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Abstract: Globally, breast cancer is the most common cancer type and is one of the most 
significant causes of deaths in women. To date, multiple clinical interventions have been 
applied, including surgical resection, radiotherapy, endocrine therapy, targeted therapy and 
chemotherapy. However, 1) the lack of therapeutic options for metastatic breast cancer, 2) 
resistance to drug therapy and 3) the lack of more selective therapy for triple-negative breast 
cancer are some of the major challenges in tackling breast cancer. Given the safe nature of 
natural products, numerous studies have focused on their anti-cancer potentials. Mangifera 
indica, commonly known as mango, represents one of the most extensively investigated 
natural sources. In this review, we provide a comprehensive overview of M. indica extracts 
(bark, kernel, leaves, peel and pulp) and phytochemicals (mangiferin, norathyriol, gallotan-
nins, gallic acid, pyrogallol, methyl gallate and quercetin) reported for in vitro and in vivo 
anti-breast cancer activities and their underlying mechanisms based on relevant literature 
from several scientific databases, including PubMed, Scopus and Google Scholar till date. 
Overall, the in vitro findings suggest that M. indica extracts and/or phytochemicals inhibit 
breast cancer cell growth, proliferation, migration and invasion as well as trigger apoptosis 
and cell cycle arrest. In vivo results demonstrated that there was a reduction in breast tumor 
xenograft growth. Several potential mechanisms underlying the anti-breast cancer activities 
have been reported, which include modulation of oxidative status, receptors, signalling 
pathways, miRNA expression, enzymes and cell cycle regulators. To further explore this 
medicinal plant against breast cancer, future research directions are addressed. The outcomes 
of the review revealed that M. indica extracts and their phytochemicals may have potential 
benefits in the management of breast cancer in women. However, to validate its utility in the 
creation of innovative and potent therapeutic agents to treat breast cancer, more dedicated 
research, especially clinical studies are needed to explore the anti-breast cancer potentials of 
M. indica extracts and their phytochemicals. 
Keywords: mango, Mangifera indica, mangiferin, breast cancer, molecular mechanism, 
natural products, women’s health

Introduction
Globally, breast cancer remains one of the most common cancers and causes of deaths 
in females.1 In 2020 alone, there were 2,261,419 new cases and 684,996 deaths 
globally.2 In fact, most breast cancer cases are diagnosed at early stages when the 
disease is deemed as relatively curable.3 However, approximately 20–30% of these 
patients suffer from distant relapse with cancer cells spreading from the primary site to 
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distant body parts (eg, bones, brain, distant nodal, liver, lungs 
and pleural/peritoneal metastases).3

The development of breast cancer is thought to be related 
to several important risk factors; with aging playing the 
major role, followed by family history (eg, BRCA1/2 muta-
tions), reproductive factors (eg, early menarche and late 
menopause), hormonal imbalances (eg, elevated estrogen 
levels) and lifestyle (eg, high fat intake and alcohol 
consumption).4 In fact, only 5–10% of breast cancer cases 
are thought to have a genetic background, with BRCA1/2 
germline mutations contributing to approximately 50% of 
these hereditary cases.5,6

Breast cancer is a heterogenous disease owing to the 
existence of molecular and phenotypic variations within a 
patient’s tumor (intra-tumoral heterogeneity) and between 
different patients’ tumors (inter-tumoral heterogeneity).7 

Based on immunohistochemistry and gene expression pro-
filing, breast cancer can be classified into different biolo-
gical subtypes.8 The main subtype classification system is 
gene expression profile-based by which tumors are classi-
fied into 1) the estrogen receptor (ER)-positive (ie, luminal 
A and B) group (70%), 2) the human epidermal growth 
factor receptor 2 (HER2)-enriched group (15–20%) or 3) 
the basal-like [or triple-negative; ER-, progesterone recep-
tor (PR)- and HER2-negative] group (15%).9 Such subtype 
classification is clinically important in informing treatment 
options since these subtypes demonstrate variations in 
their prognosis and treatment responses (Table 1).9,10 

Although endocrine therapy is usually effective in most 
patients with ER-positive tumors, 15–20% and 30–40% of 
all ER-positive tumors exhibit intrinsic and acquired resis-
tance to the therapy, respectively.11 Triple-negative breast 
cancer, the subtype known to possess a more aggressive 
nature, particularly lacks targeted therapy and is reliant on 
chemotherapy that is non-specific,12 thus creating the need 
for more selective and effective agents for breast cancer 
treatment.

Natural products are an important source for the dis-
covery of new anti-cancer agents that may provide long- 
term cancer control with minimal side effects.13 Isolation 

of paclitaxel from the bark of Pacific yew trees (Taxus 
brevifolia) or vinblastine and vincristine from the leaves of 
Madagascar periwinkle plants (Catharanthus rosea) are 
some of the many examples.14 Fish, green tea, medicinal 
plants and fruits have been explored for their potentials in 
breast cancer treatment, with Mangifera indica (M. indica) 
being one example.15

M. indica, commonly known as mango, belongs to the 
Anacardiaceae flowering plant family.16 Although initially 
thought to have originated from India, M. indica has been 
widely cultivated in Southeast Asia.16 Different M. indica 
plant parts contain varying types and quantities of 
phytochemicals17 (Table 2), and they have traditionally 
been exploited for the treatment of several medical condi-
tions, including gastrointestinal, genitourinary, ophthalmic 
and respiratory conditions.18,19 Preclinical studies on the 
extracts prepared from various plant parts have demon-
strated anti-cancer, anti-inflammatory, antimicrobial, anti-
oxidant and immunomodulatory activities.16,20–23 

Specifically, various studies have reported on the anti- 
cancer activities of M. indica pulp extracts in breast 
cancer,24–26 thus suggesting the consumption of M. indica 
fruits may potentially be beneficial in breast cancer man-
agement. Further, the phytochemical profiling of M. indica 
extracts has suggested that their anti-cancer activities are 
attributed mainly to the polyphenolic contents.27 

Therefore, the phytochemicals have the potentials to be 
developed as anti-cancer drugs.

This review described preclinical studies conducted on 
various M. indica extracts and phytochemicals (Figure 1) 
against breast cancer. The proposed mechanisms for their 
anti-breast cancer activity were then discussed in detail. 
Although M. indica or its derived products have not been 
evaluated in clinical studies for breast cancer treatment, 
they have been clinically evaluated for central nervous 
system activities,28 chronic constipation,29 gastrointestinal 
and upper respiratory tract infections30 and rheumatoid 
arthritis,31 etc. Hence, future research directions are 
addressed in order to further explore this medicinal plant 
and its phytochemicals against breast cancer.

Table 1 Typical Systemic Therapeutic Options for the Three Major Molecular Subtypes of Breast Cancer

Luminal ER-Positive HER2-Enriched Basal-Like (or Triple-Negative)

Endocrine therapy For all patients For patients with ER-positive tumors N/A

HER2-targeted therapy N/A For all patients N/A
Chemotherapy For certain patients For all patients For all patients

Abbreviations: ER, estrogen receptor; HER2, human epidermal growth factor receptor 2.
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Table 2 Type of Compounds Identified from Different Parts of M. indica

M. 
indica 
parts

Types of Extract Compounds References

Bark Water Polyphenols 
Flavan-3-ols [(+)-catechin and (-)-epicatechin] 
Phenolic acids (gallic acid and 3,4-dihydroxybenzoic 

acid) 

Phenolic esters (methyl gallate, propyl gallate and 
propyl benzoate) 

Xanthones (mangiferin) 

Fatty acids 
Microelements 
Steroids 
Terpenoids

Rodeiro et al (2007)32 

Núñez Sellés et al (2002)33

Kernel Ethanol 1-Butanol, 3-methyl-, acetate 

Butane,1,1-diethoxy-3-methyl- 
Propane,1,1,3-triethoxy- 

Ethaneperoxoic acid, 1-cyano-1-(2-methylphenyl) 
ethyl ester 

Apigenin 7-glucoside 

Disperse Red 11 
Phenol, 4,6-di(1,1-dimethylethyl)-2-methyl- 

(butylated hydroxytoluene, BHT) 

Chlorazanil 
Isoheptadecanol (1-hexadecanol,2-methyl) 

cis-5-Dodecenoic acid, (3-cyanopropyl) dimethylsilyl 

ester 
Fumaric acid, 2-decyl undecyl ester 

Phthalic acid, hept-2-yl isohexyl ester

Abdullah et al (2014)39

Leaves Ethanol 

50% CO2:25% ethanol:25% water 

50% ethanol:50% water 
50% ethanol:50% water fraction 

previously extracted with supercritical- 

CO2

Gallic acid 

3,4-Dihydroxybenzoic acid 

Maclurin glucoside 
Methyl gallate 

Iriflophenone 3-C-β-D-glucoside 

Iriflophenone 3-C-(2-O-p-hydroxybenzoyl)-β-D- 
glucoside 

Mangiferin 

Homomangiferin 
Iriflophenone 3-C-(2-6-di-O-galloyl)-β-D-glucoside 

Iriflophenone 3-C-(2-O-galloyl)-β-D-glucoside 

tetra-O-galloyl-glucose 
Quercetin 3-D-galactoside 

Quercetin 3-β-D-glucoside 

Quercetin 3-O-xyloside 
Quercetin 3-O-α-L arabinopyranoside 

Penta-O-galloyl-glucose

Fernández-Ponce et al (2017)27

(Continued)
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Methods
Relevant literature was collected from several scientific 
databases, including PubMed, Scopus and Google 
Scholar. The literature search was achieved using the 
following keywords: “Mango OR Mangifera indica OR 
Mangiferin AND Breast Cancer”. Papers not written in the 
English language or without abstracts were excluded from 
initial screening. Any duplicate was also excluded. 
Following complete screening and selection of appropriate 
articles, the yielded information was summarised for 1) the 
anti-cancer activities of M. indica extracts or their phyto-
chemicals in in vitro and in vivo breast cancer models and 
2) the potential mechanisms underlying the bioactivities. 
All key findings from the selected articles were sum-
marised in Table 3 and detailed in the following sections.

Effect of Extracts of Various M. 
indica Parts Against Breast Cancer
Bark Extract of M. indica
Vimang is an aqueous M. indica bark extract consisting of a 
mixture of polyphenols, fatty acids (FAs), microelements, 

steroids and terpenoids.32,33 It is a registered anti-inflamma-
tory phytomedicine used either as cream, tablets or syrup in 
Cuba, where its industrial-scale production has been carried 
out.34,35 Vimang has shown various pharmacological activ-
ities such as analgesic, anti-cancer, anti-inflammatory, anti-
oxidant and immunomodulatory activities.23,36,37 One of its 
popular uses in Cuba is to improve the quality of life of 
cancer patients, thus suggesting its potential use in cancer 
treatment.38 A study showed that Vimang can significantly 
inhibit the proliferation of MDA-MB-231 (triple-negative) 
cells in a dose-dependent manner, with half-maximal inhibi-
tory concentration (IC50) at 259 µg/mL.34

Kernel Extract of M. indica
A relevant study reported the ability of M. indica kernel 
extract to induce a dose-dependent reduction in the viabi-
lity of MCF-7 (luminal A; ER-positive, PR-positive, 
HER2-negative), MDA-MB-231 and MCF-10A (normal 
human mammary epithelial cell line) cells.39 The IC50 

values of kernel extract were significantly lower for the 
cancer cells (15 µg/mL for MCF-7 and 30 µg/mL for 
MDA-MB-231 cells) than the normal cells (149 µg/mL), 

Table 2 (Continued). 

