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Abstract: Whereas the treatment of MM was dependent solely on alkylating agents and 
corticosteroids during the prior three decades, the landscape of therapeutic measures to treat 
the disease began to expand enormously early in the current century. The introduction of new 
classes of small-molecule drugs, such as proteasome blockers (bortezomib and carfilzomib), 
immunomodulators (lenalidomide and pomalidomide), nuclear export inhibitors (selinexor), 
and histone deacetylase blockers (panobinostat), as well as the application of autologous 
stem cell transplantation (ASCT), resulted in a seismic shift in how the disease is treated. 
The picture changed dramatically once again starting with the 2015 FDA approval of two 
monoclonal antibodies (mAbs) – the anti-CD38 daratumumab and the anti-SLAMF7 elotu
zumab. Daratumumab, in particular, has had a great impact on MM therapy and today is 
often included in various regimens to treat the disease, both in newly diagnosed cases and in 
the relapse/refractory setting. Recently, other immunotherapies have been added to the 
arsenal of drugs available to fight this malignancy. These include isatuximab (also anti- 
CD38) and, in the past year, the antibody-drug conjugate (ADC) belantamab mafodotin and 
the chimeric antigen receptor (CAR) T-cell product idecabtagene vicleucel (ide-cel). While 
the accumulated benefits of these newer agents have resulted in a doubling of the disease’s 
five-year survival rate to more than 5 years and improved quality of life, the disease remains 
incurable. Almost without exception patients experience relapse and/or become refractory to 
the drugs used, making the search for innovative therapies all the more essential. This review 
covers the current scope of anti-myeloma immunotherapeutic agents, both those in clinical 
use and on the horizon, including naked mAbs, ADCs, bi- and multi-targeted mAbs, and 
CAR T-cells. Emphasis is placed on the benefits of each along with the challenges that need 
to be overcome if MM is to be considered curable in the future. 
Keywords: multiple myeloma, monoclonal antibodies, antibody-drug conjugates, bi-specific 
antibodies, chimeric antigen receptor T-cells, cytokine release syndrome

Introduction
Multiple myeloma (MM) is characterized by clonal proliferation of plasma cells in 
the bone marrow accompanied by high levels of monoclonal immunoglobulins in 
the urine and/or blood. In the United States, the disease ranks second behind non- 
Hodgkin’s lymphoma (NHL) as a hematological cancer and 14th among all cancers 
in terms of incidence. According to current estimates, in 2021 MM will be 
diagnosed in a total of 34,920 individuals (55.3% male) and will be responsible 
for 12,410 deaths in the U.S.1 The median age at diagnosis is 69 years, which has 
been trending lower in recent years. Significant racial disparities have been noted 
for all stages of MM with the prevalence of the disease in the US being 
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substantially greater among African Americans than 
among Caucasians.2 For example, in one analysis of the 
SEER (Surveillance, Epidemiology, and End Results) data 
base, maintained by the National Cancer Institute (NCI), it 
was found that the annual incidence of the disease per 
100,000 population among Caucasians is 6.1 for men and 
4.0 for women compared to 13.2 and 9.6, respectively, for 
African Americans.3

The tetrad of symptoms that typically accompanies an 
active case of MM is known by the acronym CRAB: 
hypercalcemia, renal insufficiency, anemia, and bone 
lesions. An active case often is preceded by an asympto
matic state, monoclonal gammopathy of undetermined 
significance (MGUS), with a risk of progression from 
MGUS to MM of about 1% per year.4 A second asympto
matic phase, smoldering multiple myeloma (SMM), inter
mediate between MGUS and MM, also has been 
described.5,6 Current guidelines for the diagnosis and treat
ment of MM have been issued by the National 
Comprehensive Cancer Network (NCCN).7 While the 
cause of MM remains unknown, cytogenetic anomalies 
are known to play a role in some MM patients classified 
as “high risk”. The most frequently encountered of these 
variances are the chromosomal deletion del(17p) and the 
transversions t(14;16) and t(4;14).8

Remarkable progress has attended the treatment of MM 
over the past half century. Starting in the mid-1960’s and 
continuing for nearly three decades, two alkylating agents, 
melphalan (Alkeran®)9 and cyclophosphamide (Cytoxan®), 
often in regimens that included corticosteroids, were the 
mainstays of MM therapy. The addition of autologous stem 
cell transplantation (ASCT) to the MM treatment landscape 
in the 1990s further improved therapeutic outcomes. 
However, the picture began to change dramatically by the 
end of the decade with the discovery of thalidomide’s 
remarkable immunomodulatory effects that conferred anti- 
myeloma activity on this once ignominiously regarded drug. 
Two close chemical derivatives of thalidomide, lenalidomide 
(Revlimid®) (2005) and pomalidomide (Pomalyst®) (2013), 
soon supplanted thalidomide for MM. Meanwhile, the dis
covery of the potent anti-myeloma actions of proteasome 
inhibitors led to the introduction of bortezomib (Velcade®) 
(2003), later followed by the mechanistically similar carfil
zomib (Kyprolis®) and ixazomib (Ninlaro®), as important 
additions to the anti-myeloma arsenal. The list of US Food 
and Drug Administration (FDA)-approved small molecules 
that work by additional mechanisms to treat MM has recently 
expanded to include the pan-histone deacetylase inhibitor 

panobinostat (Farydak®) (2015) and the nuclear export 
blocker selinexor (Xpovio®) (2019). The cumulative benefits 
of these therapeutic advances can be seen in the 2.26-fold 
increase of the MM five-year survival rate over the period 
from 1975–77 (24.6%) to 2011–17 (55.6%),10 as well as in 
the median survival, which has increased from 2.5 years in 
the mid-1990s to 5.7 years today.11

Treatment options for MM underwent a paradigm shift 
beginning with the 2015 approval by the FDA of two 
monoclonal antibodies (mAbs), daratumumab 
(Darzalex®) and elotuzumab (Empliciti®), followed by 
additional immunotherapies, including a third mAb, isa
tuximab (Sarclisa®), an antibody-drug conjugate (belanta
mab mafodotin; Blenrep®), and idecabtagene vicleucel 
(Abecma®), the first chimeric antigen receptor (CAR) 
T-cell product for the disease. This review is intended to 
cover the fundamental aspects of these newer agents and 
the prospects for additional immunotherapeutic agents that 
now occupy the anti-myeloma pipeline.12 For recent 
reviews of the background, history, and current status of 
the applications of immunotherapy to cancer treatment, the 
reader is directed to the recent publications of Esfahani,13 

Waldman,14 and Tan.15

CD38 as a Monoclonal Antibody 
Target
CD38, which has elicited much interest as a target in MM, 
is a 45 kDa transmembrane glycoprotein, expressed at 
high levels in both normal and neoplastic plasma cells, 
as well as at lower levels by a number of other blood 
cells.16 This important surface biomarker is known to per
form several roles in cells. These functions include, among 
others, acting as a receptor for CD31 (platelet endothelial 
cell adhesion molecule; PECAM-1) and as an ectoenzyme 
with cyclic ADP ribose hydrolase activity, the products of 
which are important regulators of intracellular calcium 
levels.17,18

The principal mechanisms by which anti-CD38 antibodies 
are lethal to myeloma cells are three-fold: antibody-dependent 
cellular cytotoxicity (ADCC), antibody-dependent cellular 
phagocytosis (ADCP), and complement-dependent cytotoxi
city (CDC). In addition, crosslinks between CD38 on mye
loma cells and effector cell Fcγ receptors may be responsible 
for initiation of apoptosis of myeloma cells.19 Moreover, anti- 
CD38 antibodies have demonstrated immunomodulatory 
actions by blocking myeloid-derived suppressor cells and 
regulatory T- and B-cells.20
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In 2015, daratumumab, a fully human IgG1k mAb 
directed against CD38, became the first immunotherapeu
tic agent approved for treatment of MM. Approval was 
granted based on supporting data from two Phase III 
trials – CASTOR (NCT02136134) and POLLUX 
(NCT02076009) – wherein the mAb and dexamethasone 
were combined with either a proteasome inhibitor 
(bortezomib)21 or an immunomodulator (lenalidomide).22 

Initial approval limited daratumumab-dexamethasone use 
to monotherapy in patients who had relapsed following 
a minimum of three prior therapies that included either 
a proteasome inhibitor or an immunomodulator. However, 
daratumumab-dexamethasone in combination with protea
some inhibitors and/or immunomodulators has since 
assumed a key role in even earlier courses of anti- 
myeloma therapy as data from additional phase III trials 
demonstrated more sustained responses and good tolerabil
ity from such combinations, including use in newly diag
nosed patients whether ASCT-eligible23 or -ineligible.24

