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Abstract: Cardiovascular diseases (CVDs) are a group of disorders of the blood vessels and 
heart, which are considered as the leading causes of death worldwide. The pathology of 
CVDs could be related to the functional abnormalities of multiple cell types in the heart. 
Single-cell RNA sequencing (scRNA-seq) technology is a powerful method for characteriz-
ing individual cells and elucidating the molecular mechanisms by providing a high resolution 
of transcriptomic changes at the single-cell level. Specifically, scRNA-seq has provided 
novel insights into CVDs by identifying rare cardiac cell types, inferring the trajectory 
tree, estimating RNA velocity, elucidating the cell–cell communication, and comparing 
healthy and pathological heart samples. In this review, we summarize the different scRNA- 
seq platforms and published single-cell datasets in the cardiovascular field, and describe the 
utilities and limitations of this technology. Lastly, we discuss the future perspective of the 
application of scRNA-seq technology into cardiovascular research. 
Keywords: cardiovascular diseases, clustering, trajectory inference, RNA velocity, cell–cell 
communication, spatial genomics

Introduction
Cardiovascular diseases (CVDs) are the leading cause of death globally, taking an 
estimated 17.9 million (32.1%) lives in 2015, up from 12.3 million (25.8%) in 
1990.1,2 CVDs are highly heterogeneous diseases involving a group of disorders of 
the heart and blood vessels, which include cardiomyopathy, hypertensive heart 
disease, heart failure, coronary artery disease, cerebrovascular disease, rheumatic 
heart disease and others.3 CVDs are complex in nature, stemming from molecular 
alternations at the genetic, epigenetic, transcriptomic, and even proteomic levels in 
various cardiac cell types.4,5 Accurate elucidation of cellular heterogeneities is 
necessary for decoding the pathogenic mechanisms of CVDs, identifying novel 
therapeutic targets, and developing effective treatment strategies.6

The profiling of cellular heterogeneity at the transcriptomic level in cardiac 
tissues has been considered as a promising direction for measuring the global 
transcriptional activity dynamics, which underlie the phenotypic diversity of multi-
ple cardiac cell types.7,8 Over the years, next-generation sequencing (NGS) tech-
nologies have led to many discoveries in biomedical sciences, including the 
phenotypic consequences of molecular variation in cardiovascular research.9–11

Until recently, bulk RNA sequencing (RNA-seq) had been primarily used to profile 
the averaged gene expression from tissues that consist of various cell types.12 Bulk 
profiling hence ignores the stochasticity of gene expression in each cell type and 
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indicates average values from the heterogeneous population 
of cells, which are affected by the relative cell-type abun-
dance and the states of each cell type within a sequencing 
sample.13 Molecular differences at the transcriptional level 
between distinct sub-cell types are also missing. In order to 
measure the transcriptome of each cell, several high- 
throughput single-cell RNA-sequencing (scRNA-seq) tech-
nologies have been developed and commercialized 
(Table 1).14–24 scRNA-seq enables the characterization and 
identification of transcriptionally different subpopulations at 
the single-cell level. This approach has the potential to iden-
tify novel directions to develop therapeutic strategies.25

The number of scRNA-seq studies in cardiovascular 
research has rapidly increased in recent years. A recent 
search with the keyword “(scRNA-seq or single-cell tran-
script*)[TIAB] AND (heart or cardiac or cardio*)[TIAB] 
in NCBI’s PubMed database of scientific publications 
returned 1238 articles (Sept. 5, 2021), 257 of which 
were published in 2020 and 254 of which published in 
2021, at the time this review was written (Figure 1). The 
application of scRNA-seq has transformed how we 
understand CVDs, with a growing recognition that car-
diac cell populations are far more heterogeneous than 
previously expected, and that bulk population analysis is 