M. 
indica 
parts

Types of Extract Compounds References

Pulp Homogenisation of pulp with ethanol: 
methanol: acetone (1:1:1) mixture and 

combining of both C18-bounded and 

ethyl acetate fractions of the resulting 
extract

Gallic acid 
Gallotannins 

Mono-galloyl glucoside 

tetra-Galloyl glucoside 
penta-Galleo glucoside 

OH-benzoic acid hexoside

Banerjee et al (2015)24

Peel 

and 

pulp

Methanol Phenolic acids 
Gallic acid and derivatives (methyl gallate, methyl 

galloyl gallate and digallic acid) 
Flavonoids 
Quercetin and derivatives 

Kaempferol 
Mangiferin and isomers 

Epicatechin-3-O-gallate 

Fatty acids and derivatives

Pierson et al (2014)54

Peel Ethanol Chlorogenic acid 

Caffeic acid 
Catechin 

3,4-Dicaffeoyl quinic acid 

4,5-Dicaffeoyl quinic acid 
Gallic acid 

Quercetin

Shaban et al (2016)51
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suggesting that the kernel extract is cancer cell-selective.39 

Subsequent phytochemical profiling of the extract detected 
12 major compounds,39 some of which have demonstrated 
anti-breast cancer potentials in previous studies.40–47

Leaf Extract of M. indica
An emerging body of evidence has suggested the association 
between chronic inflammation and cancer risk.48 M. indica 
leaf tea has traditionally been used to ameliorate 
inflammation.27 The polyphenols believed to be the major 
contributors to M. indica’s anti-cancer activity are present 
mainly in the bark and leaves.49 Nevertheless, to date, can-
cer-related studies have generally been focussed on M. indica 
bark, peel and pulp extracts. A study revealed the cytotoxic 
effect of ethanolic M. indica leaf extract (200 µg/mL) on BT- 
474 (luminal B; ER-/PR-/HER2-positive) cells.50 In another 
study, it was observed that while PEW (50% ethanol:50% 
water) and FEW (50% ethanol:50% water fraction 

previously extracted with supercritical carbon dioxide) 
extracts (0.01–10 µg/mL) with a higher methyl gallate and 
homomangiferin content are more cytotoxic to MDA-MB- 
231 cells, PET (pure ethanol) and CEW (50% carbon diox-
ide:25% ethanol:25% water) extracts (0.01–0.1 µg/mL) with 
a higher gallotannin content are more cytotoxic to MCF-7 
cells.27 This observation suggests that phytochemicals can 
influence the selectivity of extracts towards different sub-
types of breast cancer cells.27 Additionally, PET, CEW, PEW 
and FEW extracts caused only slight reduction in the viability 
of MCF-10 cells, suggesting that the leaf extracts are cancer 
cell-selective.27

Peel and Pulp Extracts of M. indica
The anti-breast cancer activities of M. indica peel and pulp 
extracts have been more frequently reported compared to 
the other plant parts. García-Solís et al25 reported the 
ability of aqueous M. indica pulp extract (4% v/v) to 

Figure 1 An overview of effects of M. indica extracts and their phytochemicals against breast cancer. Extracts of various M. indica parts (bark, kernel, leaves, peel and 
pulp) have been used to treat a variety of medical problems including breast cancer; as these plant parts contain varying types and amounts of polyphenols, some of which 
possess anti-proliferative and pro-apoptotic activities. According to phytochemical profile analysis, the anti-cancer activity of M. indica extracts is mostly attributable to the 
presence of polyphenolic compounds such as mangiferin, gallotannins, gallic acid, pyrogallol, methyl gallate and quercetin.
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Table 3 A Summary of in vitro and in vivo Studies of M. indica Extracts and Their Phytochemicals Evaluated for Anti-Breast Cancer 
Potentials

Extracts/ 
Phytochemicals

Cell Lines/Animals (Sex) Observations Mechanism of Action References

Bark MDA-MB-231 cell line ↓ Cell proliferation Inhibition of NFκB signalling pathway García-Rivera et al 

(2011)34

Kernel MCF-7 cell line 

MDA-MB-231 cell line

↓ Cell viability N/A Abdullah et al 

(2014)39

MCF-7 cell line ↑ ROS and MDA levels 

↓ GSH level 

↑ p53 level 

↑ Pro-apoptotic markers (Bax and 

cytochrome c) 

↓ Pro-survival markers (Bcl-2) 

↑ Caspases 7, 8 and 9 activities

Activation of oxidative stress-induced cell death Abdullah et al 

(2015a)160

MDA-MB-231 cell line ↑ ROS and MDA levels 

↓ GSH level 

↑ p53 level 

↑ Pro-apoptotic markers (Bax and 

cytochrome c) 

↓ Pro-survival markers (Bcl-2) 

↑ Caspases 3, 8 and 9 activities

Activation of oxidative stress-induced cell death Abdullah et al 

(2015b)161

Leaves BT-474 cell line ↓ Cell viability N/A Ganogpichayagrai 

et al (2017)50

MCF-7 cell line 

MDA-MB-231 cell line

↓ Cell viability Antioxidant activity Fernández-Ponce 

et al (2017)27

Pulp MCF-7 cell line ↓ Cell proliferation Antioxidant activity García-Solís et al 

(2009)25

BT-474 cell line 

Mice bearing BT-474 

xenografts (female)

↓ Cell proliferation 

↓ Tumor volume

Suppression of PI3K/AKT pathway 

Induction of miR-126 expression

Banerjee et al 

(2015)24

Peel and pulp MCF-7 cell line ↓ Cell viability Modulation of PPARs Wilkinson et al 

(2011)26

MCF-7 cell line 

MDA-MB-231 cell line

↓ Cell viability (peel extract only) 

↑ Cell death (peel extract only)

N/A Hoang et al 

(2015)52

MCF-7 cell line ↓ Cell viability (peel extract only) Modulation of intracellular Ca2+ signalling Taing et al (2015)53

Peel MCF-7 cell line ↓ Cell viability Antioxidant activity 

Inhibition of aromatase enzymatic activity and 

expression

Shaban et al 

(2016)51

Polyphenols MDA-MB-231 cell line ↓ Cell growth Antioxidant activity Noratto et al 

(2010)55

MCF10DCIS cell line ↓ Cell proliferation Suppression of PI3K/AKT pathway Nemec et al 

(2016)56

Mice bearing MCF10DCIS 

xenografts (female)

↓ Tumor volume Suppression of PI3K/AKT pathway 

Activation of AMPK signalling pathway

Nemec et al 

(2017)57

(Continued)
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Table 3 (Continued). 

Extracts/ 
Phytochemicals

Cell Lines/Animals (Sex) Observations Mechanism of Action References

Mangiferin MCF-7 cell line 

T47D cell line 

MDA-MB-231 cell line 

BT-549 cell line 

Mice bearing MDA-MB-231 

xenografts (female)

↓ Cell proliferation 

↑ Apoptosis 

↓ Cell migration 

↓ Cell invasion 

↓ Tumor volume 

↓ Tumor weight

Inactivation of β-catenin pathway Li et al (2013)66

MCF-7 cell line 

MDA-MB-231 cell line

↓ Cell viability 

↓ Cell migration 

↓ Cell invasion

Inhibition of Rac1/WAVE2 signalling pathway Deng et al (2018)67

MCF-7 cell line ↓ Cell viability 

↓ Proliferation marker (PCNA) 

↓ Pro-survival markers (Bcl-2) 

↑ Pro-apoptotic markers (Bax, caspase 

9 and p27) 

↓ Cell migration

Inhibition of HMG-CoA reductase, proteasome 

and plasmin enzymatic activities

Cuccioloni et al 

(2016)68

MCF-7 cell line ↓ Cell viability N/A Louisa et al 

(2014)74

MDA-MB-231 cell line ↔ Cell viability Inhibition of NFκB signalling pathway García-Rivera et al 

(2011)34

MCF-7 cell line ↔ Cell viability Modulation of ER activity Wilkinson et al 

(2015)75

MCF-7 cell line N/A Inhibition of NFκB signalling pathway Sarkar et al 

(2004)228

Norathyriol MCF-7 cell line ↓ Cell viability Modulation of ER activity Wilkinson et al 

(2015)75

Gallotannin 

(5GG)

MCF-7 cell line ↓ Cell growth Suppression of PI3K/AKT pathway 

Modulation of ER activity

Hua et al (2006)94

MCF-7 cell line ↓ Cell growth 

↑ G1-phase arrest

Modulation of cell cycle regulators Chen et al 

(2003)95

Gallic acid MDA-MB-231 cell line ↓ Cell viability Inhibition of NFκB signalling pathway García-Rivera et al 

(2011)34

MCF-7 cell line ↓ Cell proliferation 

↑ S-phase and G2/M-phase arrest

Modulation of cell cycle regulators Hsu et al (2011)111

MCF10DCIS cell line ↓ Cell proliferation N/A Nemec et al 

(2016)56

MCF-7 cell line ↓ Cell growth 

↑ Apoptosis 

↑ Fas, FasL levels and caspase 8 

activity 

↓ ΔΨm 

↑ Bax/Bcl-2 ratio, cytochrome c level 

and caspase 9 activity 

↑ Caspase 8-mediated Bid cleavage

N/A Ke Wang et al 

(2014)112

(Continued)
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Table 3 (Continued). 