Current NCCN treatment guidelines for MM, based on 
most favorable response and safety data, include one tri
plet protocol (daratumumab- lenalidomide- 
dexamethasone); and a number of quartet regimens 
which include, in addition to daratumumab-bortezomib- 
corticosteroid (dexamethasone or prednisone), either an 
alkylating agent (cyclophosphamide or melphalan) or an 
immunomodulator (lenalidomide or thalidomide).7 

Moreover, combinations with pomalidomide25 and more 
recently carfilzomib26,27 also have received FDA approval 
for use in relapsed and/or refractory MM (RRMM). 
Several network meta-analytic studies of random con
trolled trials provide further evidence of daratumumab’s 
benefits in various myeloma-based settings.28 In addition, 
recent FDA approval of a subcutaneous (sc) formulation of 
daratumumab combined with hyaluronidase provides the 
substantial benefit of enabling markedly shorter adminis
tration times – 3–5 minutes vs several hours of intravenous 
(iv) infusion of the mAb without compromising efficacy or 
patient safety.29–31

Infusion reactions, which include dyspnea, rash, head
ache, cough, nausea, vomiting, and nasal congestion 
represent an adverse, although generally low grade, effect 
of daratumumab, being noted in up to 50% of patients 
receiving the drug, especially during the first two infu
sions. Pre-medication with a glucocorticoid and/or 
a leukotriene blocker (montelukast) may help mitigate 
this effect and may be particularly useful in patients 
with underlying respiratory disease.32 Also, the drug 

can interfere with blood typing due to its capacity for 
binding to CD38 on reagent blood cells, resulting in 
a positive indirect Coombs test. This can be circum
vented by conducting patient blood-typing procedures 
prior to using daratumumab.33 The risk of infection, 
primarily due to the bone marrow suppression, also has 
been shown to accompany use of the agent and necessi
tates use of prophylactic antimicrobials, such as co- 
trimoxazole to prevent Pneumocystis carinii pneumonia 
and antivirals. Table 1 contains a partial list of current 
clinical trials that include daratumumab.

Isatuximab, a more recent addition to the anti-CD38 
mAb arsenal, differs from daratumumab in that it repre
sents a chimeric mouse-human IgG1k construct. Its 
mechanism of action is similar to that of daratumumab 
although cross-linking apparently is not a prerequisite for 
apoptosis induction.49 Initial FDA approval of isatuximab 
(March 2020) specified its use for the treatment of RRMM 
in combination with pomalidomide and dexamethasone in 
patients who have failed at least two prior therapies, 
including lenalidomide and a proteasome inhibitor.50 This 
was based on the results of the phase III ICARIA trial in 
which addition of isatuximab to RRMM patients receiving 
pomalidomide-dexamethasone exhibited significantly 
longer PFS (11.5 months vs 6.5 months).51,52 

Subsequently (March 2021), the combination of isatuxi
mab-dexamethasone with carfilzomib was approved for 
treatment of RRMM patients who had received one to 
three prior therapies. Approval in this case was predicated 
on efficacy and safety data from the phase III IKEMA 
study (NCT03275285) in which the cohort receiving the 
isatuximab-based regimen exhibited a 45% reduction in 
the risk of disease progression or death compared to that 
given carfilzomib-dexamethasone alone.53–55 Infusion 
reactions and upper respiratory infections are the most 
common adverse reactions noted for isatuximab. An isa
tuximab formulation intended for subcutaneous use is cur
rently the subject of an ongoing clinical trial 
(NCT04045795). Several of the current isatuximab- 
containing clinical trials are shown in Table 2.

Other anti-CD38 mAbs that have been investigated for 
MM include felzartamab (MOR202), TAK-573, and meza
gitamab (TAK-079). The first of these has been dropped 
by its sponsor from further consideration in MM while the 
other two, developed by Takeda, remain in early phase 
clinical trials – NCT03215030 (iv) and NCT03984097 
(sc), respectively.
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Table 1 Selected Clinical Trials of Daratumumab in Multiple Myeloma (MM)

Trial ID 
(References)

Treatment Phase Enrollment 
(N)

Trial Title

NCT04656951 Dara II 160 Daratumumab for first Line treatment of transplant-ineligible myeloma 

patients followed by daratumumab re-treatment at first relapse 

(GMMG-DADA)

NCT0262648134 Dara + Dex II 64 A multicenter open label Phase II study of daratumumab in combination 

with dexamethasone in MM resistant or refractory to bortezomib and 
lenalidomide and pomalidomide

NCT0254138323,35 Dara alone vs (Bort 

+ Thal + Dex ± 

Dara)

III 1085 Study of daratumumab in combination with bortezomib, thalidomide, 

and dexamethasone (VTd) in the first line treatment of transplant 

eligible subjects with newly diagnosed MM (Cassiopeia)

NCT03993912 (Len + Dex) vs (Len 

+ Dex + Dara sc)

III 294 A phase III study comparing lenalidomide and subcutaneous 

daratumumab (R-dara sc) vs lenalidomide and dexamethasone (Rd) in 
frail subjects with previously untreated MM who are ineligible for high 

dose therapy

NCT0231610636 Dara II 123 A randomized phase II trial to evaluate three daratumumab dose 

schedules in smoldering MM

NCT0315868826,37,38 (Carf + Dex) ± 

Dara

III 466 A randomized, open-label, phase III study comparing carfilzomib, 

dexamethasone, and daratumumab to carfilzomib and dexamethasone 

for the treatment of patients with RRMM (CANDOR)

NCT0213613421,39 (Bort + Dex) ± 

Dara

III 499 Phase III study comparing daratumumab, bortezomib and 

dexamethasone (DVd) vs bortezomib and dexamethasone (Vd) in 
subjects with RRMM (CASTOR)

NCT0330122040 Dara sc + Hyal III 390 A phase III randomized, multicenter study of subcutaneous 
daratumumab versus active monitoring in subjects with high-risk 

smoldering MM (AQUILA)

NCT03901963 Len ± Dara III 214 A randomized study of daratumumab plus lenalidomide versus 

lenalidomide alone as maintenance treatment in patients with newly 

diagnosed MM who are minimal residual disease positive after frontline 
ASCT

NCT0207600922,41,42 (Len + Dex) ± Dara III 569 Phase III study comparing daratumumab, lenalidomide, and 
dexamethasone (DRd) vs lenalidomide and dexamethasone (Rd) in 

subjects with RRMM (POLLUX)

NCT0318073643 (Pom + Dex) ± 

Dara

III 304 A phase III study comparing pomalidomide and dexamethasone with or 

without daratumumab in subjects with RRMM who have received at 

least one prior line of therapy with both lenalidomide and a proteasome 
inhibitor (Apollo)

NCT04649060 Dara ± Melf III 240 A randomized, controlled, open-label phase III study of melflufen in 
combination with daratumumab compared with daratumumab in 

patients with RRMM (LIGHTHOUSE)

NCT0225217244,45 (Len + Dex) ± Dara III 737 A phase III study comparing daratumumab, lenalidomide, and 

dexamethasone (DRd) vs lenalidomide and dexamethasone (Rd) in 

subjects with previously untreated MM who are ineligible for high dose 
therapy (MAIA)

(Continued)
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Table 1 (Continued). 

Trial ID 
(References)

Treatment Phase Enrollment 
(N)

Trial Title

NCT03652064 (Bort + Len + Dex) 

± Dara

III 395 A phase III study comparing daratumumab, bortezomib, lenalidomide, 

and dexamethasone (D-VRd) with bortezomib, lenalidomide, and 
dexamethasone (VRd) in subjects with untreated MM and for whom 

ASCT is not planned as initial therapy

NCT0327710546–48 Dara (sc vs iv) III 522 A phase III randomized, multicenter study of subcutaneous vs 

intravenous administration of daratumumab in subjects with RRMM 

(COLUMBA)

Abbreviations: Bort, bortezomib; Carf, carfilzomib; Dara, daratumumab; Dex, dexamethasone; Hyal, hyaluronidase; iv, intravenous; Len, lenalidomide; Melf, melflufen; Pom, 
pomalidomide; sc, subcutaneous; Thal, thalidomide.