inadequate for fully characterizing the biological com-
plexity of these various cell types (Table 2). In terms of 
computational processing, each particular scRNA-seq 
protocol, platform, and technology may require different 
pipelines of preprocessing of sequencing reads, quality 
control (QC), normalization, dimension reduction, clus-
tering, and differentially expressed gene (DEGs) 
calling.26 Along with the development of various meth-
odologies in single-cell capture, a paradigm has been 
occurring for the computational methodologies for the 
applications in biomedical research.27 In this review, we 
highlight the utilities of scRNA-seq in various analyses 
for cardiovascular research (Figure 2), including 1) unsu-
pervised clustering of scRNA-seq data to identify cardiac 
cell types and states within both healthy and diseased 
conditions, 2) characterization of the dynamics of tran-
scriptional states by trajectory inference, 3) prediction of 
the future transcriptional dynamic state by the estimation 
of RNA velocity, 4) inferring of cell–cell communication 
from the expression of genes encoding receptors and 
ligands, 5) single-cell integration of multiple datasets to 
identify rare cell types, 6) detecting genetic variants from 
scRNA-seq datasets, and 7) construction of the spatial 
genomic map of cardiac tissues. In the near future, 

Table 1 scRNA-Seq Sequencing Methods Comparison

scRNA-Seq 
Protocol

Data 
Type

Cost Platform Throughput 
(K)

Read Depth (per 
Cell)

Reaction 
Volume

Year Reference

Smart-seq/C1 

(Fluidigm)

Full 

length

High Microfluidics 0.1–1 106 Nanoliter 2012 [14]

Smart-seq2 Full 

length

High Microfluidics 0.1–1 106 Microliter 2014 [15]

MATQ-seq Full 

length

Moderate Plate-based 0.1–1 106 Microliter 2017 [16]

MARS-seq 3ʹ-End Low Plate-based 0.1–1 104–105 Microliter 2014 [17]

CEL-seq 3ʹ-End Moderate Plate-based 0.1–1 104–105 Nanoliter 2016 [18]

Drop-seq 3ʹ-End Low Droplet 1–10 104–105 Nanoliter 2015 [19]

msSCRB-seq 3ʹ-End Low Plate-based 1–10 104 Nanoliter 2018 [20]

Chromium 3ʹ-End Low Droplet 1–10 104–105 Nanoliter 2017 [21]

SEQ-well 3ʹ-End Moderate Nanowell 
array

1–10 104–105 Nanoliter 2017 [22]

SPLIT-seq 3ʹ-End Moderate Plate-based 1–100 104 Microliter 2018 [23]

ICELL8 5ʹ-End Moderate Nanowell- 

based

1 104 Nanoliter 2017 [24]
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advances in scRNA-seq research will provide further 
insights in better understanding the mechanisms of 
CVDs and in improving the diagnosis, treatment and 
prognosis of a broad range of CVDs.

The Workflow of scRNA-seq
A number of scRNA-seq techniques have been developed 
in the past decade. Different approaches of cell capture 
and transcript amplification result in differences in tran-
script length, target cell number, and read depth.28 Despite 
the differences, the scRNA-seq experimental techniques 
have a common workflow: sample preparation, dissocia-
tion, single-cell capture, cell lysis, reverse transcription 
(RT) and cDNA amplification, library preparation and 
RNA sequencing (Figure 2).29

Proper sample preparation is the key to generate 
high-quality single-cell transcriptome data. Considering 
the different properties of each cell type, the protocol 
should be optimized based on cell size, cell viability, and 
culture conditions.30 Single-cell suspensions are often 
achieved by a combination of enzymatic and physical 
dissociation. Subsequently, single cells are captured 

using different techniques including plate-based fluores-
cence-activated cell sorting (FACS) and droplet-based 
approaches. A broadly used droplet-based platform is 
the Chromium (10X Genomics) system, a microfluid 
device that allows rapid profiling of thousands of cells 
in droplets simultaneously. The Chromium system 
restricts the size of cells to be less than 30μm in 
diameter.31 Alternatively, plate-based FACS with 
a larger nozzle size (up to 130μm) can be used to capture 
cells of large size such as adult cardiomyocytes (CMs).32 

In addition, single-nuclei RNA sequencing (snRNA-seq), 
a method for profiling gene expression in cells that are 
difficult to be dissociated, is an alternative to scRNA-seq 
to capture adult and large cardiomyocytes. To isolate 
RNA inside the nucleus, snRNA-seq uses a nuclear dis-
sociation method that allows for minimization of techni-
cal issues.33