Extracts/ 
Phytochemicals

Cell Lines/Animals (Sex) Observations Mechanism of Action References

Pyrogallol MCF10DCIS cell line ↓ Cell proliferation Suppression of PI3K/AKT pathway Nemec et al 

(2016)56

Mice bearing MCF10DCIS 

xenografts (female)

↓ Tumor volume Suppression of PI3K/AKT pathway 

Activation of AMPK signalling pathway

Nemec et al 

(2017)57

Methyl gallate MCF10DCIS cell line ↓ Cell proliferation N/A Nemec et al 

(2016)56

Quercetin MCF-7 cell line ↓ Cell viability Modulation of ER activity Wilkinson et al 

(2015)75

MCF-7 cell line ↓ Cell growth 

↑ Apoptosis 

↑ S-phase arrest

Activation of oxidative stress-induced cell death Zhang et al 

(2012)147

MCF-7 cell line ↓ Cell viability 

↑ Apoptosis 

↑ S-phase arrest 

↑ ATF6, GRP78, PERK and GADD153 

levels 

↓ ΔΨm 

↑ AIF, Bid, caspase 6, caspase 8, 

caspase 9, Fas and TRAIL levels 

↓ Bcl-2, PARP and XIAP levels 

↑ Caspases 6, 8 and 9 activities 

↑ AIF and GADD153 nuclear 

translocation

Modulation of intracellular Ca2+ signalling 

Modulation of cell cycle regulators

Chou et al 

(2010)148

MDA-MB-231 cell line ↓ Cell viability 

↑ Apoptosis 

↑ G2/M-phase arrest 

↑ ATF6-α, GRP78 and PERK levels 

↓ Pro-caspase 3 

↓ ΔΨm 

↑ Bax, caspase 3, caspase 8, 

cytochrome c and Fas levels 

↓ PARP and XIAP levels 

↑ Caspases 3, 8 and 9 activities 

↑ AIF level and mitochondrio-nuclear 

translocation

Modulation of intracellular Ca2+ signalling 

Modulation of cell cycle regulators

Chien et al 

(2009)149

MDA-MB-231 cell line 

Mice bearing MDA-MB-231 

xenografts (female)

↓ Cell proliferation 

↑ Apoptosis 

↑ G2/M-phase arrest 

↑ Caspases 3 and 7 activities 

↓ Cell migration 

↓ Tumor growth

Suppression of PI3K/AKT pathway 

Activation of AMPK signalling pathway

Rivera Rivera et al 

(2016)150

Notes: ↑ increased; ↓ decreased; ↔ no significant change. 
Abbreviations: AIF, apoptosis-inducing factor; AMPK, AMP-activated protein kinase; ATF6-α, AMP-dependent transcription factor 6-alpha; Bax, Bcl-2-associated X protein; 
Bcl-2, B-cell lymphoma 2; Bid, BH3-interacting domain death agonist; Ca2+, calcium; ER, estrogen receptor; Fas, Fas cell surface death receptor; FasL, Fas ligand; GADD153, 
growth arrest and DNA damage 153; GRP78, 78-kDa glucose-regulated protein; GSH, glutathione; HMG-CoA reductase, 3-hydroxy-3-methyl-glutaryl-coenzyme A; MDA, 
malondialdehyde; miR-126, microRNA-126; ΔΨm, mitochondrial membrane potential; NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells; PARP, Poly-ADP 
ribose polymerase; PCNA, proliferating cell nuclear antigen; PERK, protein kinase RNA-like endoplasmic reticulum kinase; PI3K/AKT, phosphoinositide 3-kinase/protein 
kinase B; PPARs, peroxisome proliferator-activated receptors; ROS, reactive oxygen species; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; XIAP, X-linked 
inhibitor of apoptosis protein; 5GG, pentagalloylglucose.
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induce a significant reduction in MCF-7 cell proliferation. 
In other studies, Wilkinson et al26 and Shaban et al51 

observed a significant reduction in MCF-7 cell viability 
following treatment with ethyl acetate fractions prepared 
from M. indica peels and pulps as well as ethanolic M. 
indica peel extract, respectively. On the other hand, 
Banerjee et al24 reported the ability of M. indica pulp 
extract (2.5–20.0 mg GAE/L) to dose-dependently inhibit 
BT-474 cell proliferation. In the same study, M. indica 
pulp extract (0.8 mg GAE/day; 35 days) also significantly 
reduced tumor volume in nude mice bearing BT-474 
xenografts.

As different M. indica varieties have different phyto-
chemical profiles and bioactivities, two studies have eval-
uated the anti-breast cancer activities of methanolic peel 
and pulp extracts prepared from three M. indica varieties 
(Irwin, Kensington Pride and Nam Doc Mai).52,53 Both 
studies consistently reported Nam Doc Mai peel extract as 
the only extract with significant cytotoxicity against MCF-7 
cells. Additionally, only Nam Doc Mai peel extract was 
observed to possess significant cell-death inducing activity 
in MDA-MB-231 cells.52 Previous phytochemical profiling 
of M. indica peel and pulp extracts revealed that Nam Doc 
Mai peel extract uniquely contained gallic acid and galloy-
lated derivatives as well as a higher level of methyl gallate,-
54 which may explain its higher bioactivities.

Effect of Phytochemicals from M. 
indica Against Breast Cancer
Polyphenols
The anti-cancer activity of M. indica has frequently been 
attributed to its polyphenolic content. Noratto et al55 reported 
that the polyphenolic extracts prepared from different M. 
indica varieties suppressed MDA-MB-231 cell growth in a 
dose-dependent manner. In another study conducted by 
Nemec et al,56 a low molecular weight fraction of M. indica 
polyphenols (1 mg/L) was found to significantly reduce the 
proliferation of MCF10DCIS [a ductal carcinoma in situ 
(DCIS) model cell line] cells. In the same study, combined 
treatment with M. indica polyphenols and a conventional 
anti-cancer agent [5-fluorouracil (5-FU)] demonstrated a 
greater anti-proliferative effect on MCF10DCIS cells than 
either treatment alone, which is suggestive of a synergistic 
effect. The same research group did a follow-up study on the 
in vivo anti-cancer effects of M. indica polyphenols (0.8 mg 
GAE/day; 4 weeks) in nude mice carrying MCF10DCIS 

xenografts, whereby a reduction in tumor volume (>70%) 
was observed following treatment.57

Various studies have investigated into the anti-breast 
cancer activities of individual M. indica polyphenols, instead 
of M. indica polyphenolic mixtures, as described below.

Mangiferin
Mangiferin (1,3,6,7-tetrahydroxyxanthone-C2-β-D-gluco-
side), a plant natural xanthonoid, is the predominant phy-
tochemical found in various M. indica parts, including 
bark, fruits, leaves and roots.58,59 Mangiferin has been 
reported to exhibit various pharmacological activities 
such as analgesic, anti-bacterial, anti-cancer, anti-diabetic, 
anti-inflammatory, antioxidant and immunomodulatory 
activities.59–64 Importantly, mangiferin has shown protec-
tive effects against various types of cancers, including 
breast cancer.65

As reported by Li et al,66 mangiferin (75–300 µM) 
caused a dose-dependent reduction in the proliferation of 
ER-positive (MCF-7 and T47D) and ER-negative (MDA- 
MB-231 and BT-549) breast cancer cells, which may be 
attributed to an increase in apoptosis. In the same study, 
mangiferin (12.5–50.0 µM) also demonstrated dose-depen-
dent anti-migratory and anti-invasive effects on highly 
metastatic MDA-MB-231 and BT-549 cells. When the in 
vivo anticancer activity of mangiferin (100 mg/kg/day; 5 
weeks) was evaluated in severe-combined immunodefi-
ciency (SCID) mice bearing MDA-MB-231 xenografts, 
significant reduction in both tumor volume and tumor 
weight was observed.66

The cytotoxic, anti-migratory and anti-invasive effects 
of mangiferin (10–50 µM) have similarly been reported in 
another study by Deng et al,67 whereby a dose-dependent 
reduction in the viability of MCF-7 and MDA-MB-231 
cells as well as a significant reduction in the migration and 
invasion of MDA-MB-231 cells were observed. Notably, 
mangiferin has also been reported by Cuccioloni et al68 to 
be cancer cell-selective, as evidenced by the observations 
of greater decreases in cell viability, proliferating cell 
nuclear antigen (PCNA; a marker of cell proliferation) 
level and anti-apoptotic protein [B-cell lymphoma 2 
(Bcl-2)] level as well as greater increases in pro-apoptotic 
protein [Bcl-2-associated X protein (Bax), caspase 9 and 
p27] levels in MCF-7 cells than MCF-10A cells following 
treatment. The same study also showed that mangiferin 
could suppress plasmin-induced increase in MCF-7 and 
MCF-10A cell migration.
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Doxorubicin, an anthracycline drug, has been used 
routinely for the treatment of various cancers, including 
breast cancer.69 However, its use has been limited mainly 
due to cardiotoxicity and resistance.70 One of the causes of 
doxorubicin resistance is the increased expression of drug 
efflux pumps such as P-glycoprotein (Pgp), multidrug 
resistance–associated protein-1 (MRP-1) and breast cancer 
resistance protein (BCRP).71–73 Louisa et al74 found that 
mangiferin can increase the sensitivity of MCF-7 cells 
(pre-treated with doxorubicin) towards doxorubicin treat-
ment, as evidenced by a significant reduction in the viabi-
lity of MCF-7 cells treated with mangiferin (10–50 µM) in 
combination with doxorubicin. Subsequent evaluation of 
Pgp, MRP1 and BCRP gene expressions showed that 
while high dose (50 µM) mangiferin could significantly 
downregulate Pgp, there were no significant changes in the 
expressions of MRP1 and BCRP at all doses.74 These 
findings thus suggest that high-dose mangiferin can poten-
tially serve as a chemosensitizer for doxorubicin by down-
regulating Pgp expression.74

In contrast to the above-mentioned studies, a number 
of studies have failed to observe the anti-breast cancer 
activity of mangiferin,34,75 thus warranting further investi-
gation. In one of the studies, Wilkinson et al75 showed that 
mangiferin is capable of activating ERα but not ERβ, and 
suggested that the observed lack of anti-proliferative activ-
ity of mangiferin may be linked to the differential activa-
tion or heterodimer formation of ERα and ERβ.

Norathyriol
Norathyriol (1,3,6,7-tetrahydroxyxanthone), an aglycone 
derivative of mangiferin, is structurally similar to mangi-
ferin except for a C-glucosyl bond.76 Ample of evidence has 
shown that orally consumed mangiferin is firstly subjected 
to de-glycosylation by intestinal bacterium to form nor-
athyriol prior to being absorbed by the colon, suggesting 
norathyriol is likely to contribute to the observed bioactiv-
ities of mangiferin.77,78 Studies focussing on norathyriol 
have reported a range of pharmacological activities.79–83 

For example, a study showed that norathyriol (100 µM) 
significantly reduced the viability of MCF-7 cells.75

Gallotannins, Gallic Acid, Pyrogallol and 
Methyl Gallate
M. indica is a rich source of gallotannins and lower mole-
cular weight gallates such as gallic acid.56 Although orally 
consumed gallotannins are un-absorbable owing to their 

high molecular weight, they can be hydrolysed in the 
gastrointestinal tract by tannase to release free gallic 
acid, which can subsequently undergo decarboxylation to 
pyrogallol via the activity of gallic acid decarboxylase in 
intestinal microbiota.84,85 Gallotannins have been reported 
to exhibit a wide range of pharmacological activities, 
including anti-cancer,86–88 anti-diabetic,89 anti- 
inflammatory,90 antimicrobial,91 and antioxidant92 activ-
ities. Pentagalloylglucose (1,2,3,4,6-penta-O-galloyl-β-D- 
glucose; 5GG), a gallotannin that can be found in M. 
indica, has been investigated for its effects on breast 
cancer cell lines.93 For instance, treatment with 5GG 
(0.5–80 µM) was reported to exhibit growth-inhibitory 
effect on MCF-7 cells in both time- and dose-dependent 
manner.94 Another study similarly reported the dose- 
dependent growth-inhibitory effect of 5GG (1–100 µM) 
on MCF-7 cells.95 Further cell cycle analysis revealed a 
dramatic increase in G1-phase cell number, suggesting that 
5GG can induce a G1-phase arrest in MCF-7 cells.95

Gallic acid (3,4,5-trihydroxybenzoic acid), one of the most 
abundantly distributed plant phenolic compounds that can be 
found in certain fruits and medicinal plants, has been used 
extensively in both food and pharmaceutical industries.96 