Table 2 Selected Clinical Trials of Isatuximab in Multiple Myeloma (MM)

Trial ID 
(References)

Treatment Phase Enrollment 
(N)

Trial Title

NCT04270409 (Len + Dex) 

± Isa

III 323 A phase III randomized, open label, multicenter study of isatuximab in 

combination with lenalidomide and dexamethasone versus lenalidomide and 
dexamethasone in patients with high-risk smoldering MM

NCT0299033851,56–59 (Pom + 
Dex) ± Isa

III 307 A phase III randomized, open-label, multicenter study comparing isatuximab in 
combination with pomalidomide and low-dose dexamethasone versus 

pomalidomide and low-dose dexamethasone in patients with RRMM ICARIA- 

MM

NCT0327528554,60 (Isa + Carf 

+ Dex) vs 
(Carf + 

Dex)

III 302 Randomized, open label, multicenter study assessing the clinical benefit of 

isatuximab combined with carfilzomib and dexamethasone versus carfilzomib 
with dexamethasone in patients with RRMM previously treated with 1 to 3 

prior lines (IKEMA)

NCT0251466861 Isa I 55 An open-label, dose-escalation and multi-center study to evaluate the safety, 

pharmacokinetics and efficacy of isatuximab in patients with RRMM

NCT0296055562 Isa II 61 Phase II single arm trial of isatuximab in patients with high risk smoldering MM

NCT0233285060,63 Isa + Carf + 
Dex

I 89 A multi-arm phase Ib study of isatuximab in combination with standard 
carfilzomib, and high-dose weekly carfilzomib and dexamethasone for the 

treatment of RRMM

NCT0331966764 (Len + Bort 

+ Dex) ± 

Isa

III 475 A phase III randomized, open-label, multicenter study assessing the clinical 

benefit of isatuximab in combination with bortezomib, lenalidomide and 

dexamethasone versus bortezomib, lenalidomide and dexamethasone in 
patients with newly diagnosed MM not eligible for transplant (IMROZ)

NCT0174996965,66 Isa + Len + 
Dex

I 60 A phase Ib study of isatuximab in combination with lenalidomide and 
dexamethasone for the treatment of RRMM

NCT0228377567–70 Isa + Pom + 
Dex

I 89 A phase Ib study of isatuximab in combination with pomalidomide and 
dexamethasone for the treatment of RRMM (PomdeSAR)

Abbreviations: Bort, bortezomib; Carf, carfilzomib; Dex, dexamethasone; Isa, isatuximab; Len, lenalidomide; Pom, pomalidomide.
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SLAMF7 as a Monoclonal Antibody 
Target
Members of the signaling lymphocytic activation molecule 
family (SLAMF) of proteins are highly expressed on the 
surface of plasma cells, both normal and from MM 
patients, as well as natural killer (NK) cells, but not on 
other blood cells or other body tissues. While mAbs direc
ted against SLAMF3 and SLAMF6 (SGN-CD48A and 
azintuxizumab vedotin/ABBV-838, respectively) have pro
ven unsuccessful in early stages of myeloma-directed clin
ical trials, SLAMF7 (CS1 or CD319) has emerged as 
a major target in the fight against MM. The anti- 
myeloma activity of SLAMF7-targeted antibodies results 
from their ability to initiate ADCC toward myeloma cells 
following activation and engagement of NK cells.71–74 The 
foremost anti-SLAMF7 mAb is elotuzumab, a humanized 
IgG1k antibody.

In 2015, shortly following its action regarding daratumu
mab, elotuzumab was approved for treatment of MM in the 
US. Approval was granted for use in combination with 
lenalidomide and dexamethasone in MM patients who had 
already received one to three prior therapies.75 Unlike dar
atumumab, elotuzumab lacks single-agent activity.76 The 
FDA’s action was prompted by the favorable results of the 
ELOQUENT-2 trial (NCT01239797) that included 646 
RRMM patients, randomly assigned to receive the mAb 
combined with dexamethasone with or without lenalido
mide. A progression-free survival (PFS) of 19.4 months for 
the elotuzumab group plus an overall response rate (ORR) of 
68% after one year and 41% at two years compared very 
favorably to the 14.9 months and 57% and 27% exhibited by 
the control cohort.77 A four-year follow-up provided further 
confirmation of the result of this trial.78 The ELOQUENT-3 
trial (NCT02654132), which investigated the use of elotuzu
mab-dexamethasone plus pomalidomide in RRMM patients 
refractory to both lenalidomide and a proteasome blocker, 
resulted in formal approval of this triplet therapy in patients 
who had received at least two prior therapies that included 
these two agents.79 Trials with thalidomide, another immu
nomodulator, have proven inferior in RRMM patients com
pared to those obtained with lenalidomide or 
pomalidomide.80 Moreover, additional trials combining elo
tuzumab with proteasome inhibitors – bortezomib80–82 or 
carfilzomib83 – have, thus far, failed to generate the level 
of favorable outcomes of the scale produced by immunomo
dulator combinations. A list of selected trials that include 
elotuzumab is presented in Table 3.

Antibody-Drug Conjugates
Antibody-drug conjugates (ADCs) are drugs designed to kill 
tumor cells by chemically linking a cytotoxin (or, in some 
cases a radionuclide) to an antibody which targets either 
a tumor-specific antigen (TSA) or tumor-associated antigen 
(TAA). Over the past several years a number of ADCs have 
been developed to treat an array of malignancies, including 
breast cancer, acute leukemias, and Hodgkin’s lymphoma.

ADC construction is based on three components – 
a mAb with high specificity for a particular TAA or TSA, 
a small cytotoxic molecule (the payload), and a linker 
designed to attach the payload to the mAb. Internalization 
of the ADC by endocytosis followed by lysosomal proces
sing releases the cytotoxin to initiate apoptosis of the tumor 
cell. Fully human or humanized IgG1 antibodies often are 
preferred in these constructs due to their potent ability to 
activate ADCC and ADCP through FcγRIIIa binding to NK 
cells.97 Removal of fucosyl groups (afucosylation) from the 
N-linked biantennary complex oligosaccharides in the anti
body’s Fc region further improves binding to FcγIIIa recep
tors on NK cells, resulting in enhanced ADCC.98

B-cell maturation antigen (BCMA, CD269, 
TNFRSF17) is a tumor necrosis factor (TNF) family mem
ber that acts as a ligand for BAFF (B-cell activating factor) 
and APRIL (a proliferation-inducing ligand), two cyto
kines that play key roles in myeloma cell viability and 
proliferation.99 While inhibitors of BAFF and APRIL have 
fared poorly in MM trials,100,101 BCMA, which was first 
discovered nearly thirty years ago,102–105 has come to the 
fore in recent years as an attractive target in the search for 
new drugs to treat MM.106–109 As its name implies, 
expression of this 184-amino acid glycoprotein is a key 
factor in the normal maturation and differentiation of 
B-cells into fully functional plasmacytes. Both BCMA 
and its mRNA, whose presence is almost exclusively con
fined to plasma cells, are known to be consistently over
expressed during malignant transformation to MM, driving 
tumor cell growth, survival, and drug resistance as deter
mined in both cell lines and patient samples. Furthermore, 
much evidence suggests that measurements of membrane 
bound BCMA may serve not only as a biomarker for MM 
diagnosis and prognosis, but also as a predictor of treat
ment response.110

Cleavage of the extracellular domain from membrane- 
bound BCMA by the action of gamma-secretase results in 
release of soluble BCMA (sBCMA) into the plasma;111 

elevation of sBCMA blood levels in MM patients has been 
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correlated with inferior clinical outcomes.112 Moreover, 
sBCMA not only lowers the density of the target antigen 
but also provides a soluble decoy having the capacity to 
reduce the efficacy of new anti-BCMA agents currently 
under investigation. In an effort to mitigate this potential 
hurdle, a number of gamma-secretase inhibitors have been 
developed to enhance effectiveness of BCMA-directed 
therapies.113,114 Crenigacestat (LY3039478, JSMD-194) 
and nirogacestat are among the orally active γ-secretase 
inhibitors that have been included in clinical trials of anti- 
BCMA immunotherapies.

Belantamab mafodotin (Blenrep®, belamaf, 
GSK2857916) is an ADC in which the BCMA-targeted 

humanized afucosylated IgG1 antibody is coupled to the 
microtubule inhibitor monomethyl auristatin F (mafodotin, 
MMAF) through a non-cleavable maleimidocaproyl 
linker.115,116 ADCC is induced by the antibody following 
its binding to the BCMA receptor on the myeloma cell 
surface while the cytotoxic component causes cell cycle 
arrest at the G2/M checkpoint.117 In August 2020, belanta
mab mafodotin became the first ADC to receive FDA 
approval for MM. The endorsement was provided on an 
accelerated basis for use in RRMM patients who had 
received at least four earlier regimens, including 
a proteasome inhibitor, an anti-CD38 mAb, and an 
immunomodulator.118 Approval was predicated on data 

Table 3 Selected Trials of Elotuzumab in Multiple Myeloma (MM)

Trial ID (References) Treatment Phase Enrollment 
(N)

Trial Title

NCT0271883384 Elo + Pom + Bort + 

Dex

II 52 A phase II study of elotuzumab in combination with 

pomalidomide, bortezomib, and dexamethasone in RRMM

NCT0215936585 Elo + Len + Dex II 84 A phase II single arm study of safety of elotuzumab administered 

over approximately 60 minutes in combination with lenalidomide 

and dexamethasone for newly diagnosed or RRMM patients

NCT0147804886 (Bort + Dex) ± Elo II 185 A Phase II, randomized study of bortezomib/dexamethasone with 
or without elotuzumab in subjects with RRMM