After individual cells are captured, they are lysed and 
processed for the first-strand cDNA synthesis by reverse 
transcription, followed by the second-strand synthesis and 
polymerase chain reaction (PCR) amplification. Single-cell 
system such as the Fluidigm C1 requires multiple PCR 

Figure 1 The number of papers published in the application of scRNA-seq in cardiovascular research in the past decades. Publications with the keyword “(scRNA-seq or 
single-cell transcript*)[TIAB] AND (heart or cardiac or cardio*)[TIAB]” in the NCBI PubMed database as of Aug 2021. Note the exponential growth in the number of 
published articles, in particular in the last 30 years.
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amplification, whereas most of the droplet-based techni-
ques including the Chromium system allow pooled PCR 
using cell barcoding techniques, which significantly 
improves throughput.34 The sequencing libraries of 
cDNA fragments are then constructed and sequenced by 
high-throughput next-generation sequencers such as 
NextSeq 500. Sequencing libraries constructed with 3ʹ 
end enrichment is more cost-effective and produces less 
sequencing noise, whereas libraries retained full-length 
transcripts often obtain increased sequencing depth.35

Subsequently, raw data generated from sequencers are 
processed to obtain the gene expression matrix based on 
the unique molecular identifiers (UMIs). Raw data proces-
sing software such as the Cell Ranger (10X Genomics) is 
capable of performing QC, assignment of reads to the 
corresponding barcodes, demultiplexing, genome align-
ment, and read count quantification.21 The resulting 
count matrices, usually in the form of sparse matrices, 
are represented in dimensions with the row defined as 
the gene, and column defined as each cell. Reads assigned 
to unique barcodes, however, may not always originate 
from a single cell, as the barcodes may appear doublets, 
triplets, or may not tag any cells.36

The single-cell sparse matrix is used to normalize 
variance and to identify overdispersion genes. Principal 
component analysis (PCA) is applied to detect principal 
components (PCs) that capture the greatest variance 
among all cells. The resulting data is subjected to the 
graph-based Louvain clustering in high-dimensional PC 
space to identify cell clusters. Finally, these data are pro-
jected into 2D/3D space using dimensionality reduction 
methods such as t-distributed stochastic neighbor embed-
ding (tSNE) or uniform manifold approximation and pro-
jection (UMAP) for visualization (Figure 3).36

Comparisons of Different 
scRNA-seq Platforms
Among numerous single-cell platforms varied in captured 
cell number and read depth per cell, the plate-based Smart- 
seq2 method and droplet-based 10X Genomics Chromium 
approach are the two frequently used scRNA-seq plat-
forms (Table 1). The plate-based Smart-seq2 platform 
has a high sensitivity for gene detection, especially for 
transcripts with low abundance. Depending on the method 
used for library construction and sequencing depth, the 
plate-based platform can simultaneously capture the full- 
length transcripts and reliably quantify more than 10,000 Ta
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genes in each cell.37 The capacity of capturing full-length 
transcripts has the added advantage of facilitating the 
identification of splicing isoforms in single cells.38 This 

approach also allows for the profiling of more cell types 
with a wide range of cell size, permitting the analysis of 
large cells such as adult cardiomyocytes that is currently 

Figure 2 Experimental workflow of single-cell RNA-seq. The general experimental workflow of single-cell RNA- study begins with sample preparation. Prepared cells are 
captured by various single-cell methods. Reverse transcription of single-cell RNA is performed, followed by PCR amplification and library preparation of the resulting cDNA. 
Next-generation sequencing is performed to generate the raw reads.

Figure 3 Application of scRNA-seq computational approach. Preprocessing steps convert the raw reads to sparse expression matrix. Downstream data analysis includes 
clustering, differentially expressed gene calling, cell trajectory analysis, RNA velocity, cell–cell interactions, identify mutations, integration (Reprinted from Cell, 177(7), Stuart 
T, Butler A, Hoffman P, et al. Comprehensive Integration of Single-Cell Data. 1888-1902 e182, Copyright 2019, with permission from Elsevier)64 and spatial genomics.