Gallic acid has demonstrated various pharmacological 
activities.97–101 Its anti-cancer activity, in particular, has been 
extensively studied in various cancer types.102–110 In a study, 
MDA-MB-231 cells treated with gallic acid showed a signifi-
cant dose-dependent reduction in cell viability, with IC50 at 10 
µg/mL.34 Another study reported the ability of gallic acid (1– 
10 or 2–12 µg/mL) to induce a reduction in cell proliferation 
and an increase in S-phase and G2/M-phase ratios in MCF-7 
cells in a dose-dependent manner.111 Similarly, the anti-pro-
liferative activity of gallic acid (1mg/L) has also been demon-
strated in MCF10DCIS cells.56

Of note, Ke Wang et al112 observed a dose-dependent 
reduction in MCF-7 cell growth following gallic acid 
treatment (IC50: 80.5 µM) and attributed this effect to 
apoptosis induction. Subsequent analyses revealed 
increased Fas cell surface death receptor (Fas) and Fas 
ligand (FasL) protein levels and caspase 8 activity, sug-
gesting the induction of death receptor apoptotic pathway.-
112 Reduced mitochondrial membrane potential (ΔΨm) as 
well as increased Bax/Bcl-2 ratio, cytosolic cytochrome c 
level and caspase 9 activity were also observed, which was 
suggestive of the induction of mitochondrial apoptotic 
pathway.112 Moreover, caspase 8-mediated Bid cleavage, 
which is known to be followed by cytochrome c release 
and caspase 9 activation, was observed in gallic acid- 
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treated MCF-7 cells.112 Collectively, these findings sug-
gest that gallic acid-induced apoptosis of MCF-7 cells 
involved both mitochondrial and death receptor pathways 
as well as a cross-link between the two pathways.112

Pyrogallol (1,2,3-trihydroxybenzene), a microbial meta-
bolite of M. indica gallotannins, can also be found naturally 
in many other fruits and vegetables.113 Pyrogallol is used 
commercially mainly in the production of pharmaceuticals 
and pesticides.114 Similar to gallotannins and gallic acid, 
pyrogallol has been found to possess multiple pharmacolo-
gical activities113,115,116 in addition to anti-carcinogenic 
properties in various cancer types.117–120 For instance, pyr-
ogallol (1 mg/L) has been reported to exert anti-proliferative 
effect on MCF10DCIS cells.56 However, pyrogallol at a 
higher dose (10 mg/L) was observed to have insignificant 
cytotoxicity against normal human breast epithelial cells 
MCF-12F, suggesting its selectivity of action towards cancer 
cells.56 The same research group then studied the in vivo 
effect of pyrogallol, and found that treatment with pyrogallol 
(0.2 mg/day; 4 weeks) significantly reduced tumor volume 
(>70%) in mice bearing MCF10DCIS xenografts.57

Methyl gallate (methyl-3,4,5-trihydroxybenzoate), a 
methyl ester of gallic acid, is naturally found in M. indica 
and various other plants.121–124 Methyl gallate possesses a 
wide range of medicinal properties.122,125–131 For instance, 
methyl gallate (1 mg/L) was observed to induce a >40% 
reduction in MCF10DCIS cell proliferation.56

Quercetin
Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a natural 
flavonoid that can be found abundantly in various fruits 
and vegetables.132 For instance, there have been reports of 
the presence of quercetin in extracts prepared from M. 
indica leaves, peels and pulps.27,51,54 Quercetin possesses 
a range of bioactive effects that can potentially be bene-
ficial to human health,133–139 including its anti-cancer 
activities in a broad range of cancer types.140–146

In a study, Wilkinson et al75 found that quercetin (100 
µM) can significantly reduce MCF-7 cell viability. Another 
study by Zhang et al147 reported that quercetin (25–100 µM) 
can inhibit MCF-7 cell growth in both dose- and time-depen-
dent manner via the induction of apoptosis and S-phase 
arrest. Chou et al148 similarly reported the ability of quercetin 
(10–175 µM) to dose- and time-dependently reduce MCF-7 
cell viability via the induction of apoptosis and S-phase 
arrest. Subsequent analyses revealed increased protein levels 
of cyclic AMP-dependent transcription factor 6-alpha 
(ATF6), 78-kDa glucose-regulated protein (GRP78), protein 

kinase RNA-like endoplasmic reticulum kinase (PERK) and 
growth arrest and DNA damage 153 (GADD153) in querce-
tin-treated MCF-7 cells, all of which were suggested to be 
correlated with endoplasmic reticulum (ER) stress.148 

Furthermore, ΔΨm loss, increased protein levels of apopto-
sis-inducing factor (AIF), Bid, caspases 6, 8 and 9, Fas and 
tumor necrosis factor-related apoptosis inducing ligand 
(TRAIL), decreased protein levels of Bcl-2, poly-ADP ribose 
polymerase (PARP) and X-linked inhibitor of apoptosis pro-
tein (XIAP), increased activities of caspases 6, 8 and 9 as 
well as increased nuclear translocation of AIF and 
GADD153 were also observed, indicating the induction of 
apoptosis possibly in response to ER stress.148 Overall, the 
findings also suggest that quercetin-induced apoptosis in 
MCF-7 cells is likely to be mediated through both mitochon-
drial and death receptor pathways.148

In another breast cancer cell line (MDA-MB-231 cells), 
Chien et al149 also observed a dose- and time-dependent 
reduction in cell viability following quercetin treatment 
(IC50: 278 µM). The observed reduction in cell viability 
can likely be explained by quercetin-induced apoptosis and 
G2/M-phase arrest,149 which contrasted the findings by 
Zhang et al147 and Chou et al 148 (ie, S-phase arrest in 
MCF-7 cells). Findings from the subsequent protein expres-
sion analysis of various ER stress and apoptotic markers in 
quercetin-treated MDA-MB-231 cells were similarly sugges-
tive of the occurrence of ER stress-induced apoptosis and the 
involvement of two caspase-dependent apoptotic pathways 
(mitochondrial- and caspase 3-dependent pathways).149 

Another study also linked the anti-proliferative effect of 
quercetin (15 µM) on MDA-MB-231 cells to the induction 
of apoptosis and G2/M-phase arrest.150 The same study also 
showed that quercetin exhibited anti-migratory activity 
against MDA-MB-231 cells. The researchers then evaluated 
the in vivo anti-cancer activity of quercetin (15 or 45 mg/kg 
body weight; thrice weekly for 13 weeks) in SCID mice 
bearing MDA-MB-231 xenografts, whereby both treatment 
groups demonstrated significantly reduced (~70%) tumor 
growth.150

Overall Anti-Breast Cancer 
Mechanisms of Action of M. indica 
Extracts and Their Phytochemicals
Activation of Oxidative Stress-Induced 
Cell Death
Reactive oxygen species (ROS) are by-products of normal 
cellular metabolism.151 They have physiological roles in 
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signalling pathway (eg, apoptosis, carcinogenesis and prolif-
eration) stimulation but are very transient due to their high 
reactivity.152,153 This maintenance of cellular redox balance 
is critical and is achieved via an antioxidant system.154 

Oxidative stress occurs when ROS production exceeds and 
depletes the antioxidant defences.155 The balance of oxida-
tive stress plays an important role in cancer. While moder-
ately elevated ROS levels can contribute to carcinogenesis, 
cancer cell survival and metastasis, elevated ROS levels 
above the toxic threshold can cause cancer cell death usually 
via apoptosis induction.156–158 In recent years, oxidative 
stress-induced apoptosis has attracted attentions as a poten-
tial anti-cancer mechanism.159

In a study conducted by Abdullah et al160 ethanolic M. 
indica kernel extract was reported to induce both mito-
chondrial and death receptor pathways of apoptosis in 
MCF-7 cells via the induction of oxidative stress and the 
consequent upregulation of p53, as evidenced by the 
observations of dose- and time-dependent increases in 
ROS generation and malondialdehyde (MDA; a lipid per-
oxidation product) level as well as decrease in glutathione 
(GSH; an antioxidant) level in MCF-7 cells treated with 
the extracts (5–50 µg/mL). A similar study conducted by 
the same research group also linked the pro-apoptotic 
effect of ethanolic M. indica kernel extracts on MDA- 
MB-231 cells to oxidative stress induction and p53 
upregulation.161

As reported by Zhang et al,147 the exposure of MCF-7 
cells to quercetin (25–100 µM) dose-dependently caused 
the rightward-shift of dihydroethidium (DHE) signals and 
increased dichlorofluorescin diacetate (DCFH-DA) sig-
nals, which were suggestive of the stimulation of super-
oxide anion (O2

−) release and the increased generation of 
hydrogen peroxide (H2O2), respectively. These findings 
indicate that quercetin is likely to induce apoptosis in 
MCF-7 cells by increasing oxidative stress.147

Antioxidant Activity
Moderately elevated ROS level is considered to be pro- 
tumorigenic, as ROS function as signalling molecules in 
various pathways (eg, cell differentiation, proliferation, 
survival and migration) that can ultimately lead to the 
promotion of cancer initiation and progression.162,163 

Depleting tumorous cells from these ROS-sensitive signal-
ling pathways via the use of natural antioxidants can there-
fore potentially be a useful anti-cancer mechanism.164

The leaves of M. indica are known to contain various 
families of phenolic compounds that possess potent 

antioxidant activity.165 There have been reports that indi-
cate the subcritical water, water, 50% ethanol:50% water, 
ethanol and 50% carbon dioxide:25% ethanol:25% water 
extracts of M. indica leaves exhibit a more potent antiox-
idant activity than (+)-α-tocopherol in the 2,2-diphenyl-1- 
picrylhydrazyl radical (DPPH) assay.165,166 A study also 
reported on the antioxidant activities of PET, CEW, PEW 
and FEW M. indica leaf extracts (0.01–100 µg/mL) in 
non-tumorous (MCF-10A) and tumorous (MCF-7 and 
MDA-MB-231) cells by detecting changes in intracellular 
ROS levels, subsequent to the observation of their cyto-
toxic effects on breast cancer cells.27 However, the anti-
oxidant activity was only observed at lower extract 
concentrations.27 At the highest extract concentration 
(100 µg/mL), all extracts appeared to be pro-oxidant.27 

The cytotoxic effect observed at this high concentration 
was thus likely the outcome of oxidative stress-induced 
cell death.27

Studies have also reported on antioxidant activities of M. 
indica peel and pulp extracts. For instance, aqueous M. 
indica pulp extract consistently demonstrated a high antiox-
idant activity in both DPPH and ferric reducing antioxidant 
power (FRAP) assays.25 Another study confirmed the anti-
oxidant activity of ethanolic M. indica peel extract in terms of 
its anti-lipid peroxidation, DPPH radical scavenging, ferric 
reducing and nitric oxide (NO) radical scavenging activities 
via the respective use of thiobarbituric acid reaction, DPPH 
assay, FRAP assay and Griess’ reagent.51

Besides, the polyphenolic extracts (10 mg GAE/L) of 
different M. indica varieties have also demonstrated anti-
oxidant potentials in the oxygen radical absorbance capa-
city (ORAC) assay, and a strong correlation between 
antioxidant activity and total phenolic content has been 
noted.55 Figure 2 summarises how M. indica extracts and 
phytochemicals exert their anti-cancer effects by activating 
oxidative stress-induced cell death or acting as antioxidants.