NCT0144197387,88 Elo II 41 A phase II biomarker study of elotuzumab monotherapy to assess 
the association between NK cell status and efficacy in high risk 

smoldering myeloma

NCT0265413279 (Pom + Dex) ± Elo II 157 An open label, randomized phase II trial of pomalidomide and 

dexamethasone with or without elotuzumab in RRMM 

(ELOQUENT-3)

NCT0249592289 (Len + Bort + Dex) 

± Elo

III 564 A randomized phase III trial on the effect of elotuzumab in VRd 

induction /consolidation and lenalidomide maintenance in patients 
with newly diagnosed MM

NCT0166871981,90 (Len + Bort + Dex) 
± Elo

I/II 122 A randomized phase I/II study of optimal induction therapy of 
bortezomib, dexamethasone, and lenalidomide with or without 

elotuzumab for newly diagnosed high risk MM

NCT0123979777,78,91–94 (Len + Dex) ± Elo III 761 Phase III, randomized, open label trial of lenalidomide and 

dexamethasone with or without elotuzumab in RRMM 

(ELOQUENT-2)

NCT0074256095 Elo + Len + Dex II 101 A phase Ib/II, multicenter, open-label, dose-escalation study of 

elotuzumab in combination with lenalidomide and dexamethasone 
in subjects with RRMM

NCT0272658196 (Pom + Niv + Elo + 
Dex) vs (Pom + Dex 

± Niv)

III 348 An open-label, randomized phase III trial of combinations of 
nivolumab, pomalidomide and dexamethasone in RRMM

Abbreviations: Bort, bortezomib; Dex, dexamethasone; Elo, elotuzumab; Len, lenalidomide; Niv, nivolumab; Pom, pomalidomide.
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from the DREAMM-2 trial (NCT03525678), which 
included a total of 196 RRMM patients, divided into two 
dosage cohorts: 2.5 mg/kg (N = 97) and 3.4 mg/kg 
(N = 99). ORR and PFS data recorded for the two groups 
was 31% and 2.9 months and 34% and 4.9 months, 

respectively.119 Table 4 lists a number of clinical trials that 
include belantamab mafodotin, which are currently active or 
in the initial planning stages. Thrombocytopenia and ane
mia were among the commonly reported adverse events 
noted with the drug in the DREAMM-2 trial, as well as in 

Table 4 Selected Trials of Belantamab Mafodotin in Multiple Myeloma (MM)

Trial ID 
(References)

Treatment Phase Enrollment 
(N)

Trial Title

NCT02064387128 BelMaf I 79 A phase I open-label, dose escalation study to investigate the safety, 
pharmacokinetics, pharmacodynamics, immunogenicity and clinical activity of 

the antibody drug conjugate GSK2857916 in subjects with RRMM and other 

advanced hematologic malignancies expressing BCMA (DREAMM-1)

NCT03525678129,130 BelMaf II 221 A phase II, open label, randomized, two-arm study to investigate the efficacy 

and safety of two doses of the antibody drug conjugate GSK2857916 in 
participants with MM who had 3 or more prior lines of treatment, are 

refractory to a proteasome inhibitor and an immunomodulatory agent and 

have failed an anti-CD38 antibody (DREAMM 2)

NCT04162210131 BelMaf vs (Pom 

+ Dex)

III 380 A phase III, open-label, randomized study to evaluate the efficacy and safety 

of single agent belantamab mafodotin compared to pomalidomide plus low 
dose dexamethasone in participants with RRMM (DREAMM 3)

NCT03848845132 BelMaf + 
Pembro

I/II 41 A phase I/II single arm open-label study to explore safety and clinical activity 
of GSK2857916 administered in combination with pembrolizumab in subjects 

with RRMM (DREAMM 4)

NCT03544281133,134 BelMaf + Dex 

+ (Len or Bort)

I/II 152 A phase I/II, open-label, dose escalation and expansion study to evaluate 

safety, tolerability, and clinical activity of GSK2857916 administered in 

combination with lenalidomide plus dexamethasone, or bortezomib plus 
dexamethasone in participants with RRMM (DREAMM-6)

NCT04246047135 Bort + Dex + 
(BelMaf or 

Dara)

III 478 DREAMM 7: a multicenter, open-label, randomized phase III study to evaluate 
the efficacy and safety of the combination of belantamab mafodotin, 

bortezomib, and dexamethasone compared with the combination of 

daratumumab, bortezomib, and dexamethasone in participants with RRMM

NCT04484623136 Pom + Dex + 

(BelMaf or 
Bort)

III 450 A phase III, multicenter, open-label, randomized study to evaluate the efficacy 

and safety of belantamab mafodotin in combination with pomalidomide and 
dexamethasone versus pomalidomide plus bortezomib and dexamethasone 

in participants with RRMM (DREAMM 8)

NCT04091126137 Bort + Len + 

Dex (± BelMaf)

I 144 A Phase I, randomized, dose and schedule evaluation study to investigate the 

safety, pharmacokinetics, pharmacodynamics and clinical activity of 
belantamab mafodotin administered in combination with standard of care in 

participants with newly diagnosed MM (DREAMM 9)

NCT04398745 BelMaf I 36 A phase I study to evaluate the pharmacokinetics and safety of belantamab 

mafodotin monotherapy in participants with RRMM who have normal and 

varying degrees of impaired renal function (DREAMM 12)

NCT04398680 BelMaf I 28 A phase I study to evaluate the pharmacokinetics and safety of belantamab 

mafodotin monotherapy in participants with RRMM who have normal and 
varying degrees of impaired hepatic function (DREAMM 13)

Abbreviations: BelMaf, belantamab mafodotin; Bort, bortezomib; Dara, daratumumab; Dex, dexamethasone; Len, lenalidomide; Pembro, pembrolizumab; Pom, 
pomalidomide.
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the earlier Phase I study. However, the toxic effect of great
est concern has been the corneal microcyst-like epithelial 
changes (MECs) that were observed with belantamab mafo
dotin as a single agent in 72% (68/95) of patients.120 

Neither corticosteroid eye drops nor artificial tears appeared 
to mitigate this toxic reaction, whose mechanism is 
unknown. MECs also have been a commonly reported 
issue in studies of patients receiving other ADCs that 
employ MMAF as the cytotoxic component.121 For this 
reason, FDA approval was accompanied by a Boxed 
Warning requirement indicating that changes in the corneal 
epithelium may result in vision loss, blurred vision, corneal 
ulcers, and dry eyes. Consequently, the drug is available 
only under a restricted Risk Evaluation and Mitigation 
Strategy (REMS) program.

Another BCMA-targeted ADC that has been in a phase 
I trial (NCT03489525) for RRMM is MEDI2228. 
Although this agent had shown some early promise in 
terms of efficacy and toxicity, it was recently announced 
that the drug has been dropped by its sponsor 
(AstraZeneca) from further consideration for MM. AMG 
224, an IgG1 mAb, conjugated to the microtubule inhibitor 
mertansine via a maleimidocaproyl-derived non-cleavable 
linker, has shown some encouraging results in a phase 
I trial (NCT02561962) in which an ORR of 23% was 
reported in an initial study of 40 heavily pretreated 
RRMM patients.122

Amanitin, an extremely potent inhibitor of RNA poly
merase II that is produced by the deadly Amanita phal
loides (“death cap”) mushroom, has come to the fore 
recently as a cytotoxin exhibiting a novel mode of action 
among ADCs. One such ADC is HDP-101, comprised of 
an amanitin analog coupled to a BCMA-targeted antibody 
via a cathepsin B-cleavable linker.123–125 Based on the 
highly favorable results of a pre-clinical study,126 HDP- 
101 recently (May 2021) was advanced to a phase I safety- 
assessment trial (NCT04879043) in RRMM patients.127

T-Cell-Engaging Bi-Specific 
Antibodies
T-cell-based immunotherapies have assumed major impor
tance as viable approaches to cancer treatment, especially 
during the past decade. The field has been dominated 
particularly by two areas of research: chimeric antigen 
receptor (CAR) T-cell therapies and T-cell-engaging bi- 
specific antibodies (T-BsAbs). The latter will be described 

in this section first while discussion of the former will be 
reserved for the following segment.