Vascular Health and Risk Management 2021:17                                                                                https://doi.org/10.2147/VHRM.S288090                                                                                                                                                                                                                       

DovePress                                                                                                                         
649

Dovepress                                                                                                                                                            Wang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


impossible to be profiled in droplet-based methods. 
However, reverse transcription performed in individual 
wells in the plate-based method prolongs the working 
process, limits throughput and increases noise in down-
stream steps.39

Droplet-based method such as the Chromium system 
from 10X Genomics enables 3′-end or 5′-end sequencing 
of single cells with higher throughput compared to the 
plate-based Smart-seq2 platform. Droplet-based methods 
encapsulate the single cells in oil droplets using DNA 
barcoding technology, substantially reducing the time and 
cost.40 Meanwhile, massive parallelization profiles up to 
10,000 cells per sample for a given run.41 However, this 
method has a higher noise in accurately detecting the 
transcripts, especially for transcripts with low expression 
levels. The sensitivity of the protocols is expected to 
improve with continued protocol optimization and cost 
reductions. Despite the poly(A) enrichment, approximately 
10–30% of all detected transcripts by both platforms are 
from non-coding genes, with lncRNA accounting for 
a higher proportion using the Chromium system.42

Applications of scRNA-seq in 
Cardiac Tissue
Unsupervised Clustering to Annotate 
Cardiac Cell Subtypes
scRNA-Seq can be used to annotate multiple cell types 
within the heart tissues based on the transcriptomic data of 
thousands of individual cells. In cardiovascular research, 
the clustered cell populations often include cardiomyo-
cytes, fibroblasts, vascular smooth muscle cells, endothe-
lial cells (ECs), epicardial adipocytes, immune cells and 
neural cells. Those identified cardiac cell clusters can also 
represent distinctive functional states in the different 
chambers such as ventricular and atrial chambers. Thus, 
performing unsupervised clustering to annotate cell popu-
lations represents cell types with biological relevance. 
Recently, scRNA-seq has been widely used to study 
heart development and disease. These studies utilized sam-
ples from various heart regions with or without disease, 
and identified multiple cardiac cell types.11,43–46 In addi-
tion, snRNA-seq also can assess the cellular and transcrip-
tional diversity of the human heart. For example, Tucker 
et al sequenced the transcriptomes of 287,269 single car-
diac nuclei, which have been clustered into a total of 9 
major and 20 subclusters of cardiac cell types within the 
human heart.10 Cell types that were subclustered include 

two distinct groups of resident macrophages, four endothe-
lial subtypes, and two fibroblasts subsets. They also iden-
tified strong enrichment for the role of cell subtypes in 
cardiac traits and diseases by using genetic association 
data.10 The newly defined subtypes transform our under-
standing of human heart and may pave the way for devel-
oping new therapeutics for CVDs.

Trajectory Inference Discovers Transition 
States in Heart Development
Trajectory inference is a computational technique used in 
single-cell transcriptomic analysis to determine the pattern of 
the dynamic cell transitional states based on the gene expres-
sion profiles of cells in varying states. It characterizes the 
expression pattern of the cells and places them along 
a pseudotime axis, which is a time-like variable demonstrating 
the relative position a cell takes in a lineage representing the 
evolution of the process rather than placing the cells in discrete 
clusters.47 By calculating a temporal dimension from the static 
scRNA-seq gene expression matrix, trajectory inference 
allows the probing of individual genes’ expression dynamics 
along with continuous cell-state changes. If the mean expres-
sion level of a gene can be changed along pseudotime, the 
gene is indicated as differentially expressed which can be 
crucial for the underlying cellular process that generated the 
pseudotime.47,48 Trajectory inference can thus illuminate the 
underlying biological processes by identifying key genes that 
play important roles in the development of particular lineages 
and genes differentially expressed between different lineages. 
Recently, Phansalkar et al applied the trajectory inference 
methods in developing human coronary arteries to illustrate 
coronary blood vessels from distinct origins can converge to 
equivalent states. The trajectory analysis result also suggested 
that artery ECs are formed by capillary ECs differentiation.49 

Ren et al used trajectory inference to reconstruct the progres-
sion trajectory to reveal intervention principles in pathological 
cardiac hypertrophy. The trajectory analysis also showed that 
activation of proinflammatory macrophages was a key event 
for the transition from normal to reduced ejection fraction.50 

Zhang et al used trajectory inference to illuminate the cell fate 
decisions and developmental origins of organ-specific cell 
types such as endothelial, muscle and cranial pharyngeal cell 
types in mesodermal progenitor cells. And they also uncov-
ered intraembryonic progenitor from the lateral plate meso-
derm (LPM) and cardiac progenitor from the late 
extraembryonic mesoderm can contribute to the development 
of cardiomyocytes.51 Collectively, these studies have utilized 
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trajectory inference tools to better understand cellular transi-
tions and intercellular communication in the early stages of 
human cardiac development.