Modulation of Peroxisome Proliferator- 
Activated Receptors
Peroxisome proliferator-activated receptors (PPARs), com-
prising three subtypes (PPARα, PPARβ/δ and PPARγ), are 
ligand-activated transcription factors belonging to the 
nuclear hormone receptor superfamily.167 PPAR activation 
occurs in response to the binding of endogenous ligands, 
including Fas, prostacyclins, prostaglandins and 
triglycerides.168 By binding the peroxisome proliferator 
responsive elements (PPREs) upstream of their target 
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genes as a PPAR-retinoid X receptor (RXR) heterodimer, 
PPARs are able to activate the expressions of genes that 
are mostly involved in energy homeostasis and metabolic 
functions.169

PPARs have also been implicated in carcinogenesis. 
Although PPARα has been linked to hepatocarcinogenesis 
in rodents, several epidemiological studies suggest that 
this is unlikely to be observed in humans.170–173 On the 
other hand, while some studies suggest that PPARδ may 
contribute to cancer progression,174–176 other studies sug-
gest that PPARδ may contribute to cancer suppression.-
177,178 Similarly, although PPARγ activation has often been 
linked to proliferation inhibition and apoptosis induction 
in cancer cells,179–181 various studies have yielded contra-
dictory results that suggest PPARγ activation may promote 
cancer development.182,183

In a study, Wilkinson et al26 reported the ability of M. 
indica peel and pulp ethyl acetate fractions to reduce 
PPAR activity in Cos-7 cells. However, given the contro-
versy surrounding the consequences of PPARγ activation 
in cancer, whether the PPARγ-inhibitory activity of M. 
indica peel and pulp fractions will be beneficial in breast 
cancer management requires further evaluation.26

Suppression of Phosphoinositide 3- 
Kinase/Protein Kinase B Pathway
The phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) 
pathway can be stimulated in response to the activation of 
G-protein-coupled receptors (GPCRs) and receptor tyrosine 
kinases (RTKs) by cytokines, hormones and growth factors.-
184 Upon GPCR or RTK activation, PI3K phosphorylates 
phosphatidylinositol 4, 5-bisphosphate (PIP2) to form phos-
phatidylinositol 3, 4, 4-triphosphate (PIP3) that can, in turn, 
recruit AKT and phosphoinositide-dependent kinase-1 
(PDK-1) to the plasma membrane.185 Following phosphor-
ylation and activation by PDK-1, the activated AKT can then 
phosphorylate its downstream substrates, including Bcl-2- 

associated agonist of cell death (Bad), caspase 9, glycogen 
synthase kinase-3 (GSK-3), mammalian forkhead transcrip-
tion factors of the O class (FoxOs), mTOR, NFκB and p21, 
which have an impact on cell cycle, growth, proliferation and 
glycometabolism.184 Mutations and the consequent inap-
propriate activation of the PI3K/AKT pathway have been 
observed in many cancer types, contributing to genomic 
instability, metabolic reprogramming, uncontrolled cell 
growth and proliferation as well as multidrug resistance.186– 

188 In breast cancer, resistance to endocrine therapy, HER2- 
targeted therapy and cytotoxic chemotherapy has been 
reported.189,190 The downregulation of PI3K/AKT signalling 
may therefore offer benefits in breast cancer management.

M. indica pulp extract has demonstrated inhibitory effect 
on the PI3K/AKT pathway in both BT-474 cells and mice 
bearing BT-474 xenografts.24 In BT-474 cells, M. indica pulp 
extract (2.5–10 mg GAE/L) lowered the messenger ribonu-
cleic acid (mRNA) levels of PI3K, AKT, hypoxia-inducible 
factor-1 alpha (HIF-1α) and vascular endothelial growth 
factor (VEGF) as well as the protein levels of phosphorylated 
PI3K (pPI3K), AKT, phosphorylated AKT (pAKT), NFκB- 
p65 and VEGF.24 In BT-474 xenografts, M. indica pulp 
extract (0.8 mg GAE/day; 35 days) downregulated the pro-
tein levels of pPI3K, pAKT, NFκB-p65, mTOR, phosphory-
lated mTOR (pmTOR), HIF-1α and VEGF.24

The observed anti-proliferative activities of M. indica 
polyphenols (eg, pyrogallol) in breast cancer cells have 
also been linked to the downregulation of PI3K/AKT 
pathway.56 Nemec et al 56 analysed the mRNA levels of 
various PI3K/AKT pathway components in MCF10DCIS 
cells treated with M. indica polyphenols or pyrogallol (10 
mg/L). Both M. indica polyphenols and pyrogallol low-
ered the mRNA levels of PI3K, mTOR and HIF-1α.56 

However, while M. indica polyphenols increased the 
mRNA level of insulin-like growth factor-1 receptor 
(IGF-1R) and induced no significant change in the 
mRNA level of AKT, pyrogallol lowered the mRNA levels 
of both IGF-1R and AKT.56 As measuring changes in the 

Figure 2 Activation of oxidative stress-induced cell death and antioxidant activity as the anti-cancer mechanisms of M. indica extracts and phytochemicals.
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mRNA levels of pathway components provided limited 
indication on their respective protein activities, the authors 
also conducted protein expression analysis.56 A reduction 
in the total protein levels of IGF-1R, insulin receptor (IR), 
AKT, mTOR and P70 S6 kinase (p70S6K; a kinase regu-
lated by mTOR) as well as the phosphorylated protein 
levels of IR, AKT and p70S6K were observed in 
MCF10DCIS cells following M. indica polyphenol 
treatment.56 On the other hand, pyrogallol reduced the 
total protein levels of IGF-1R, IR, insulin receptor sub-
strate-1 (IRS-1), AKT, mTOR and p70S6K as well as the 
phosphorylated protein levels of IGF-1R, AKT and 
p70S6K.56 The same research group similarly reported a 
suppression of the PI3K/AKT pathway by M. indica poly-
phenols (0.8 mg GAE/day; 4 weeks) and pyrogallol (0.2 
mg/day; 4 weeks) in mice bearing MCF10DCIS xeno-
grafts, based on findings from mRNA and protein expres-
sion analyses.57

A study by Hua et al94 linked the growth-inhibitory 
effect of 5GG on MCF-7 cells to a suppression of the 
PI3K/AKT pathway. In the study, it was observed that 
while 5GG (10–40 µM) had insignificant impact on total 
AKT protein level, it dose- and time-dependently reduced 
the phosphorylation of AKT at serine 473 and directly 
inhibited the activity of AKT. Moreover, 5GG (20 µM) 
also inhibited epidermal growth factor- and/or estradiol- 
induced phosphorylation of RTKs upstream of the PI3K/ 
AKT pathway and downregulated the protein levels of 
several RTKs (EGFR, ErbB2 (or HER2) and ErbB3).94 

In particular, 5GG-induced ErbB2 depletion was blocked 
by pre-treatment with chloroquine (CQ; a lysosomal inhi-
bitor) but not carbobenzoxy-L-leucyl-L-leucyl-L-leucinal 
(MG132; a proteasome inhibitor), suggesting 5GG was 
likely to deplete ErbB2 by promoting its lysosomal 
degradation.94 Overall, 5GG can suppress PI3K/AKT sig-
nalling by inhibiting AKT and RTK phosphorylation as 
well as depleting RTKs.94

According to Rivera Rivera et al,150 quercetin (1–15 
µM) also exhibits inhibitory activity against the PI3K- 
AKT pathway, as it is capable of inhibiting the phosphor-
ylation of AKT at serine 473 and the phosphorylation of 
the downstream effectors of mTOR [p70S6K and eukar-
yotic translation initiation factor 4E-binding protein 1 (4E- 
BP1)] in MDA-MB-231 cells. Figure 3 summarises 
changes in the mRNA, total protein and total phosphory-
lated protein levels of various PI3K/AKT pathway com-
ponents induced by M. indica extracts and 
phytochemicals.

Induction of MicroRNA-126 (miR-126) 
Expression
MicroRNAs (miRNAs) are short non-coding RNAs impli-
cated in the post-transcriptional regulation of eukaryotic gene 
expression.191 miRNAs bind to the 3’-untranslated regions of 
their target mRNAs and, depending on the degree of 
miRNA-mRNA complementarity, can either result in 
mRNA degradation or translation inhibition.192 miRNAs 
are involved in various cellular processes such as cell devel-
opment, differentiation, proliferation and apoptosis.192,193 A 
reduction in miR-126 expression has frequently been 
observed in breast cancer, and various studies have reported 
that a restoration of miR-126 expression can suppress breast 
cancer cell growth, metastasis and invasion; suggesting miR- 
126 functions as a tumor suppressor in breast cancer.194,195 

Therefore, the induction of miR-126 expression can be ben-
eficial in treating breast cancer.

A study showed that M. indica pulp extract can induce 
miR-126 expression in BT-474 cells (2.5–10.0 mg GAE/L) 
and BT-474 xenografts in mice (0.8 mg GAE/day; 35 
days).24 In the same study, the miRNA expression profile 
screening of extract-treated xenografts further revealed 
significant changes in the expression of several miRNAs 
that have a major role in the regulation of tumor cell 
growth and proliferation. These changes are potentially 
linked to the observed anti-proliferative effect of M. indica 
pulp extract.24

Inhibition of Aromatase Enzymatic 
Activity and Expression
Approximately 70% of all breast cancer cases are ER-posi-
tive, where ER activation by estrogen plays a key role in the 
stimulation of breast cancer growth and progression.196 The 
use of endocrine therapy, either selective estrogen-receptor 
modulators (SERMs) or aromatase inhibitors (AIs), as an 
adjuvant treatment has demonstrated improvement in the 
disease-free survival of ER-positive breast cancer patients.197 

However, the risk of side effects associated with long-term 
AI use has triggered research into the discovery of a natural 
product-based new generation of AIs.51

Aromatase is a member of the cytochrome P450 super-
family of enzymes that catalyses the conversion of testoster-
one to estrogen in the final step of estrogen biosynthesis.198 

Aromatase expression is tissue-specific and dependent upon 
10 alternative untranslated exons I.199 Aromatase expression 
in normal breast adipose tissues is maintained at a low level, 
driven primarily by promoter I.4 and minimally by promoters 
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I.3 and PII.200 In estrogen-dependent breast cancer, however, 
elevated aromatase expression has frequently been observed 
to be driven by mainly promoters I.3, I.4, I.7 and PII.200,201

In a study, ethanolic M. indica peel extract was reported 
to dose-dependently lower the activity of human placental 
aromatase, with IC50 at 86.09 µg/mL.51 The same study also 
reported that ethanolic M. indica peel extract (33 or 66 µg/ 
mL) can significantly reduce aromatase mRNA level in 
MCF-7 cells. The extract at 33 µg/mL caused a significant 
reduction in I.3-containing mRNA level (78%), a significant 
increase in I.6-containing mRNA level (1478%), a non-sig-
nificant increase in I.7- and I.f-containing mRNA levels 
(294% and 212%) and non-significant change in PII-contain-
ing mRNA level.51 The extract at 66 µg/mL, on the other 
hand, caused a significant reduction in I.3-, I.7- and PII- 
containing mRNA levels (94%, 89.7% and 82%), a signifi-
cant increase in I.6-containing mRNA level (500%) and a 

non-significant increase in I.f-containing mRNA level 
(100%).51 These observations collectively suggest the poten-
tial of M. indica peel extract to act as a tissue-specific AI in 
ER-positive breast cancer.51