Based on a concept originally proposed sixty years ago 
by Nisonoff,138 T-BsAbs are predicated on the construc
tion of a dual-targeting antibody whereby one arm first 
binds to the T-cell CD3 co-receptor while the other arm 
subsequently is recruited to a TAA or TSA on the targeted 
cancer cell. Although there are numerous variations on this 
concept, the basic strategy results in tethering of cytotoxic 
T-cells to tumor cells in order to cause cytolysis of the 
latter.139–141 The destructive effects are due to the com
bined actions of two cytolytic-initiating proteins released 
by cytotoxic T-cells: perforin, which generates transmem
brane pores in the tumor cells and granzyme B, which 
navigates through the formed pores to initiate apoptotic 
death of the tumor cell.142,143 The bi-specific antibody 
approach affords certain advantages by obviating the 
need for antibody-presenting cells, co-stimulatory mole
cules, or interaction between an antigen and a major his
tocompatibility complex (MHC) molecule. In addition, the 
persistent T-cell activation enables polyclonal expansion 
of T memory cells. Furthermore, such constructs remove 
any requirement for ex vivo T-cell manipulation, thus 
making “off the shelf” products feasible. Modification of 
each arm’s relative binding affinity for its respective target 
permits fine-tuning of each construct’s therapeutically rele
vant properties to optimize activity and biopharmaceutic 
parameters.144–147

The first, and thus far only, successful application of 
the bi-specific antibody concept to cancer immunotherapy 
has been the result of a collaboration between Amgen and 
Micromet that developed the BiTE® (Bi-specific T-cell 
Engager) platform in which the crosslink between T-cell 
CD3 co-receptor and tumor cell lymphocyte antigen 
CD19, is provided by tandem single-chain variable frag
ments (scFvs). The resulting product, blinatumomab 
(Blincyto®), was granted accelerated FDA approval in 
2014 for use in B-cell precursor acute lymphocytic leuke
mia (B-cell ALL).148,149 However, extension of the blina
tumomab success to RRMM has not been as favorable in 
terms of employing CD19 as a bi-specific binding partner. 
This may be related to the observation that CD19 expres
sion by B-cells is known to progressively decrease 
throughout their development from the pre-B-cell stage 
to differentiation into plasma cells and even further during 
transformation into myeloma cells.150,151 This increasing 
loss of CD19 has been proposed as a contributing factor in 
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myeloma cell proliferation, which would appear to pre
clude realization of benefits of anti-CD19 therapy in MM. 
However, the recent finding of CD19 at very low levels on 
MM cells by super-resolution microscopy,152 although 
undetectable by conventional flow cytometry, may yet 
make CD19 an intriguing target for immunotherapy of 
MM. A single phase I RRMM-based trial 
(NCT03173430) of blinatumomab, combined with ASCT, 
unfortunately had to be terminated at an early stage 
because of “slow patient accrual”.

Although utilization of CD19 as a suitable binding partner 
for bi-specific antibodies in MM appears to be stymied at this 
point, BCMA, as in the ADC arena, has assumed a major role 
in BiTE® research.153–156 One such agent, AMG 420 (BI- 
836909) demonstrated favorable results in a phase I dose- 
escalation trial (NCT02514239), achieving a 31% ORR in 
42 RRMM patients, including 70% (7/10) in those who 
received the maximum tolerated dose (400 mg/day). 
Infections and polyneuropathy were the most serious adverse 
events related to treatment. Cytokine release syndrome (CRS) 
(see below), primarily grade 1, was reported in 38% of patients 
in the study.157 Pavurutamab (AMG 701), another BiTE® 

product from Amgen, with an extended serum half-life com
pared to AMG 420, is the subject of a phase I study 
(NCT03287908), both as monotherapy and in combination 
with pomalidomide; inclusion of the latter was suggested by 
the results of an earlier preclinical study.158 Initial results from 
75 heavily pretreated RRMM patients indicated that mono
therapy with pavurutamab demonstrated encouraging activity 
and a manageable safety profile.159 A recent press release 
revealed that this study has been paused in order to “discuss 
protocol modifications to optimize safety monitoring and 
mitigation with the FDA”.160

Additional BCMAxCD3 bi-specific and related con
structs that currently are in phase I trials for RRMM 
include the following:154,161

● REGN5458 (NCT03761108) and REGN5459 
(NCT04083534), under development by 
a Regeneron/Sanofi partnership. Thus far, both pre
clinical and preliminary patient data have been 
reported only for the former.162,163

● Teclistamab (JNJ-64007957), which has been shown to 
be well tolerated in a monkey model164 and has demon
strated other favorable characteristics in vitro,165 has 
been included in a dose-escalation study 
(NCT03145181) in which an ORR of 78% (7/9) was 

reported for patients receiving the highest dose while 
exhibiting a manageable safety profile.166–168

● Elranatamab (PF-06863135; PF-3135), derived from 
hinge-mutation engineering of an IgG2a 
backbone,169 has been the subject of a safety and 
efficacy investigation (NCT03269136) for which pre
liminary results have been reported.170–173 The 
drug’s advancement to a phase II trial recently was 
announced.174

● CC-93269, a trivalent T-cell engager in which one 
arm binds to CD3ε while the other two arms attach 
bivalently to BCMA, exhibited promise in one cohort 
of heavily pretreated RRMM patients who attained 
an ORR of 83% (10/12) at the highest dose level 
(6 mg.) (NCT03486067).175

● TNB-383B, a collaborative effort between AbbVie 
and Tenebio, is comprised of a single light chain 
domain and two variable heavy chains in 
a BCMAxCD3 format. Its strong T-cell activation 
kinetics and low-affinity anti-CD3ε arm are said to 
be responsible for the reduced level of cytokine 
release without diminishing cytotoxicity associated 
with the product.176–178 An ORR of 52% (12/23) at 
well-tolerated doses recently was reported in 
a preliminary study (NCT03933735) of TNB-383B, 
which received FDA designation as an Orphan Drug 
in 2019.179,180

● HPN217, developed by Harpoon Therapeutics, is 
another example of a tri-specific engager. In this 
case, the molecule consists of three binding domains 
in a single chain: a BCMA-binding component at the 
N-terminus, a CD3ε T-cell receptor (TCR) binding 
domain at the C-terminus, and a central human serum 
albumin-binding portion. This product’s smaller size 
and flexibility are thought to account for its pro
longed half-life.181 A recent report outlined the 
design of a phase I/II investigation of HPN217 in 
RRMM patients.182

Targeting TAA or TSA receptors on NK cells repre
sents an alternative strategy for development of BCMA- 
targeted bi-specifics. As with cytotoxic T-cells, NK cells 
release granzyme and perforin while they also express 
certain apoptosis-inducing ligands.183,184 A tri-specific 
engager that binds BCMA and CD200 on myeloma cells 
and CD16A on NK cells is one such example.106,185 

Another is RO7297089 (AFM26), a bi-specific designed 
to engage myeloma cell BCMA and NK CD16A, which 
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exhibited an acceptable safety profile in preclinical 
work.186 An additional example is Compass 
Therapeutics’ bi-specific CTX-4419 in which the binding 
partners are myeloma cell BCMA and NK cell p30, 
demonstrating that although NK CD16A binding may 
enhance cytotoxicity, it may not be a requirement for anti- 
myeloma activity. Some promise has been shown in pre
clinical work on CTX-4419.187 Similar properties have 
been noted for CTX-8573, another Compass entry into 
the anti-myeloma multi-specific antibody arena.188

Myeloma surface antigens other than BCMA also have 
served as targets for bi-specific antibody development. 
A major candidate in this area is cevostamab (BFCR4350A; 
RO7187797), designed to bind T-cell CD3 with FcRH5,189 

expressed on virtually all myeloma cells and now the subject of 
two clinical trials for RRMM (NCT04910568 and 
NCT03275103).190,191 Among the other non-BCMA directed 
constructs also under investigation are the CD3xCD38 mAb 
found in GBR 1342 (NCT03309111),192 a CD3xCD20 bi- 
specific,193,194 and talquetamab (JNJ-64407564), a bi-specific 
construct designed to link CD3 to G-protein-coupled receptor 
class C group 5 member D (GPRC5D), a TAA expressed at 
high levels in malignant plasma cells but limited to hair folli
cles and lung tissue in healthy individuals.168,195–197 An initial 
phase I evaluation (NCT03399799) of talquetamab monother
apy reported ORRs of 78% (14/18) when given iv and 67% (8/ 
12) when used sc.196 Also under study are combinations of 
subcutaneous daratumumab (with or without pomalidomide) 

Table 5 Selected Trials of T-Cell Engaging Bi-Specific Antibodies in Multiple Myeloma (MM)

Trial ID 
(References)

Treatment Phase Enrollment 
(N)

Trial Title

NCT02514239198 AMG 420 I 43 An open label, phase I, dose escalation study to characterize the safety, 
tolerability, pharmacokinetics, and pharmacodynamics of intravenous 

doses of AMG 420 in RRMM patients

NCT03287908159,199 AMG 701 alone vs 

(AMG 701 + Pom ± 

Dex)

I/II 408 A phase I/II open-label study evaluating the safety, tolerability, 

pharmacokinetics, pharmacodynamics, and efficacy of pavurutamab 

(AMG 701) monotherapy, or in combination with pomalidomide, with 
and without dexamethasone in subjects with RRMM (ParadigMM-1B)

NCT03761108162,200 REGN5458 I/II 200 Phase I/II FIH study of REGN5458 in patients with RRMM

NCT03145181167 Tecl I 204 A phase I, first-in-human, open-label, dose escalation study of 
teclistamab in subjects with RRMM

