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Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent 
single-gene disorder leading to renal failure. Current therapies are aimed to treat renal and 
extrarenal complications of ADPKD, but improved knowledge of the pathophysiological 
mechanisms leading to the generation and growth of cysts has permitted the identification of 
new drug candidates for clinical trials. Among these, in this review, we will examine above 
all the role of metformin, hypothesized to be able to activate the AMP-activated protein 
kinase (AMPK) pathway and potentially modulate some mechanisms implicated in the onset 
and the growth of the cysts. 
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Introduction
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent single- 
gene disorder leading to renal failure.1 It occurs in all races with a prevalence estimated 
to be from 1 case every 400 to 1 case every 1000 births.2 ADPKD essential feature is 
the formation of multiple and bilateral renal growing cysts determining kidney enlar-
gement, progressive parenchyma damage and often leading finally to end-stage renal 
disease (ESRD) and renal replacement therapy in adulthood. It is considered 
a multisystem disorder as cysts appear also in other organs such as liver, pancreas, 
arachnoid membrane, etc., and this characteristic causes extrarenal complications like 
intracranial aneurysms and cardiac valvular disease.3,4 ADPKD is genetically hetero-
genous, but two commons genes are identified, PKD1 and PKD2, that respectively 
encode for polycystin-1 and -2 (PC1, PC2).1

Polycystins are transmembrane proteins mainly found in plasma membranes but 
also in the primary cilium localized in renal tubular epithelia, hepatic bile ductuli 
and pancreatic ducts, in which alteration cause uncontrollable cellular proliferation 
and abnormal fluid secretion.5–7 The main molecular pathogenetic mechanisms 
involve the pathways of cAMP, mTOR, MAPK/ERK and JAK/STAT.8

Current therapies are aimed to treat renal and extrarenal complications of 
ADPKD, but improved knowledge of the pathophysiological mechanisms leading 
to the generation and growth of cysts has permitted the identification of new drug 
candidates for clinical trials. Among these, in this review, we will examine above 
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all the role of metformin, hypothesized to be able to 
activate the AMP-activated protein kinase (AMPK) path-
way and potentially modulate some mechanisms impli-
cated in the onset and the growth of the cysts.9 Despite 
evidence from numerous preclinical studies, there are still 
many questions about the clinical efficacy of metformin in 
ADPKD patients.

ADPKD: From Genetic to Impaired 
Signaling Pathways
PKD Gene Products
PC1 and PC2 are members of a subfamily of transient 
receptor potential channels controlling both intracellular 
calcium homeostasis and signaling. Polycystins are largely 
expressed in epithelial (among them renal tubules) and in 
many other tissues.8,10 They detect extracellular signals at 
primary cilia, cell–cell junctions and cell-matrix contacts 
and are essential to preserve the differentiated phenotype 
of the tubular epithelium. The reduction of one of the 
polycystins makes it impossible to maintain planar polarity 
and enhances cellular proliferation and apoptosis, expres-
sion of secretory phenotype.11 PC1 (~660 kDa) is 
a receptor-like protein; it consists of a large extracellular 
N region, 11 transmembrane regions and a brief intracel-
lular C region. It is localized in primary cilium, plasma 
membrane, desmosome, adherens junctions and interacts 
with PC2 creating a complex that is believed to play a role 
in the regulation of intracellular Ca2+. Moreover, PC1 
interacts with a wide network of proteins and has an 
essential role in ciliary mechanosensory functions.12 PC2 
(~110 kDa) is Ca2+-responsive cation channel and 
consists of an N-terminal cytoplasmatic region, six trans-
membrane domains and short C-terminal region. It is 
found primarily in endoplasmatic endothelium but further-
more in plasma membrane, primary cilium, mitotic spin-
dles, centrosome and is involved in PC1 regulation.11,13 

The function of the PC complex on the cilium is a debated 
and unresolved question. One of the cilium functions 
could be as a flux detector, supporting calcium influx 
when flow is present and curtailing Ca2+ import in 
response to a lack of flow or loss of the PC complex.14,15