Modulation of Intracellular Calcium 
Signalling
The calcium (Ca2+) signalling is implicated in multiple cel-
lular processes such as autophagy,202 cell cycle,203 death,204 

differentiation,205 division,206 invasion,207 metabolism,208 

migration209 and transcription.210 The key to Ca2+ signalling 
is the differential distribution of Ca2+ concentrations across 
cell membranes, between extracellular space and cytoplasm 
as well as between cytoplasm and organelles such as ER and 
Golgi apparatus.211 Movement of Ca2+ ions down their elec-
trochemical gradients produces Ca2+ signals.211 This can 
occur with electrical, hormonal or mechanical stimulation 

Figure 3 Suppression of PI3K/AKT/mTOR pathway by M. indica extracts and phytochemicals via reduction of pathway components’ mRNA, total protein and 
phosphorylated protein levels. 
Abbreviations: AKT, protein kinase B; Bad, Bcl-2-associated agonist of cell death; EGFR, epidermal growth factor receptor; ErbB2, Erb-B2 receptor tyrosine kinase 2; 
ErbB3, Erb-B2 receptor tyrosine kinase 3; FoxOs, mammalian forkhead transcription factors of the O class; GPCRs, G-protein-coupled receptors; GSK-3, glycogen synthase 
kinase-3; HIF-1, hypoxia-inducible factor-1; IGF-1R, iInsulin-like growth factor-1 receptor; IR, Insulin receptor; mTOR, mammalian target of rapamycin; NFκB, nuclear factor 
kappa B; PDK-1, phosphoinositide-dependent kinase-1; PIP2, phosphatidylinositol 4, 5-bisphosphate; PIP3, phosphatidylinositol 3, 4, 4-triphosphate; PI3K, phosphoinositide 3- 
kinase; p70S6K, P70 S6 kinase; RTKs, receptor tyrosine kinases; TSC1/2, tuberous sclerosis proteins 1 and 2; 4E-BP1, eukaryotic translation initiation factor 4E-binding 
protein 1.
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of cells, which can activate either GPCRs that typically 
trigger Ca2+ mobilisation from intracellular stores via lipid 
signal transduction; or ion channels that allow Ca2+ move-
ment through central pore opening.212 The resulting increase 
in cytoplasmic Ca2+ concentration and Ca2+-binding of cal-
cium-binding proteins (CBPs) ultimately leads to the initia-
tion of cellular functions.213

The dysregulated expression of a number of Ca2+ 

channels and pumps has been reported in either breast 
cancer tissues or breast cancer cell lines, whereby they 
result in the remodelling of Ca2+ signalling.214 There have 
been evidences linking altered Ca2+ signalling to various 
malignant functions such as cell proliferation, migration, 
invasion and metastasis in breast cancer.211 Ca2+ channels 
and pumps, therefore, may be potentially useful anti-can-
cer targets in breast cancer treatment.

Taing et al53 evaluated the effects of methanolic M. 
indica peel and pulp extracts (30 or 60 µg/mL) on Ca2+ 

signalling in MCF-7 cells. In untreated MCF-7 cells, ade-
nosine triphosphate (ATP) stimulation resulted in a rapid 
increase in intracellular Ca2+ concentration [Ca2+]I, which 
was followed by a recovery to basal [Ca2+]I.53 In extract- 
treated MCF-7 cells, however, significant reduction in 
peak relative [Ca2+]I and delay in [Ca2+]I recovery were 
noted.53 Further studies are thus required to ascertain the 
target(s) upon which the extracts are acting to cause the 
observed changes in Ca2+ signalling, and to assess if the 
extracts have an influence on any Ca2+-dependent signal-
ling pathways.53

Studies by Chien et al149 and Chou et al)148 also 
showed that quercetin (250 or 150 µM) can elevate cyto-
solic Ca2+ level in MDA-MB-231 and MCF-7 cells, 
respectively. These findings suggest that further studies 
would be required to evaluate the influence of quercetin 
on Ca2+-dependent signalling pathways and the link 
between this influence and quercetin’s anti-breast cancer 
activity.148,149

Inhibition of Nuclear Factor Kappa B 
Signalling Pathway
Nuclear factor kappa B (NFκB), a pro-inflammatory tran-
scription factor, is expressed in virtually all cell types.215 

The NFκB family of transcription factors comprises five 
members, including c-Rel, NFκB1 (p50), NFκB2 (p52), 
RelA (p65) and RelB.216 Different combinations of these 
members make up homodimeric or heterodimeric NFκB, 
with the most common combination being a p65/p50 

heterodimer.216,217 NFκB dimers are usually complexed 
with the inhibitor of NFκB (IκB), which retains NFκB 
dimers in the cytoplasm and thereby prevents NFκB 
dimers from binding DNA.218 NFκB activation can occur 
via two major signalling pathways (ie, classical/canonical 
and alternative/non-canonical pathways).219 The eventual 
phosphorylation and ubiquitination of IκB within their 
signal responsive domain (SRD) results in signal respon-
sive degradation, thereby releasing NFκB from IκB and 
enabling NFκB to bind to κB sites within the promoters of 
their target genes.218

Alterations of NFκB pathway are often observed in 
solid and hematopoietic malignancies.220 For instance, 
abnormal, constitutive NFκB activation is frequently seen 
in breast cancer, and it is believed to contribute to breast 
cancer development and progression by promoting angio-
genesis, cell survival, proliferation, metastasis as well as 
resistance to chemotherapy, endocrine therapy and 
radiotherapy.216,221–225 NFκB pathway has thus been con-
sidered as a potential target for breast cancer therapy.

A study by García-Rivera et al34 reported that Vimang 
(200 µg/mL), mangiferin (100 µg/mL) and gallic acid (10 
µg/mL) can inhibit the classical NFκB activation pathway 
in MDA-MB-231 cells by inhibiting the phosphorylation 
of IκB kinase alpha (IKKα; at serines 176 and 180) and 
IκB kinase beta (IKKβ; at serines 177 and 181), which can 
consequently result in reduced IκB degradation, p65 
nuclear translocation and NFκB DNA binding. The opti-
mal activation of NFκB also involves the phosphorylation 
of its functional domains by various protein kinases.226,227 

In the same study, Vimang and gallic acid were observed 
to inhibit the MEK/ERK/p90RSK/MSK signalling cascade 
while mangiferin appeared to have insignificant effect.34 

Since gallic acid can inhibit both classical and parallel 
NFκB activation pathways while mangiferin can inhibit 
only the classical NFκB activation pathway, gallic acid is 
likely to be a more potent NFκB inhibitor.34 As a conse-
quence of NFκB pathway inhibition, there was also a 
significant reduction in the expression of NFκB target 
genes, including interleukin (IL)-6, IL-8, VEGF, Bcl-2, 
XIAP, COX-2 and C-X-C chemokine receptor type 4 
(CXCR4), in MDA-MB-231 cells treated with Vimang, 
mangiferin or gallic acid.34

Consistent with the findings of García-Rivera et al,34 a 
previous study conducted by Sarkar et al228 also reported 
on the inhibitory effect of mangiferin on NFκB activation. 
In the study, mangiferin (0.5–10 µg/mL) suppressed TNF- 
stimulated activation of NFκB in MCF-7 cells. Figure 4 
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illustrates various processes along the NFκB signalling 
pathway that have been shown to be suppressed by M. 
indica extracts and phytochemicals.

Inactivation of β-Catenin Pathway
Wnts, a family of 19 secreted glycoproteins, are chief reg-
ulators of β-catenin activity.229 In the absence of Wnt signal, 
β-catenin is constantly maintained at a low cytoplasmic level 
via the action of a destruction complex consisting of Axin, 
adenomatous polyposis coli protein (APC), casein kinase 1 
(CK1) and GSK-3, where β-catenin phosphorylation by CK1 
and GSK-3 eventually leads to its ubiquitination and protea-
somal degradation.230 Activation of the Wnt/β-catenin path-
way is initiated with the binding of Wnt to the Frizzled (Fz) 
receptor and its co-receptor [ie, low-density lipoprotein 

receptor-related protein 5/6 (LRP5/6)].231 The subsequent 
recruitment of Dishevelled (Dvl) protein, the phosphoryla-
tion and activation of LRP5/6 as well as the recruitment of 
destruction complex eventually ceases β-catenin degrada-
tion, thereby leading to β-catenin accumulation and nuclear 
translocation.231 The expressions of Wnt target genes are 
usually repressed by T cell-factor/transducin-like enhancer 
of split (TCF/TLE) proteins and histone deacetylase 
(HDAC).232 As β-catenin binds to lymphoid enhancer factor 
(LEF)/TCF family of transcription factors to form a binding 
complex, it can act as a co-activator for LEF/TCF proteins to 
activate the expression of Wnt target genes involved in 
various biological processes.232,233

Dysregulation of the Wnt/β-catenin signalling pathway 
has been associated with different diseases, including 

Figure 4 Inhibition of classical and parallel NFκB activation pathways by M. indica extracts and phytochemicals. 
Abbreviations: ERK, extracellular signal-regulated kinase; IκB, inhibitor of NFκB; IKKα, IκB kinase alpha; IKKβ, IκB kinase beta; MAPK, mitogen-activated protein kinase; 
MSK, mitogen- and stress-activated kinase; NEMO, Nuclear factor kappa B essential modulator; p90RSK, 90 kDa ribosomal s6 kinase.
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human cancers.234 Various studies have demonstrated that 
aberrant activation of the Wnt/β-catenin signalling path-
way can promote angiogenesis, cell proliferation, migra-
tion, invasion and chemoresistance, thereby contributing to 
cancer initiation and progression.235–237 For example, con-
stitutively active Wnt/β-catenin pathway has been linked 
to metastasis in breast cancer.234,238

Mangiferin (12.5–50 µM) has been reported to down-
regulate matrix metalloproteinases (MMP)-7 and −9 and 
reverse epithelial-mesenchymal transition (EMT) in MDA- 
MB-231 and BT-549 cells, as evidenced by the observations 
of morphological changes (from fibroblast-like to cobble-
stone-like), significantly increased levels of epithelial marker 
(E-cadherin) and significantly decreased levels of mesench-
ymal markers (vimentin, snail and slug) following 

treatment.66 Similar in vivo effects have been observed in 
MDA-MB-231 xenografts of mice subjected to mangiferin 
treatment (100 mg/kg/day; 5 weeks).66 The same study also 
suggested that mangiferin can inhibit the β-catenin pathway 
by lowering the protein levels of inactive phospho-GSK3β 
(p-GSK3β) and active β-catenin both in vitro and in vivo. 
Furthermore, while β-catenin overexpression reversed the 
anti-proliferative, anti-migratory and anti-invasive effects 
of mangiferin in MDA-MB-231 and BT-549 cells, β-catenin 
silencing downregulated MMP-7, MMP-9 and snail, indicat-
ing that the inactivation of β-catenin pathway may contribute 
to the anti-cancer effects of mangiferin by modulating MMP- 
7, MMP-9 and EMT.66 The overall study findings by Li et al66 

on mangiferin-mediated inactivation of β-catenin pathway 
are as summarised in Figure 5.