NCT04649359 Elra II 150 MAGNETISMM-3 an open-label, multicenter, non-randomized phase II 
study of elranatamab (PF-06863135) monotherapy in participants with 

MM who are refractory to at least one proteasome inhibitor, one 

immunomodulatory drug and one anti-CD38 antibody

NCT03486067 CC-93269 I 175 A phase I, open-label, dose finding study of CC-93269, a BCMA X CD3 

T cell engaging antibody, in subjects with RRMM

NCT03933735180 TNB-383B I 133 A multicenter, phase I, open-label, dose-escalation and expansion study 

of TNB-383B, a bi-specific antibody targeting BCMA in subjects with 
RRMM

NCT04184050 HPN217 I/II 70 A phase I/II open-label, multicenter, dose escalation and dose expansion 
study of the safety, tolerability, and pharmacokinetics of HPN217 in 

patients with RRMM

NCT04434469 RO7297089 I 80 An open-label, multicenter, phase I trial evaluating the safety and 

pharmacokinetics of escalating doses of RO7297089 in patients with 

RRMM

NCT03399799196 Talq I 245 A phase I, first-in-human, open-label, dose escalation study of 

talquetamab in subjects with RRMM

Abbreviations: Dex, dexamethasone; Elra, elranatamab; Len, lenalidomide; Pom, pomalidomide; Talq, talquetamab; Tecl, teclistamab.
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plus either talquetamab or the above-noted teclistamab 
(NCT04108195).

A list of selected clinical trials that include T-cell 
engaging bi-specific antibodies is shown in Table 5.

Chimeric Antigen Receptor (CAR) 
T-Cells
Over the past decade, chimeric antigen receptor (CAR) 
T-cell therapy has risen to a place of prominence as 
a viable immunotherapeutic approach to cancer 
treatment.201,202 As a form of adoptive cell transfer 
(ACT), this strategy endeavors to genetically modify 
a patient’s own cytotoxic T-cells to enable them to attack 
and kill a specific type of malignant cell. By employing 
recombinant DNA technology a viral vector is constructed 
so as to enable eventual expression of a chimeric receptor 
designed to attach to a TAA or TSA found on the targeted 
cancer cell. Reinfusion of the engineered T-cells back into 
the patient results in T-cell engagement with the targeted 
malignant cells leading to their death. The technique has 
been most successfully applied to the treatment of hema
tological cancers, particularly B-cell malignancies, target
ing CD19 although such has not been the case when 
applied to MM for reasons described earlier. For example, 
a trial of the anti-CD19 CAR tisagenlecleucel combined 
with ASCT only resulted in a poor clinical benefit in 
a cohort of ten MM subjects (NCT02135406).203

The attainment of durable remissions with anti-CD19 
CAR T-cells initially proved difficult even though ORRs in 
excess of 80% were seen in some early studies.204–207 The 
solution to this conundrum eventually was revealed when 
the value of adding lymphodepletion to the pre-ACT regi
men became clear. The benefits of lymphodepletion, 
usually consisting of combined cyclophosphamide and 
fludarabine, were demonstrated in several CAR T-cell- 
based trials by reports of enhanced T-cell persistence and 
expansion, as well as clinical outcomes.208 Although the 
mechanism underlying the improved efficacy associated 
with lymphodepletion remains obscure, several possibili
ties have been proposed, including elimination of homeo
static cytokine sinks for interleukins-2, -7, and -15,209 

greater levels of monocyte chemoattract protein-1 (MCP- 
1),210 and downregulation of tumor cell indoleamine 
2,3-dioxygenase (IDO)211 to block formation of trypto
phan-derived metabolites known to inhibit T-cell activity 
and induce tolerance to tumor antigens.212 Parenthetically, 
it is noteworthy that linrodostat (BMS-986205),213 an oral 

irreversible inhibitor of IDO1, has been included in a CAR 
T-cell-based MM trial (NCT04855136) that was started in 
April 2021.

Just as seen above with bi- and multi-specific antibo
dies, BCMA has taken its place as the major TSA of 
interest in anti-myeloma CAR T-cell research.155,214 

Several of the anti-BCMA constructs of consequence are 
described below, and Table 6 lists several of the currently 
active myeloma-based anti-BCMA CAR T-cell trials.

The first clinical trial (NCT02215967) of an anti- 
BCMA CAR T-cell construct utilized a lentivirus engi
neered paradigm in which the anti-BCMA scFv was linked 
in series to a CD8 hinge, a transmembrane region, a CD28 
co-stimulatory domain, and CD3ζ as the T-cell 
activator.215 Data reported for 16 RRMM patients in the 
study (median of 9.5 lines of prior therapy) showed 
a median PFS of 31 weeks and an ORR of 81% at the 
highest dose used (9 × 106 T-cells per kg).216 This 
encouraging result led to a phased series of KarMAa trials 
of Bluebirdbio’s idecabtagene vicleucel (Abecma®; 
bb2121; ide-cel), whose structure included an anti- 
BCMA scFv linked to CD137 (4–1BB) co-stimulatory 
and CD3ζ signaling domains.217 The product was 
approved by the FDA in March 2021 for RRMM218 

based on the results of a pivotal phase II trial 
(NCT03361748; KarMAa-1) that incorporated 128 
RRMM patients who had failed at least three previous 
regimens, including a proteasome inhibitor, an immuno
modulator, and an anti-CD38 mAb. An ORR of 73% (94/ 
128) was attained and one-third (42/128) experienced 
complete responses or better. The median PFS was 13.3 
months. CRS was the most common non-hematologic 
adverse effect, being found in 84% of treated subjects 
with 5% experiencing grade 3 or 4. Neurotoxicity devel
oped in 23 (18%) patients – four in grade 3 and none in 
grade 4.219 Bluebirdbio’s next generation entry into the 
field, bb21217, employs the same lentiviral design as its 
predecessor with the addition during ex vivo culture of an 
extra phosphoinositide-3-kinase (PI3K) inhibitor domain 
(bb007). This modification significantly enhances CAR 
T-cell-based immunotherapy by enriching the product’s 
population of memory-like T-cells to enhance T-cell dur
ability and potency.220 The drug was the subject of two 
recent reports of an ongoing dose-escalation study 
(NCT03274219) of 44 RRMM patients. Confirmed 
responses were noted in 24 (55%) patients with CRS and 
neurotoxicity observed in 67% and 10%, respectively. 
Preliminary data indicated a positive correlation between 
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the presence of memory-associated T-cell markers and 
peak expansion and duration of response, providing some 
tentative support for the mechanistic hypothesis underly
ing the product’s design.221,222

Johnson and Johnson’s contribution to this arena is cilta
cabtagene autoleucel (JNJ-68284528; JNJ-4528; LCAR- 
B38M; cilta-cel), which differs from other BCMA-targeted 
T-cell therapies by being directed against two BCMA epitopes 
(VH1 and VH2), a feature which improves affinity for 
BCMA-expressing cells. The phase I LEGEND-2 study 
(NCT03090659) of this product was conducted on 57 patients 
who showed an ORR of 88% and PFS of 15 months. There 
was evidence of CRS, primarily grades 1 or 2 in 83% of trial 
subjects.223–225 Reported results from 97 RRMM patients 
(median of 6 prior lines of therapy) in the CARTITUDE-1 
phase Ib/II trial (NCT03548207) were similar (97% ORR, 
CRS 95%) to those seen in the LEGEND-2 study.226 As 
a result of data from the LEGEND-2 and CARTITUDE-1 
studies, in 2019 this drug was accorded PRIME status by the 
European Medicines Agency (EMA) and was designated 

a Breakthrough Therapy and subsequently granted priority 
review by the FDA.227 Two additional studies of the efficacy 
of ciltacabtagene autoleucel in RRMM currently are in pro
gress: CARTITUDE-2 (NCT04133636) and CARTITUDE-4 
(NCT04181827). Recently reported data from the former trial 
(phase II) indicated deep and early responses with a single 
infusion.228 The latter is a phase III comparison with two 
standard myeloma triplet therapies; no results have been 
reported as yet from this trial.