Via ryanodine receptors, this influx regulates further 
release of cation from subcellular compartments, modulat-
ing the downstream of calcium pathways. The alteration of 
intracellular calcium concentration mediates gene expres-
sion, apoptosis, differentiation, and cell division. The 

impaired calcium pathway causes the major pathophysio-
logical features of ADKPD, resulting in cystogenesis.14

The Function of cAMP, mTOR, AMPK and 
JAK-STAT Pathway in the Cellular 
Proliferation and Fluid Secretion 
Regulation in Cystic Epithelial Cells in 
ADPKD
Cyclic adenosine monophosphate (cAMP) is involved in 
crucial cellular processes such as fluid and electrolyte 
regulation, differentiation, transcription and cell prolifera-
tion. Many evidence have shown that elevated intracellular 
cAMP concentration causes cyst growth, kidney expansion 
and progression of renal disease. Indeed, in animal models 
of PKD, high levels of cAMP were frequently found, not 
only in the kidney but also in vascular smooth muscle and 
liver.16 Intracellular cAMP accumulation and altered cal-
cium levels could have an essential role in ADPKD patho-
genesis and cystogenesis.17

Levels of intracellular cAMP are determined by the 
activities of membrane-bound and soluble adenylyl 
cyclase (ACs), which drive the formation of cAMP from 
ATP, and phosphodiesterases (PDEs) that transform cAMP 
to AMP.18 Reduced intracellular calcium levels (present in 
PKD) could be responsible for AC6 or AC5 activation, 
which directly inhibit calcium-/calmodulin-dependent 
PDE119 and inhibit (indirectly) cGMP inhibitable PDE3, 
consequently leading to accumulation of cAMP and acti-
vation of protein kinase A (PKA).20 This, in turn, stimu-
lates cystic fibrosis transmembrane conductance regulator 
(CFTR)-driven chloride and fluid secretion and cell 
proliferation.21,22

In summary, in cystic epithelium, the reduced intracel-
lular calcium concentration, due to PC complex alteration, 
causes activation of Ras/Raf/MEK/ERK pathway by 
cAMP, in contrast to normal kidney epithelia.23–25 The 
elevated cAMP levels activate CFTR and potassium chan-
nels, producing respectively outflow of chloride and 
sodium.8,26 This determines an increased osmotic pressure 
and consequent transfer of water by aquaporins, enlarging 
the cysts.

In addition, the functional disorder of PC1 leads to 
mTOR pathway activation, through unregulated phosphor-
ylation of TSC2 (tuberous sclerosis complex-2) mediated 
by AKT. In ADPKD, AMPK down-regulates both CFTR 
channels and mTOR pathway that, as already mentioned, 
are partially responsible for cystogenesis.9,27,28
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The JAK-STAT signalling system is probably also 
involved in the pathogenesis of ADPKD. STAT-6 is acti-
vated by the interleukin (IL) 4- and IL-13 and indeed the 
cyst fluid contains high concentrations of IL-13 and its 
receptors.29

Current Therapy for ADPKD
Treatment of ADPKD includes management of renal and 
extrarenal complications, chronic kidney disease (CKD), 
and specific therapies (disease-modifying therapies). Most 
patients with ADPKD could require renal replacement 
treatment after the fourth decade.30 In all patients with 
ADPKD, management of hypertension is critical. It is 
thought that it may be secondary to the expansion of 
renal cysts by causing areas of renal ischemia and leading 
to increased activity of the renin-angiotensin-aldosterone 
system.31,32 For this reason, the first-line treatment is ACE 
inhibitors or, in case of intolerance, an angiotensin recep-
tor blocker.32,33 In addition, sodium restriction (maximum 
2 grams of sodium per day corresponding to approxi-
mately 5 grams of salt) is recommended for all patients 
because increased sodium excretion has been shown to be 
associated with growth of renal volume and reduced esti-
mated glomerular filtration rate (eGFR).34 To identify 
patients who might benefit from specific therapy (disease- 
modifying therapies), it is necessary to recognize those at 
high risk for CKD progression. The most widely used 
method is based on the Mayo classification.