RNA Velocity Predicts the Future 
Transcriptional Dynamic State
RNA velocity, a high-dimensional vector estimated by the 
ratio of unspliced and spliced mRNA reads in scRNA-seq 
data, is defined as the time derivative of the gene expression 
state.52 RNA velocity predicts the future transcriptional 
dynamic state of individual cells on a timescale and enables 
the identification of novel cell states in a systematic and 
quantitative manner. It has greatly aided the analysis of devel-
opmental lineages and cellular dynamics in the human heart.53 

Recently, Wolfien et al utilized RNA velocity analysis to study 
the transcription kinetics and to visualize the dynamics of the 
transitions between mature and nascent cellular states of the 
cell types in the mammalian heart.54 They found that different 
subgroups of mammalian cardiomyocytes have distinct mar-
ker profiles, especially for the profile of RNA velocity in 
cardiomyocytes. Meanwhile, via RNA velocity analysis, they 
identified a cell population that expressed the canonical 
endothelial markers that are also associated with cardiac con-
tractile function. Thus, the RNA velocity results generated in 
the mammalian hearts support the hypothesis that this popula-
tion is in a trans-differentiation process from an ECs-like 
phenotype towards a cardiomyocyte-like phenotype. In addi-
tion, Liu et al used RNA velocity analysis to identify the 
convergent development of the vascular smooth muscle cell 
(vSMC) lineage and to infer the direction and rate of the 
changes in vSMC state changes during heart development.55 

They found that the convergent development of vSMC lineage 
cell is involved in mesenchymal-to-vSMC transition or myo-
cardial-to-vSMC transdifferentiation. Taken together, RNA 
velocity tools have paved new ways of studying heart devel-
opment using scRNA-seq.

Identification of Unique Ligand–Receptor 
Interactions During Cardiac Cell–Cell 
Communication
Cell–cell communication is the essence of complex multi-
cellular behaviors, of which cells communicate with one 
another via the binding of ligands and receptors that regulate 
cellular function, structure, and maintenance. The complex 
network of cell–cell communications among various cell 
types in the heart is essential to maintain the regular heart, 
whose disruption can lead to CVDs. These interactions 

underlying an intercellular network can be inferred from 
scRNA-seq data. Wang et al studied the cell–cell interaction 
networks in the human heart. The authors showed that car-
diomyocytes and ECs are major cell-communication hubs 
and that cardiomyocytes’ contractility and metabolism are 
the most prominent aspects that are correlated with changes 
in heart function.46 For instance, Paik et al predicted the 
intercellular communication between ECs and other cell 
types in 12 major adult murine organs. This study reveals 
the existence of unique angiocrine ligand–receptor pairings 
between ECs and parenchymal cells in each major organs 
including heart and brain.8 Recent studies demonstrated the 
unrecognized functions of the immune cell during cardiac 
function and diseases. In the mouse heart, macrophages were 
found to facilitate electrical conduction and have crucial 
roles in myocardial infarction and aging. These discoveries 
emphasize the deeper investigation of the interplay among 
different cardiac cell types.56–58 Several statistical frame-
works based on ligand–receptor interaction, such as 
CellPhoneDB, CellChat, SingleCellSignalR, have been 
developed to predict the enriched cellular interactions 
between two cell types from single-cell transcriptomic 
data.59–61 Discoveries from the study of cell–cell communi-
cation have the potential to identify novel therapeutic targets 
for treatments of CVD patients.