P-BCMA-101, a fully humanized anti-BCMA CAR 
T-cell product from Poseida Therapeutics, contains a CD3ζ/ 
4-1BB signaling domain fused to a non-immunoglobulin 
Centyrin® scaffold. Such constructs generally are smaller 
than those patterned after immunoglobulins and offer advan
tages of higher binding affinities, improved stability, reduced 
immunogenicity, and lower production costs. Instead of 
using a viral vector in the manufacturing process, 
P-BCMA-101 employs proprietary transposon-based tech
nology (piggy-BAC®).229 The process has been shown in 
preclinical work to yield a preponderance of T stem cell 

Table 6 Selected Trials of CAR T-Cells in Multiple Myeloma (MM)

Trial ID (References) Treatment Phase Enrollment 
(N)

Trial Title

NCT03361748219,271 Ide-cel II 149 A phase II, multicenter study to determine the efficacy and safety of 

ide-cel in subjects with RRMM (KarMMa)

NCT03601078 Ide-cel II 181 A phase II, multicohort, open-label, multicenter study to evaluate 

the efficacy and safety of ide-cel in subjects with RRMM and in 

subjects with clinical high-risk MM (KarMMa-2)

NCT03651128 Ide-cel vs 5 different 
standard of care 

regimens

III 381 A phase III, multicenter, randomized, open-label study to compare 
the efficacy and safety of ide-cel vs standard regimens in subjects 

with RRMM (KarMMa-3)

NCT03274219221,222,272 bb21217 I 72 A phase I study of bb21217 in RRMM

NCT03090659223–225 Cilta-cel I/II 100 A clinical study of cilta-cel in treating RRMM

NCT03548207226,273 Cilta-cel I/II 126 A phase Ib-II, open-Label study of cilta-cel, a CAR-T therapy 

directed against BCMA, in subjects with RRMM (CARTITUDE-1)

NCT04133636228 Cilta-cel II 160 A phase II, multicohort open-label study of cilta-cel, a CAR-T 

therapy directed against BCMA in subjects with MM (CARTITUDE- 
2)

NCT03288493232 P-BCMA-101 + 
Rimiducid

I/II 220 Open-label, multicenter, phase I study to assess the safety of 
P-BCMA-101 in subjects with RRMM followed by a Phase 2 

assessment of response and safety (PRIME)

NCT03915184238 Zevo-cel I 70 Open label, multi-center, phase Ib/II clinical trial to evaluate the 

safety and efficacy of autologous zevo-cel in patients with RRMM 

(LUMMICAR 2)

Abbreviations: Cilta-cel, ciltacabtagene autoleucel; Ide-cel, idecabtagene vicleucel; Zevo-cel, zevorcabtagene autoleucel.
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memory cells (Tscm), offering the potential for improved 
therapeutic longevity.230 The product also is noteworthy for 
the inclusion in its design of a truncated caspase 9 domain as 
a safety switch. Rimiducid, a caspase 9 dimerizing agent, can 
be administered to initiate apoptosis if patient safety is 
threatened.231 P-BCMA-101 has been the subject of 
a phase I trial (NCT03288493; PRIME) in heavily pretreated 
RRMM patients. An ORR of 57% after a single administra
tion recently was reported for a cohort of 34 evaluated sub
jects in the study. CRS, one in grade 3, was observed in 17% 
of the patients. A possible case of neurotoxicity also was 
reported.232 A long-term (15 years) follow-up study 
(NCT03741127) has been initiated to explore in-depth issues 
of this product’s efficacy and toxicity.

Orvacabtagene autoleucel (orva-cel; JCARH125) and 
FCARH143 are two similar fully human svFv bicistronic 
CARs that incorporate a 4–1BB co-stimulatory domain 
and use a lentiviral vector although they differ in the 
method of production.233,234 Initial results of a trial 
(NCT03430011) of orva-cel in 51 RRMM patients 
reported an ORR of 91% while exhibiting a manageable 
safety profile.234,235

Zevorcabtagene autoleucel (zevo-cel; CT053) and 
CT103A are two BCMA-targeted CAR T-cell products 
under development by CARSgen Therapeutics. Both are 
fully human scFv constructs, containing a CD8α hinge, 4– 
1BB co-stimulatory and CD3ζ activation domains, in addi
tion to a transmembrane component. In 2019, the FDA 
granted CT053 the Regenerative Medicine Advanced 
Therapy (RMAT) designation, based on the initial results 
of two trials (NCT03975907, LUMMICAR-1; and 
NCT03915184, LUMMICAR-2) in RRMM patients who 
previously had been treated with a median of four prior 
regimens.236,237 Updated results on 10 evaluable patients 
in the LUMMICAR-2 trial were presented recently and 
showed an ORR of 100% at a dose of 1.5–3.0×108 CAR 
T-cells.238 Notable early results also have been reported 
for the related construct CT103A, which recently has been 
under study in the RRMM setting in China 
(ChiCTR1800018137): ORR of 100% in the first 18 
patients in this phase I trial.239,240 Numerous other strate
gic approaches to BCMA-based autologous CAR T-cell 
product development are represented in the array of cur
rently active clinical trials extant in the NCI data base for 
MM. Included among these products are CART- 
ddBCMA,241 C-CAR088,242 and FHVH-BCMA-T.243,244

Both CD19- and BCMA-targeted CAR T-cells have 
been used in combination in some trials in order to 

enhance efficacy, improve patient safety, and deepen clin
ical response. Simultaneous targeting of BCMA and 
SLAMF7 also is being studied.245 The dual-targeting strat
egy may involve co-infusion of two different pools of 
T-cells each expressing a different CAR or a single 
T-cell pool in which each T-cell expresses two different 
CARs (arranged either bicistronic or in tandem).246–249 For 
example, dual targeting has been explored in trials in 
newly diagnosed high-risk MM (NCT03455972) and in 
RRMM patients (NCT03196414). A recent review 
detailed the various combinations of dual-targeting 
strategies.250 However, meaningful patient data from trials 
of these dual-targeted combinations in MM have thus far 
been very limited.249,251–253 Future work needs to focus on 
the relevance of the various combinatorial approaches to 
the different stages of MM from newly diagnosed patients 
to those who fail established regimens.

Finally, preclinical data have informed trials of CAR 
T-cells that are directed against TSAs or TAAs other than 
BCMA. These targets include SLAMF7 (NCT03958656; 
NCT03710421),254,255 CD38 (NCT03464916),256 and 
CD138.257 However, only limited patient data are avail
able on these studies. Alternatives to T-cells also have 
been explored in efforts to expand available options to 
treat RRMM. The primary contemporary candidates here 
are anti-BCMA-engineered NK cells;256,258–260 although 
SLAMF7 and CD138 also have been considered as NK 
cell targets in the past.261,262 Nevertheless, only a single 
trial (NCT03940833), involving a product from Asclepius 
Technology in China, is now in progress to explore the 
potential role of BCMA-directed NK-engineered CARs in 
RRMM.

Although the autologously administered CAR T-cells 
described above have thus far produced highly promising 
results, their use is not without drawbacks, such as the 
short-lived responses they elicit and the high risk of CRS 
and other dose-limiting adverse events. As a result, some 
CAR T-cell originators have initiated innovative programs 
to develop “off-the shelf” allogeneic anti-BCMA products 
that use T-cells from healthy donors. The pipeline of 
agents in this category currently is headed by two major 
players: ALLO-715 from Allogene Therapeutics and 
Precision Bioscience’s PCAR269A.

ALLO-715 is manufactured using the proprietary 
Transcription Activator-like Effector Nuclease 
(TALEN®) system, a site-specific BCMA gene-editing 
technique that is hypothesized to limit the product’s 
potential T-cell receptor-mediated immune responses, 
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such as graft versus host disease (GvHD) and rapid 
rejection.263,264 Recently (April 2021), ALLO-715 
received the FDA’s RMAT designation,265 which was 
based on the initial findings of the dose-escalation 
phase I UNIVERSAL trial (NCT04093596) of 15 heav
ily pre-treated RRMM patients in whom were reported 
an acceptable safety profile and an ORR of 33% at the 
dose levels tested.266 Significantly, ALLO-715 is the first 
anti-BCMA CAR T-cell product whose design strategy 
incorporates a CD20-based mimotope capable of activa
tion by rituximab. Moreover, the UNIVERSAL trial also 
is noteworthy for its use of an anti-CD52 antibody, 
ALLO-647, as a selective lymphodepletion agent.267

PBCAR269A was developed using Arcus Bioscience’s 
patented nuclease gene-editing platform, which is based on 
the homing endonuclease I-CreI scaffold.268,269 In 2020, 
this product received Fast-Track status from the FDA270 

and was advanced to a phase I trial for RRMM 
(NCT04171843).

Cytokine Release Syndrome (CRS) 
and Neurotoxicity
Issues related to toxicity constitute important challenges 
that effect immunotherapy of hematologic cancers, includ
ing the bi- and multi-specific engaging antibodies and CAR 
T-cell platforms described in this review. These potentially 
lethal toxicities, whose inability to be easily reversed may 
require multidisciplinary management and intensive care, 
often are divided into two different types: 1) a general 
toxicity caused by T-cell recognition and activation against 
the targeted malignant cells and subsequent uncontrolled 
cytokine release at high levels (on-target, on-tumor toxicity) 
and 2) toxicity caused by cytokine release when CAR 
T-cells bind to the target antigen located on normal cells 
(on-target, off-tumor toxicity). BCMA-targeted anti- 
myeloma products carry a low-risk of on-target, off-tumor 
type reactions given the virtually exclusive confinement of 
the antigen to plasma cells. The discussion that follows is 
devoted to the on-target, on-tumor types of adverse events.