Patients with ADPKD are divided into five classes (1A, 
1B, 1C, 1D, 1F), from lowest to highest risk; classes 1C, 
1D, and 1E are considered to be at high risk of progression 
to ESRD.35 Using this method, it is possible to predict the 
rate of eGFR reduction through total kidney volume 
(TKV).36 This can be calculated with the TKV calculator 
(available online) which is based on the length, width and 
depth of both kidneys obtained from computed tomogra-
phy (CT) or magnetic resonance imaging (MRI) images, 
both without contrast medium [http://www.mayo.edu/ 
research/documents/pkd-center-adpkd-classification/doc- 
20094754]. All present therapies aim to treat renal and 
extrarenal complications of ADPKD such pain, urinary 
tract and cyst infection, nephrolithiasis, hypertension and 
obviously the CKD. Improved knowledge of the patho-
physiological mechanisms leading to the generation and 
growth of cysts has permitted the identification of new 
drug candidates for clinical trials. These include vasopres-
sin antagonists, somatostatin analogs, mammalian target of 
rapamycin (mTOR) inhibitors and so other investigational 

drugs. Of these, the only one to have entered in clinical 
practice is Tolvaptan, a short-acting vasopressin V2- 
receptor (V2R) antagonist.

Vasopressin Antagonist
It has been seen, in animal studies, that vasopressin acting 
on V2Rs, activates a cascade of intracellular signals lead-
ing to cell proliferation and fluid secretion, crucial for 
cystogenesis.37 Conversely, suppression of vasopressin 
release, action, or production through high water intake, 
antagonism on the V2R, or genetic elimination of vaso-
pressin results in lesser cyst burden and, consequently, 
a slowing of kidney damage with increased animal 
survival.38,39 After these results, two large randomized 
clinical trials were conducted on the use of Tolvaptan in 
patients with ADPKD. In TEMPO (Tolvaptan Efficacy and 
Safety in Management of Autosomal dominant Polycystic 
Kidney Disease and Its Outcomes) were enrolled patients 
with eGFR >60 mL/min/1.73m2 and a TKV >750 mL. In 
the treatment group, Tolvaptan has been shown to reduce 
the annual increase of TKV and the decline in renal func-
tion, although there was a higher rate of aquaretic-related 
adverse events (thirst, polyuria, polydipsia, hypernatremia, 
nocturia) and a clinically significant increase in liver 
enzymes in tolvaptan-treated patients.40,41 In REPRISE 
(Replicating Evidence of Preserved Renal Function: An 
Investigation of Tolvaptan Safety and Efficacy in 
ADPKD) were enrolled patients with more advanced 
CKD (eGFR 25 to 65 mL/min/1.73m2).42 In this study 
the data showed, also, that Tolvaptan slows the decline 
in renal function, even in patients in whom the baseline 
eGFR is significantly reduced. It is thought that increased 
oral water intake, suppressing vasopressin release, may 
reduce cyst growth in patients with ADPKD. To answer 
this question, a pilot study was conducted to evaluate the 
effect of water loading (acute and chronic) on urinary 
osmolarity and cAMP levels. Chronic water loading (at 
least 3 L/day) has been seen to increase urinary volume 
and to reduce urinary osmolarity (mean value 270 mos-
mol/L). With chronic water loading, cAMP excretion did 
not change, whereas with acute loading it did.43,44 These 
data suggest that increased oral water intake of at least 3 
L/day may, by partially suppressing vasopressin release, 
effectively reduce urinary osmolarity.

Somatostatin Analogues
Somatostatin is a hormone that inhibits intracellular cAMP 
production, but due to its short half-life, it has limited 
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therapeutic potential.45 For this reason, more stable syn-
thetic peptides have been tried; among them octreotide 
(long-acting somatostatin), lanreotide (somatostatin analo-
gue) and pasireotide (pansomatostatin analogue) have the 
potential to reduce fluid accumulation in renal and hepatic 
cysts in patients with PKD.46–52 However, these drugs 
have not demonstrated to slow the decline in kidney func-
tion and are potentially responsible for serious adverse 
events;, for these reasons, they are not recommended.

