role in the anti-tumor immune 
response and have implications for immunotherapy.45,46 

TIICs can secrete proinflammatory cytokines and chemo-
kines, and secretome factors have a function in anti- 
tumor effects, which may largely be due to TIICs.47 

Cytokines are effective in cancer immunotherapy and 
modulate various populations of immune cells.48–50 

Chemokines can affect the phenotype of immune cell 
infiltration and recruitment, and their expression levels 
are correlated with tumor immune responses.51 Our data 
raise the possibility that the infiltration-related secretome 
genes may function as potential mediators of immune cell 
infiltration in multiple solid tumors.

Consistent with our results, these three genes 
(ADAMTS12, COL12A1, and COL5A2) were closely 
related to immune infiltration and may have potential 
value for immunotherapy in multiple tumors. ADAMTS12 
is a favorable prognostic factor for immune infiltration in 
gastric cancer and pancreatic adenocarcinoma.52,53 

COL12A1 may act as a potential prognostic biomarker 
and an immune-associated therapeutic target in gastric 
cancer and pancreatic adenocarcinoma.54–56 COL5A2 has 
a strong correlation with immune infiltration and could be 
an immunotherapeutic target for multiple malignant 
tumors, including prostate cancer, glioma, lung adenocar-
cinoma, and pancreatic ductal adenocarcinoma.57–60 These 
results demonstrate that the above three genes may act as 
potential predictors for prognosis, and play important 
roles in immune infiltration in TMB-high groups. 
Nevertheless, limitations exist in this study. First, it is 
a retrospective study based on public databases, without 
our own data. Second, there is a lack of basic experiments 
to verify the impact of these secretome genes on immune 
infiltration.

Conclusion
In summary, we provided a comprehensive description of 
clinical outcomes of secretome genes in TMB-high 
patients, and revealed that core secretome genes were 
strongly associated with immune infiltration across 14 
major solid tumors. Three secretome genes (ADAMTS12, 
COL12A1, and COL5A2) were strongly associated with 
immunomodulator genes and five subtypes of TIICs. Our 
study highlights the important role of secretome genes in 
immune infiltration in TMB-high patients.
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