scRNA-Seq Integration Discovers 
a Novel Subset of Cardiomyocytes 
Population
The broad application of scRNA-seq technologies generated 
an unprecedented amount of data for cardiovascular research 
listed in Table 2. Integrated datasets from separate studies 
have the potential to provide biological insights that will not 
be possible from analyzing individual datasets. For instance, 
the integration of multiple scRNA-seq datasets derived from 
subpopulations of cells of a particular tissue can aid in 
characterizing heterogeneity in these tissues under different 
conditions. Many powerful methods have been developed to 
integrate individual scRNA-seq datasets such as Seurat v3, 
Harmony, SIMLR, SC3.62–65 Recently, Galow et al used the 
single-cell integration method to discover a minor population 
of cardiomyocytes characterized by proliferation markers 
that could not be identified by analyzing the datasets indivi-
dually. The integration analysis also gave evidence that the 
renewal of the cardiomyocyte pool is driven by cytokinesis 
of resident cardiomyocytes rather than the differentiation of 
progenitor cells.66 Kuppe et al used scRNA-seq, scATAC-seq 
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and spatial transcriptomic to profile the various physiological 
timepoints and zones of human health myocardium and 
myocardial infarction to build an integrative high-resolution 
map of cardiac remodeling. This integrated method increases 
cell-type composition spatial resolution and identifies the 
distinct injury, repair and remodeling cellular spatial 
zones.67 In summary, single-cell integration genomics has 
played a fundamental role in our understanding of tissue 
heterogeneity and cross-species analyses may yield similar 
insights toward our understanding of cardiac cell diversity.

Detection of Genetic Variants from 
scRNAs-Seq Data
Genetic variants are generally identified from whole-genome 
sequencing (WGS) and whole-exon sequencing (WES) 
studies.61 Detecting genetic variants from scRNA-seq data 
is rarely reported because of the inherited limitations of 
scRNA-seq platform such as low transcript abundance, alle-
lic dropout, and incomplete transcript coverage. To overcome 
these limitations, SCmut has been developed to identify the 
cell-level recurrent variants in many single cells by control-
ling the false discoveries using the 2D local false discovery 
rate (FDR). The variants detected from scRNA-seq data can 
facilitate the investigation of cell-to-cell heterogeneity.68 

Compared to variants identified from WGS/WES dataset, 
the cell-level mutations can only be found in the exonic 
regions and are affected by stochastic monoallelic expres-
sion. Although the methods for detecting genetic variants 
from scRNA-seq data have been reported in studies of the 
area of cancer biology, to date, no scRNA-seq studies in 
cardiovascular research reported mutation analysis. 
However, detecting genetic variants from scRNA-seq dataset 
has the potential to reveal the precise mechanisms of the 
pathogenesis in CVDs.

Construction of Spatial Subcellular Map 
During Heart Development
Spatial transcriptomics has been developed to characterize 
the gene expression profiles simultaneously retaining spatial 
information in various biological contexts.69 These methods 
aim to elucidate the function of individual cells in the context 
of their spatial organization in the tissue.70 The methodolo-
gies in spatial transcriptomics provide important insights in 
cardiovascular research to explore the process of cardiac 
morphogenesis in humans. For example, fluorescence 
in situ hybridization (FISH)–based method has been devel-
oped to directly label in tissue sections to visualize each 

single cell, even in subcellular location.71–73 In the latest 
work reporting the application of spatial genomic in the 
cardiovascular field, Asp et al used spatial transcriptomic 
method to study the transcriptional landscape of cardiac 
cells during the development of the embryonic heart and 
mapped the specific genes to the corresponding anatomical 
domains. They characterized the unique gene profiles in 
distinct anatomical regions and constructed a spatial subcel-
lular map for the three developmental phases.43 In a separate 
study, Mohenska et al used spatial transcriptomics to recon-
struct a 3D gene expression pattern in the mouse adult heart. 
They revealed specific gene lists that displayed complex 
spatial expression in organ sub-compartments, and deci-
phered gene expression profiles of the atria and the transcrip-
tional complexity within the ventricles, and predicted the 
localization of non-myocytes within the heart.74 These spa-
tial transcriptomics methods have greatly facilitated future 
studies on cardiogenesis with unprecedented resolution.