Figure 5 Inactivation of β-catenin pathway by mangiferin. 
Abbreviations: APC, adenomatous polyposis coli protein; CK1, casein kinase 1; Dvl, Dishevelled; GSK-3, glycogen synthase kinase-3; LRP5/6, low-density lipoprotein 
receptor-related protein 5/6; MMP-7/9, matrix metalloproteinase-7/9; p-GSK3β, phospho-GSK3β; TCF, T cell-factor.
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Inhibition of 3-Hydroxy-3-Methyl- 
Glutaryl-Coenzyme A Reductase, 
Proteasome and Plasmin Enzymatic 
Activities
3-Hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) 
reductase is an enzyme that catalyses the rate-limiting step 
(ie, conversion of HMG-CoA to mevalonate) of cholesterol 
biosynthesis.239 Low-density lipoprotein (LDL) cholesterol 
signalling has been associated with the promotion of cell 
proliferation, migration and invasion in breast cancer, sug-
gesting the control of cholesterol level may be beneficial.-
240,241 The statins, a class of cholesterol-lowering drugs, 
exert their hypocholesterolemic effects by blocking the activ-
ity of HMG-CoA reductase.242 There have been evidences 
suggesting that the inhibition of HMG-CoA reductase by 
statins can impair breast cancer cell proliferation, making 
statins potentially useful in breast cancer treatment.243 

Cuccioloni et al 68 found that mangiferin at low µM concen-
trations (ie, inhibition constant of 3±0.2 µM) can similarly 
reduce the activity of microsomal HMG-CoA reductase. As 
expected, this translated to a significant dose-dependent 
reduction in the cytoplasmic cholesterol levels of MCF-7 
and MCF-10A cells following exposure to mangiferin.68 

These effects of mangiferin on cholesterol homeostasis can, 
thus, potentially explain its observed anti-cancer activity in 
breast cancer cells.68

The ubiquitin-proteasome pathway (UPP) is the major 
pathway responsible for degrading more than 80–90% of the 
intracellular proteins in mammalian cells.244 Importantly, 
UPP is also known to play an important role in the regulation 
of cellular processes involved in both tumor cell growth and 
survival.245 Studies with proteasome inhibitors have demon-
strated anti-proliferative and pro-apoptotic activities in tumor 
cells, thereby suggesting the potential usefulness of protea-
some inhibitors as anti-cancer agents.246–248 When 
Cuccioloni et al 68 evaluated the effect of mangiferin (1–20 
µM) on various catalytic activities of isolated 20S protea-
some, a significant dose-dependent reduction was observed 
for chymotrypsin-like (ChT-L), trypsin-like (T-L), peptidyl-
glutamyl peptide hydrolase (PGPH) and branched-chain 
amino acid preferring (BrAAP) activities, with T-L activity 
being the most sensitive to inhibition by 20 µM mangiferin. 
When proteasome activities in the lysates of mangiferin- 
treated MCF-7 and MCF-10A cells were measured, signifi-
cantly reduced ChT-L, T-L, PGPH and BrAAP activities 
were similarly observed.68

Plasminogen, a single-chain glycoprotein, is usually 
found in the blood circulation in its inactive form.249 

Upon association with cellular receptors, the resulting con-
formational changes induced in plasminogen promote the 
catalysis of its activation to plasmin by either urokinase 
plasminogen activator (uPA) or tissue plasminogen activa-
tor (tPA).250 Plasmin is a serine protease that has a primary 
role in fibrinolysis.251 However, the ability of plasmin to 
catalyse the degradation of ECM proteins and cell–cell 
adhesion proteins has also associated plasmin with cellular 
migration in both physiological (eg, embryonic angiogen-
esis and wound healing) and pathological (eg, tumor growth 
and metastasis) conditions.252–254 This provides a rationale 
for plasmin inhibition in cancer management. In a study, 
Cuccioloni et al68 observed that mangiferin (0–200 µM) 
exhibited a moderate inhibitory potency against isolated 
plasmin. As expected, mangiferin was also reported to 
cause a significant dose-dependent reduction in the clea-
vage of E-cadherin by plasmin in both MCF-7 and MCF- 
10A cells.68 The plasmin inhibitory effect of mangiferin can 
thus, at least partly, help to explain its observed anti-migra-
tory activity in breast cancer cells.68

Inhibition of Rac1/WAVE2 Signalling 
Pathway
Rho-family of small GTPases play an important role in the 
regulation of a range of cellular processes, including cell 
apoptosis, motility, mitosis and proliferation.255 Cell divi-
sion control protein 42 homolog (Cdc42) and Ras-related 
C3 botulinum toxin substrate 1 (Rac1), two members of 
the Rho-family of small GTPases, have specifically been 
associated with the activation of actin polymerisation and 
thereby, the modulation of cellular cytoskeletal 
reorganisation.256 Wiskott–Aldrich Syndrome protein 
(WASP) and WASP-family verprolin-homologous protein 
(WAVE), the respective downstream effectors of Cdc42 
and Rac1, are capable of activating the actin-related pro-
tein 2/3 (Arp2/3) complex that is the major cellular 
machinery for actin nucleation.257 Activation of the 
Arp2/3 complex eventually results in the remodelling of 
actin filament networks as well as the formation of mem-
brane protrusions and ruffles required for cellular motility 
in tumor cells.256,258 Despite the existence of other mem-
bers of the WAVE family of proteins, it has been shown 
that WAVE2 tends to be the most important in mediating 
breast cancer cell motility.259 As such, inhibiting actin 
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polymerisation via the suppression of Rac1/WAVE2 sig-
nalling pathway may be effective in preventing metastasis.

It was reported by Deng et al67 that mangiferin (2.5–10 
µM) can induce a significant dose-dependent reduction in 
the protein levels of Rac1/Cdc42, phospho-Rac1/Cdc42 
(pRac1/Cdc42), WAVE2, Arp2 and Arp3 in MDA-MB- 
231 cells, which is indicative of a suppression of the 
Rac1-WAVE2 signalling pathway (Figure 6). The authors 
linked this suppressive effect of mangiferin to its observed 
anti-migratory and anti-invasive activities in breast cancer 
cells.

Modulation of Estrogen Receptor Activity
ERs belong to the steroid hormone superfamily of nuclear 
receptors.260 Upon activation by estrogen binding, the 
subsequent ER-mediated signalling can occur in either a 
genomic or non-genomic manner.261 Direct genomic sig-
nalling, the classical estrogen signalling mechanism, 
involves conformational change and dimerization of ER, 
nuclear translocation of ER complex and their subsequent 
interaction with chromatin in estrogen response elements 
(EREs) to directly regulate gene expression.262 In contrast, 
non-genomic signalling is mediated by membrane-bound 
ER and can indirectly regulate gene expression via the 
activation of various intracellular signalling cascades.263

There are two structurally and functionally distinct ER 
subtypes (ie, ERα and ERβ), both of which are expressed in 
normal breast tissues.264 In breast cancer, while ERα expres-
sion is frequently found to be upregulated and is clearly 
associated with both prognosis and endocrine treatment 
response, ERβ expression is usually observed to be down-
regulated and has no clear association with any clinical 
parameters.264 ERα and ERβ have been known to play a 
different role in tumorigenesis, where ERα is proliferative 
while ERβ appears to be anti-proliferative.265 However, it 
has been reported that ERβ can oppose the proliferative 
activity of ERα in co-expression, possibly via the formation 
of ERα/β heterodimers.266 Moreover, ERα/β heterodimer- 
selective ligands have demonstrated growth-inhibitory effect 
on tumor cells and thus can potentially be useful in the 
treatment of ERα- and ERβ-positive breast cancer.266

To elucidate the mechanisms underlying the observed 
anti-breast cancer activities of M. indica phytochemicals, a 
study examined the effects of quercetin, mangiferin and 
norathyriol (1–1000 µM) on the ERE transactivation activ-
ities of ERα and ERβ in Cos-7 cells.75 While it was 
reported that all three M. indica phytochemicals are cap-
able of activating ERα, only norathyriol is capable of 
activating ERβ.75 Therefore, further studies are required 
to investigate the link of these differential ER-modulatory 
effects to the observed lack of anti-proliferative effect of 

Figure 6 Inhibition of Rac1/WAVE2 signalling pathway by mangiferin. Arp2/3, activating the actin-related protein 2/3; Cdc42, cell division control protein 42 homolog; GEF, 
guanine nucleotide exchange factor; Rac1, Ras-related C3 botulinum toxin substrate 1; WASP, Wiskott–Aldrich syndrome protein; WAVE, WASP-family verprolin- 
homologous protein.
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mangiferin as well as the observed anti-proliferative 
effects of quercetin and norathyriol on MCF-7 cells; and 
to evaluate the effects of these M. indica phytochemicals 
on ERα/β heterodimer activity.75

5GG, another M. indica phytochemical, has also been 
reported to exert growth-inhibitory effect on MCF-7 by 
inhibiting ERα function.94 Specifically, the study revealed 
that 5GG (1–40 µM) can inhibit ERα activity by promot-
ing ERα degradation through the lysosomal pathway or 
blocking all known pathways of ERα activation – estro-
gen-mediated activation, growth factor-induced phosphor-
ylation of the amino-terminal activation function-1 (AF-1) 
and cyclin D1-mediated activation.94

Activation of AMP-Activated Protein 
Kinase Signalling Pathway
AMP-activated protein kinase (AMPK) is a serine/threonine 
kinase complex consisting of a catalytic subunit (AMPK-α) 
and two regulatory subunits (AMPK-β and AMPK-γ).267 It is 
regarded as a sensor of intracellular adenosine nucleotide 
levels, where it is activated in response to cellular stresses 
that can reduce intracellular ATP level.268 AMPK activation 
involves the phosphorylation of its conserved threonine 172 
residue by an upstream kinase such as Ca2+/calmodulin- 
dependent protein kinase β (CaMKKβ), liver kinase B1 
(LKB1) and transforming growth factor β activated kinase 
1 (TAK1).269 More recent studies have further suggested 
AMPK’s role as an oxidative stress sensor in addition to its 
traditional role as an energy sensor, where it can be activated 
in response to increased intracellular ROS/reactive nitrogen 
species (RNS) levels.270–272

AMPK has physiological roles in the regulation of cell 
growth, metabolism, polarity and autophagy, and AMPK 
activation has been recognised to exert beneficial effects in 
various pathological conditions.268 The downregulation of 
AMPK has been associated with poor outcomes in breast 
cancer patients.273 However, there have been reports that 
suggest AMPK activation can exert a growth-inhibitory 
effect on breast cancer cells, thus making AMPK signalling 
pathway a promising target in breast cancer treatment.274–276

A study proposed that the observed inhibitory effects of 
M. indica polyphenols (0.8 mg GAE/day; 4 weeks) and 
pyrogallol (0.2 mg/day; 4 weeks) on MCF10DCIS xenograft 
tumor growth can be attributed at least partly to AMPK 
pathway activation and AKT/mTOR pathway suppression.57 

In the study, mice of both treatment groups showed elevated 
levels of Sestrin2, phosphorylated AMPK and Beclin1 as 

well as reduced levels of mTOR and pmTOR. However, 
while elevated level of LKB1 was only seen in pyrogallol- 
treated mice, elevated levels of Unc-51-like kinase (ULK) 
and phosphorylated ULK were only seen in polyphenol- 
treated mice.57 Sestrin2, a highly conserved stress-inducible 
protein, is known to be capable of activating AMPK that can 
in turn inhibit mTOR.277 In addition, both ULK and Beclin1, 
which are involved in the induction of autophagic process, 
are also the downstream targets of AMPK.278 Subsequent in 
vitro assays performed on MCF10DCIS cells linked AMPK 
pathway activation induced by M. indica polyphenols and 
pyrogallol (1–20 mg/L) to their abilities to increase ROS 
generation.57 Moreover, it was reported that pyrogallol can 
also activate the AMPK pathway by binding directly to the 
allosteric site of AMPK or upregulating AMPK expression.57

On the other hand, quercetin’s anti-cancer activity has 
been linked to an upregulation of AMPK signalling in 
another study, whereby quercetin (15 µM) was observed 
to significantly increase AMPK phosphorylation (by two-
fold) in MDA-MB-231 cells.150 Figure 7 summarises the 
study observations suggesting an upregulation of the 
AMPK signalling pathway following treatment with M. 
indica extracts and their phytochemicals.