Mammalian Target of Rapamycin (mTOR) 
Inhibitors
As previously described, mTOR is activated in animal 
models of PKD. Studies in rodent models of PKD have 
demonstrated that sirolimus and everolimus (mTOR inhi-
bitors) are able to prevent cystic expansion and protect 
renal function.53–55 Two large clinical trials testing ever-
olimus and sirolimus have shown that these agents are yes 
able to slow renal and hepatic volume growth but without 
preserving renal function, at least in the short term (18–24 
months).56

Other Experimental Therapies
So many other medical treatments are currently under 
investigation in animal models of ADPKD: methylpredni-
solone, lovastatin, epidermal growth factor receptor tyro-
sine kinase inhibitors, cyclin-dependent kinase inhibitor 
(roscovitine), bardoxolone methyl, mitogen-activated pro-
tein kinase inhibitor.30,57–63 Pravastatin, an HMG-CoA 
reductase inhibitor, in a small randomized clinical trial 
that included children and young adults with ADPKD, 
has shown to slow the rate of increase in kidney 
volume.64 Bosutinib, a Src-inhibitor (overactivated in 
ADPKD), in a Phase II, double-blind randomized clinical 
trial, reduced the rate of kidney growth but with similar 
eGFR annual decline compared to placebo.65 In animal 
model of cystic disorder, amiloride and low caffeine use 
may reduce cyst enlargement but has not been shown to be 
as effective in humans with ADPKD.66–68 Another impor-
tant agent that is emerging as a possible medical treatment 
in patients with ADPKD is metformin. Below we discuss 
its mechanism of action and preclinical and clinical studies 
demonstrating its potential efficacy.

Metformin’s Mechanism of Action
Metformin currently represents the treatment of first 
choice in most patients with first-diagnosis type 2 diabetes 

mellitus (T2DM), in the absence of contraindications.69,70 

All the effects and benefits of metformin are numerous and 
are not fully known. Its main mechanism of action is to 
reduce hepatic glucose release through an inhibition of 
gluconeogenesis.71 In addition, it activates AMPK in hepa-
tocytes leading to a reduction of lipid levels.72,73

The Role of Metformin in ADPKD
Preclinical Evidence About the Metformin 
Efficacy on ADPKD
A variety of preclinical studies have shown an effect of 
metformin on cystogenesis in ADPKD. Actually, it is 
believed that impaired glucose metabolism may play an 
important role in kidney cyst formation. It has been 
shown that, in a murine model of PKD1 and in human 
kidney cells with ADPKD, there is a shift in energy 
metabolism that causes an enhanced aerobic glycolysis. 
Because of this metabolic change, ADPKD cells has 
a broken proliferation/apoptosis equilibrium. In contrast, 
glucose deprivation causes an increase in apoptosis and 
a reduction in autophagy and proliferation in PKD1 
mutant cells. The administration of a non-metabolized 
glucose analog (2-deoxyglucose, 2DG), modulating 
AMPK and m-TOR pathways, reduced proliferation 
rates, kidney volume and cystic index.74 Metformin, inhi-
biting both the m-TOR and CFTR pathways, can activate 
AMPK that leads to a reduction of renal cyst growth in 
mouse models affected by ADPKD. Takiar et al have 
noticed that in the renal parenchyma of mouses treated 
with metformin, cysts persist; this proves the inability of 
metformin to revert cystogenesis when the cysts have 
already been produced. Indeed, the action of metformin 
on cystogenesis before its occurrence was to reduce mod-
erately the cyst growth,9 which suggests that it might 
significantly delay the progression of the cysts, retarding 
the onset of ESRD. Lian et al have investigated the 
effects of the combination of metformin and 2DG in pig 
model. In the control group, there was a pronounced 
enlargement of renal parenchyma with growth of large 
vesicles and cysts, while in the treatment group, there was 
a minimal presence of the same traits. The maximal 
difference was showed in the combination-therapy 
group. After 20 months, in the treatment group, was 
shown a significant reduction in creatinine serum concen-
tration. The interventional group showed, a lower activity 
of several elements of mTOR, while AMPK was over 
expressed.75
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Clinical Evidence About Metformin 
Efficacy in ADPKD
The clinical efficacy of metformin in ADPKD patients has 
been studied only in a few small clinical trials, while more 
extensive studies are currently in progress and results are 
awaited in 2022 (ClinicalTrials.gov). These studies will 
assess the feasibility of using metformin as a therapy for 
ADPKD; one of these will compare the efficacy of met-
formin versus tolvaptan.