Limitations of scRNA-seq in Cardiac 
Tissue
Current scRNA-seq technologies are still confronting many 
challenges and limitations to profile the transcriptomic 
panorama of individual cells.75 For instance, scRNA-seq is 
unable to reliably detect low-abundance transcripts. It has 
been reported that only approximately 10% of the transcript 
could be detected from a single cell and the percentage of the 
lost RNA content reached to 60%. Both contribute to a higher 
difficulty in detecting the low abundant transcripts.76,77 The 
low amount of transcripts often resulted from library pre-
paration leads to high levels of computational noise, which 
disturbs data analysis and may mask underlying biological 
variation. For example, long non-coding RNAs (lncRNAs), 
which have critical roles in regulatory functions, typically are 
presented in several copies in a cell but often could not be 
detected.78 Thus, it is necessary to improve the sensitivity of 
scRNA-seq to detect low copy transcripts in one cell to gain a 
full understanding of many regulatory processes.

Furthermore, some cell types such as cardiomyocytes 
may not be compatible with the processing steps of pop-
ular scRNA-seq techniques. The droplet-based Chromium 
platform is suitable for scRNA-seq studies with cells 
smaller than 30μm.31 However, adult CMs in mice and 
humans are relatively larger than 100μm in diameter, 
which deterred the use of this single-cell system.31 

Therefore, snRNA-seq, which extracted nuclei rather 
than intact CMs, or plate-based FACS platform could be 
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considered as alternative methods to profile CMs or cells 
from frozen specimens.79 Future improvement in these 
single-cell protocols using intact cells or nuclei will help 
to overcome the limitations and biases.

Unsupervised clustering of scRNA-seq data is crucial 
for the downstream data analysis, as it annotates the cell 
types. In clustering, the hypothesis is that each cluster will 
represent one cell type. However, there is no golden stan-
dard for defining the cluster as a specific cell type.75,80 

This is partly due to the expression matrix exhibited more 
zero values (known as dropouts). The dropouts cause 
higher levels of noise to annotate the state and identity 
of the cells accurately.81 The technical noise is also gen-
erated in the preparation of sequencing samples such as 
single-cell digestion resulted disproportionately enriches 
for one cell type over another.80

Trajectory inference can use single-cell sequencing data 
to infer the cells along the developmental trajectories and 
facilitate mapping clonal relationships onto these 
landscapes.47 However, these sequencing-based lineage- 
tracing methods are still in their infancy. Compared with 
the DNA barcodes and clone analysis to reconstruct lineage 
relationships, sequencing-based lineage-tracing methods are 
sensitive to the choice of experimental platform to perform 
the scRNA-seq, which could affect the conclusions.82 

However, it can anticipate that lineage-tracing methods 
might be integrated with clonal analysis and DNA barcoding 
methods, which will significantly track the number of clones 
and establish clonal composition without requiring prior 
knowledge of the marker genes.82 To accurately decipher 
the spatial gene expression, it is important to capture gene 
identity along with quantitative data. And efforts have been 
made to achieve higher spatial resolution due to the inte-
grated single-cell imaging techniques.83

Perspective
Over the past decade, there has been an increasing interest in 
using scRNA-seq technologies to study cardiovascular 
development and disease. Imaging technologies such as 
FISH have been proposed to combine with scRNA-seq to 
study the spatial single-cell transcriptomic profiles in the 
cardiovascular environment.84 In addition, long-read sequen-
cing technology such as PacBio and Oxford Nanopore plat-
forms can be combined with high-throughput droplet-based 
scRNA-Seq workflows to capture gene-expression profiles 
with targeted full-length mRNA sequences from a large num-
ber of cells. Such combination has the potential to achieve 
both high sensitivity and accuracy in capturing full-length 

transcripts, which could be further used for the identification 
of somatic mutations and the inference of clonal evolution of 
distinct cell types.85 In addition, the integration of scRNA- 
seq and chromatin accessibility data can provide more com-
prehensive insights into gene regulation and cellular 
dynamics. As the numbers of scRNA-seq datasets are rapidly 
increasing due to collaborative efforts such as the Human 
Cell Atlas consortium,86 it is necessary to optimize the algo-
rithm and develop sophisticated computational methods for 
data analysis. Collectively, scRNA-seq technologies will 
greatly expand our knowledge in cardiac cell heterogeneity, 
CVD pathogenesis and microenvironmental interactions, and 
ultimately lay a foundation for precision medicine in cardio-
vascular diseases.
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