Modulation of Cell Cycle Regulators
Cell cycle is a process comprising four major phases (ie, G1-, 
S-, G2- and M-phases), during which the doubling of cellular 
components and their accurate segregation into two daughter 
cells occur.279 Transition through each phase of the cell cycle is 
under tight regulation by specific proteins.279 Cyclin-depen-
dent kinases (CDKs), a family of serine/threonine protein 
kinases, are the key regulatory proteins that control cell cycle 
progression when complexed with their regulatory subunits 
(ie, cyclins).280 G1-to-S-phase transition involves the activa-
tion of CDK4, 6 activity by D-type cyclin binding.281 One 
target of cyclin D-CDK4, 6 activity is the retinoblastoma tumor 
suppressor protein (Rb), which will dissociate from E2F tran-
scription factors following phosphorylation to enable E2F- 
induced expression of cyclins E, A and thymidylate synthase, 
etc.282,283 Continued phosphorylation and complete inactiva-
tion of Rb in the late G1-phase is achieved by the complexes 
formed from cyclins E and A as well as CDK1 and 2.284 On the 
other hand, cyclinB-CDK1 activity is known to drive cellular 
events associated with mitosis, thereby facilitating G2-to-M- 
phase transition.285 The activity of cyclin-CDK complexes can 
be counteracted by two gene families of CDK inhibitors 
(CKIs), thereby resulting in cell cycle arrest.286 While INK4 
gene family members (p16INK4a, p15INK4b, p18INK4c and 
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p19INK4d) are capable of inhibiting CDK4, 6 activity, Cip/ 
Kip gene family members (p21Cip1/Waf1/Sdi1, p27Kip1 and 
p57Kip2) can interfere with the activities of cyclins D-, E-, and 
A-CDK complexes.286

Deregulation of cell cycle, which confers cells with the 
ability to undergo cell division endlessly, is one of the hall-
marks of cancer.287 In breast cancer, deregulation of cell 
cycle often results from an aberrant activation of CDKs and 
cyclins as well as an inactivation of tumor suppressors.288 As 
such, several CDK4/6 inhibitors (ie, abemaciclib, palbociclib 
and ribociclib) have been approved by FDA for the treatment 
of breast cancer, and a number of cell cycle inhibitors (eg, 
TTK protein kinase [TTK] and polo-like kinase 4 [PLK4] 
inhibitors) are currently under development.287

Chen et al95 reported the ability of 5GG (50 µM) to 
induce a G1-phase arrest in MCF-7 cells and proceeded to 
investigate the underlying mechanisms of this arrest. Overall 
study findings suggested that 5GG treatment can increase the 
protein level of p27Kip, which can in turn bind to and inhibit 
CDK2 and 4 kinase activities, resulting in a reduced Rb 
phosphorylation and thus preventing E2F-induced expres-
sion of S-phase genes.95 Moreover, it was also reported that 
5GG may block the association of p21Cip with cyclin 
D-CDK4 complexes, which would usually be required to 
increase the stability and activity of cyclin D-CDK4 com-
plexes implicated in G1-to-S-phase transition.95

Gallic acid (2–12 µg/mL) has also been reported to 
induce S- and G2/M-phase arrest in MCF-7 cells, which is 
linked to its ability to dose-dependently lower the protein 
levels of cyclin A, cyclin B1, cdc2/CDK1 and CDK2.111 

Additionally, gallic acid can also dose- and time-depen-
dently downregulate S-phase kinase-associated protein 2 
(Skp2) and prevent it from ubiquitinating p21Cip1 and 
p27Kip1, thereby preventing the proteasomal degradation 
of p21Cip1 and p27Kip1 and leading to cell cycle arrest.-
111 However, as the silencing of p27Kip1 but not p21Cip1 
can significantly diminish gallic acid-induced increase in 
G2/M-phase ratio, p27Kip1 may play a more important 
role than p21Cip1 in the observed cell cycle arrest induced 
by gallic acid.111

Quercetin can also induce cell cycle arrest in breast 
cancer cell lines. For instance, Chien et al149 observed a 
G2/M-phase arrest in MDA-MB-231 cells following quer-
cetin treatment (200 µM), and correlated this with a reduc-
tion in the protein levels of cyclin A, cyclin B and 
thymidylate synthase as well as an increase in the protein 
levels of p53 and p57. On the other hand, Chou et al148 

reported that quercetin (150 µM) can induce a S-phase 
arrest in MCF-7 cells by downregulating the protein levels 
of CDK2, cyclin A, cyclin E and thymidylate synthase as 
well as upregulating the protein levels of p53 and p57.

Figure 7 Activation of AMPK signalling pathway by M. indica extracts and phytochemicals. 
Abbreviations: AMPK, AMP-activated protein kinase; CAMKKβ, calcium/calmodulin-dependent protein kinase β; LKB1, liver kinase B1; mTOR, mammalian target of 
rapamycin; TAK1, transforming growth factor β activated kinase 1; TSC1/2, tuberous sclerosis proteins 1 and 2; ULK, Unc-51-like kinase.
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Conclusion and Future Perspectives
This review provides a comprehensive summary of the studies 
on the anti-cancer effects of extracts prepared from various 
parts of M. indica (ie, bark, kernel, leaves, peels and pulps) and 
its polyphenolic phytochemicals (ie, mangiferin, norathyriol, 
gallotannins, gallic acid, pyrogallol, methyl gallate and quer-
cetin) in preclinical models of breast cancer. Overall, there was 
a reduction in cell viability, proliferation, growth, migration 
and invasion as well as an induction of apoptosis and cell cycle 

arrest. Reduced tumor weight and volume were also observed. 
A number of mechanisms have been proposed so far: activa-
tion of oxidative stress-induced cell death, antioxidant activity, 
modulation of PPARs, suppression of P13K/AKT pathway, 
induction of miR-126 expression, inhibition of aromatase 
enzymatic activity and expression, modulation of intracellular 
Ca2+ signalling, inhibition of NFκB signalling pathway, inac-
tivation of β-catenin pathway, inhibition of HMG-CoA reduc-
tase, proteasome and plasmin enzymatic activities, inhibition 

Figure 8 Fabrication of smart nanofiber matrices for breast cancer therapy. Polyphenolic compounds (PLP) from M. indica have been studied extensively as anti- 
inflammatory and anti-cancer agents. In the proposed future study, M. indica PLP will be cross-linked to silk fibroin (cocoon) nanofibers before being conjugated with 
PNIPAAm-PEG-Tat to yield PNIPAAm-PLP-Tat, which can then be released in a thermal responsive burst at breast tumor tissues. The use of cell-penetrating peptide (Tat) 
permits targeted intracellular transport of PLP into breast cancer cells.
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of Rac1/WAVE2 signalling pathway, modulation of ER activ-
ity, activation of AMPK signalling pathway as well as mod-
ulation of cell cycle regulators.

Further selective compound studies should be performed 
on M. indica extracts that possess anti-breast cancer activities 
to identify and validate phytochemicals that are responsible 
for the observed bioactivities. Extracts of different M. indica 
parts showed different bioactivities, suggesting variabilities 
in the type and amount of phytochemicals and thus high-
lighting the importance of targeting certain plant parts. 
Additionally, variabilities in bioactivities have also been 
observed for M. indica extracts despite utilisation of the 
same plant parts, indicating the presence of different phyto-
chemical profiles in these extracts and further emphasizing 
the importance of selecting the right M. indica varieties, 
extraction method and extraction solvent. Once identified 
and validated, the phytochemical(s) of interest should be 
isolated for subsequent studies on their efficacies, toxicities, 
mechanisms of action and drug metabolism and pharmaco-
kinetics (DMPK) profiles. It has been supported by various 
studies that multiple M. indica phytochemicals may act 
synergistically such that their combined anti-breast cancer 
efficacy is higher than that of a single phytochemical, sug-
gesting the potential benefits of their combined usage in 
cancer treatment. Furthermore, while M. indica fruit con-
sumption may be beneficial for women’s health in relation 
to breast cancer given the reported anti-breast cancer activ-
ities of M. indica pulp extracts, further bioavailability studies 
are required to determine whether the bioactive compounds 
within the fruits exhibit reasonable bioavailability to exert 
their anti-cancer effects following fruit consumption. More 
committed studies, particularly clinical trials, are needed to 
explore the anti-breast cancer potential of M. indica extracts 
and their phytochemicals in order to validate their utility in 
the development of unique and potent therapeutic agents to 
treat breast cancer. Apart from that, the phytochemicals that 
are present in M. indica extracts may vary in concentration 
depending on the food source and season, hence the devel-
opment of health supplements is a better option for consistent 
deliveries. Furthermore, chemotherapeutic agents lack tumor 
selectivity such that they may damage normal cells and cause 
major side effects. Therefore, targeted delivery of bioactive 
compounds to tumors is required to minimise toxicity to 
normal cells. Drug delivery techniques based on nanofibers 
have recently emerged as a potential platform for delivering 
bioactive compounds to tumor sites. Nanofibers cross-linked 
with polyphenols from M. indica can be coupled 

to PNIPAAm-PEG-Tat to enable smart tumor microenviron-
ment-responsive targeted distribution of M. indica polyphe-
nols. Because of their ability to deliver medicines and genes 
intracellularly, arginine-rich cell-penetrating peptides (CPPs) 
like transactivating transcriptional activator (TAT) have 
attracted a lot of attention (Figure 8). On the other hand, in- 
depth study into alternative delivery systems should be 
examined as a possibility for optimizing localisation at 
tumor target areas and therefore boosting therapeutic 
efficacy.
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