The first literature data about the possible effectiveness 
of metformin in ADPKD patients are connected to the 
occasional observation that one of three sisters was diag-
nosed T2DM in 2016, so metformin (1500 mg/day) was 
prescribed. Two years later, through retrospective analysis, 
was seen an eGFR decline three times slower than before, 
while the eGFR decline of the other two sisters was 
unchanged.3,76–78 In another retrospective study, data from 
seven patients with CKD stage 3 and T2DM were analyzed. 
These subjects were in chronic treatment with at least 
1000 mg of metformin. After the first year of monitoring, 
in the metformin group, eGFR decreased by only 2.5%, 
while in the control group, it was reduced by 16%. 
Between the second and third year, a similar trend to the 
previous one was registered: in the metformin group, eGFR 
was stable around the baseline (48.1 mL/min/1.73m2) while 

continuing to decrease in the control group. Of course, all 
these data must be interpreted within the limits of the type 
of study and the population under consideration. Major 
limitations include the small sample size, the retrospective 
design of the study and the absence of direct evidence of 
a cause-and-effect relationship between metformin admin-
istration and protection on renal tissue.79 METROP was the 
first prospective study to assess the potential of Metformin 
on renal function in ADPKD patients. This is a single-center 
pilot study in which were enrolled 34 non-diabetic ADPKD 
patients in a single-arm of treatment, that consisted of 500– 
1000 mg/day metformin. The follow-up time was 24 
months and has been completed by only 16 of 34 patients 
(47%). Twelve of these dropped out of the study for unspe-
cified reasons, affecting the reliability of the results. This 
study demonstrated the tolerability of metformin, with its 
limitations. Only a few adverse events occurred, which 
were mainly of a gastrointestinal character (63.6%). In 
synthesis, in concert with intention-to-treat population 
(ITT) analysis, eGFR had changed by –2.59% and by 
−7.2%, in line with per-protocol population (PP) analysis. 
The results of the study were affected by several limitations, 
among them, the small sample size, the chosen design and 
the large number of dropouts (54%). For that, obviously 
every conclusion should be made with caution.80

Figure 1 Graphical representation of mechanisms involving current new therapies to slow progression of CKD in ADPKD.
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Finally, two randomized clinical trials (ClinicalTrials. 
gov NCT02656017 and NCT02903511) are in progress 
with the goal of verifying the potential metformin efficacy 
in ADPKD patients. A third study (ClinicalTrials.gov 
NCT03764605), still in the recruitment phase, will aim 
to evaluate metformin efficacy in slowing renal cystogen-
esis in ADPKD compared to the actual gold standard 
(tolvaptan).

Conclusions
The optimal management of ADPKD should consist not 
only in the treatment of its complications and the general 
measures used in CKD but also with drugs that can modify 
the course of the disease itself as is partially the case of 
tolvaptan (vasopressin antagonist). These agents may be 
able to slow, stop the growth of cysts or even prevent their 
onset, reducing the renal damage that unfortunately often 
leads to renal replacement treatment (Figure 1).

Metformin may be the near-ideal agent to achieve these 
results, considering its well-known good tolerability already 
partially affirmed in ADPKD patients. Its potential use is 
sustained by one of its possible mechanisms of action in 
predicting efficacy by the involvement of AMPK in the 
pathophysiology of ADPKD. In addition, strong preclinical 
data suggested that metformin prevents the development of 
renal cysts by slowing the progression of the disease and 
subsequent kidney damage. This supports the testing of 
metformin in randomized clinical trials. The possibility to 
act therapeutically before the onset of renal cysts makes it 
crucial the early diagnosis of the disease, even before the 
appearance of clinical manifestations (often very late because 
of the important functional reserve of the kidney). Data to 
enable its use in clinical practice do not yet exist, but promis-
ing results from ongoing clinical trials are expected in the 
short term.
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