The most important adverse effects that accompany on- 
target, on-tumor toxicity are the cytokine release syndrome 
(cytokine storm; CRS) and neurotoxicity. Two terms often 
are used in the literature to describe the neurotoxic reac
tions: CAR T-cell-related encephalopathy syndrome 
(CRES) and immune effector cell–associated neurotoxicity 
syndrome (ICANS). Almost without exception, CRS and 
neurotoxicity are seen in varying degrees of severity in 

a percentage of participants in every trial of the immu
notherapeutic agents described in this paper.274,275 For 
instance, in the CAR T-cell therapy setting meta-analysis 
of 15 trials (N=977) of anti-CD19 or anti-BCMA con
structs, 62.3% (range: 11% to 100%) experienced some 
degree of CRS with 18.4% (range 0.8% to 46%) in grades 
3 or 4.276 Also, attempts to assess relative safety risks 
between different immunotherapeutic modalities may pre
sent complex problems. For example, meta-analysis of 8 
clinical trials of anti-CD19 blinatumomab in relapsed/ 
refractory ALL and NHL patients (N=729) found that the 
pooled occurrence rate of CRS of grades 3 or 4 was 3.5% 
and that of neurotoxicity was 12%.277 These data compare 
with the 19% and 18% respective rates of grades 3 or 
higher found in a recent meta-analysis of 15 trials 
(N=448) of RR B-cell ALL patients who received C-19- 
specific CAR T-cell therapy.278 Although tending to indi
cate that CRS and neurotoxicity may occur with greater 
frequency and severity in patients receiving CAR T-cell 
therapy as opposed to bi-specific antibody therapy, at least 
in terms of treatments targeting CD16, a number of fac
tors, including type of malignancy under study, structure 
and target of the immunotherapeutic product involved, the 
grading scales used, and routes and timing of administra
tion, as well as other variables may account for observed 
differences.

The symptoms of CRS, which generally occur in the first 
two weeks of therapy and resemble those of a severe inflam
matory reaction, are attributed to marked increased expres
sion and release of certain cytokines, including IL-6, IL-2R, 
IL-10, IFN-γ, and TNF-α.279,280 Furthermore, CRS has been 
effectively implicated as a major contributor to the deadly 
effects associated with COVID-19 infections during the cur
rent global pandemic.281–284 The IL-6 blocker tocilizumab 
(Actemra®) is the treatment of choice for cases of CRS 
associated with CAR T-cell therapy, FDA approval for this 
indication having been granted in 2017.285 However, optimal 
timing of tocilizumab intervention in patients at-risk for CRS 
remains an open question.286,287 In addition, the agent 
usually is administered with corticosteroid infusions 
although the efficacy of combining corticosteroids with toci
lizumab in the management of CRS has not been tested 
through randomized controlled studies.

ICANS/CRES symptoms, which typically begin 
around 4–5 days after initiation of CART-cell therapy 
and usually follow the peak of CRS severity, are related 
to impairment of blood–brain barrier (BBB) integrity 
enabling CSF cytokine and lymphocyte infiltration. 
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Tocilizumab is not effective in the management of neuro
toxicity. Rather, glucocorticoids play the major role in its 
treatment although their efficacy remains 
undocumented.288–290

In efforts to gain better control over toxicity of CAR 
T-cell therapy some formats have been designed to incor
porate a safety switch to enable activity curtailment 
through administration of a pharmacologic antagonist.291 

Inclusion in the construct of a transduced CD20 receptor 
that can be switched “off” by administration of the CD20 
blocker rituximab is one illustration of this strategy.292 

Another is the incorporation of a non-functional truncated 
epidermal growth factor receptor (tEGFR) that can be 
antagonized by cetuximab.293,294 Dimerization of cas
pase-9 to activate apoptosis by use of the dimerizing 
agent rimiducid represents yet another example.295–297 

The strengths and weaknesses of the various molecular 
safety switches employed in CAR T-cell design have 
been described in a recent comprehensive review of the 
subject.298

Checkpoint Inhibitors
Over the course of the past decade, immune checkpoint 
blockade has become a major strategy for immunothera
peutic drug development in the anticancer field. The 
approach is predicated on the interaction of specific cell 
surface biomarkers and their cognate ligands that enable 
the immune system to overcome the ability of malignant 
cells to evade immune surveillance and elimination. This 
tactic has resulted in the introduction of several antitumor 
mAbs designed to block these biomarker/ligand interac
tions. In particular, two of these biomarkers cytotoxic 
T-lymphocyte–associated protein-4 (CTLA-4) and the pro
grammed death (PD) receptor thus far have been success
fully applied as targets in this innovative line of attack on 
a variety of cancers.13 However, their utility as targets in 
MM has yet to be conclusively demonstrated.299 Two 
myeloma-based trials (NCT01592370 and 
NCT02681302) of the anti-CTLA-4 mAb ipilimumab 
combined with another checkpoint inhibitor, nivolumab, 
are currently ongoing. An initial report in the latter trial 
concluded that the combined checkpoint inhibitor therapy 
is safe and has potential to increase the “depth of response 
in patients with high-risk disease”.300 Encouraging results 
were seen in early phase studies of PD-1 blocker pembro
lizumab in MM, especially when used together with 
immunomodulators.301 However, major safety issues 
arose concerning these pairings in phase III trials, resulting 

in suspension of these studies although it is noteworthy 
that additional combinations of pembrolizumab and other 
PD-1/PD-L1 blockers continue to be studied in MM as 
shown in Table 7. In addition to those studies shown in the 
table is a myeloma-based trial (NCT03111992; N=26) in 
which the PD-1 blocker spartalizumab was combined with 
an anti-IL17A mAb (CJM112) and a SMAC (second 
mitochondrial-derived activator of caspases) mimetic 
(LCL161); no results have yet appeared for this recently 
completed study.

In addition to CTLA-4 and PD-1/PD-L1, other check
points have been proposed as potential targets for immu
notherapy in general or MM specifically although only 
limited preclinical or clinical data are available at present.302 

These include killer-cell immunoglobulin-like receptors 
(KIR),259,303 CD47,304,305 LAG3,306 TIGIT,307–309 and TIM- 
3.310 In this connection, note should be made of an ongoing 
phase I/II trial (NCT04150965; N=104) in which RRMM 
patients receiving the anti-LAG3 relatlimab (BMS-986016) 
or anti-TIGIT BMS-986207 are compared to a control arm 
receiving a standard care regimen of elotuzumab- 
pomalidomide-dexamethasone.

Summary and Conclusions
The therapeutic landscape of MM has shifted dramatically 
in the past two decades as the number of treatment options 
has expanded enormously and five-year survival rates, 
progression-free survival data, and quality of life studies 
continue to evidence major advances.313 The disease itself 
has become redefined over the years, moving away from 
the traditional CRAB symptoms to a risk stratification 
approach that aims to identify factors that can be determi
nant before signs and symptoms of the disease emerge, 
such as the progression from asymptomatic MGUS to 
SMM to MM. These criteria, encompassing bone marrow 
evaluation, immunoglobulin and free light chain analyses, 
cytogenetic studies, and imaging technologies, have 
become pillars of contemporary diagnostic evaluation, 
prognostication of disease course, and determination of 
intervention strategies.7 This optimism has been invigo
rated further in recent years by the advent of immunolo
gic-based approaches to cancer treatment in general and 
MM in particular. Once considered an idealistic fantasy, 
cancer immunotherapy has now emerged as a validated 
fixture in medicine, grounded in decades of work aimed at 
deciphering the fundamental complex relationships 
between the immune system and cancer initiation, prolif
eration, and metastasis. This bright picture is tempered, 
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however, by the knowledge that MM is still considered 
incurable regardless of the treatment measures used. The 
vast majority of patients who experience initial therapeutic 
benefits eventually become refractory to treatment modal
ities and experience relapse. Thus, although much progress 
has been made to date, the obstacles that remain must be 
overcome if MM is ever to be considered curable.

Fundamental to MM immunotherapy is the challenge 
to identify potential cancer-driving biomarkers that can 
serve as targets for therapy. At the forefront of this search 
are CD38, SLAMF7, and BCMA, which serve as the basis 
for the immunotherapies in use today. CAR T-cell-based 
therapies targeting BCMA have demonstrated remarkable 
clinical efficacy in MM with ORRs of at least 80% 
recorded in several clinical studies; however, response 
durations are short. It is now recognized that BCMA 

expression by myeloma cells is not as homogeneous as 
once thought. For example, one study found that 
a substantial proportion (33/85) of MM patients was 
BCMA-negative.215 Moreover, downregulated tumor-cell 
BCMA expression (antigen escape) has been reported 
during CAR T-cell therapy, as well as instances in which 
a significant fraction of initially responding patients 
experienced relapse despite continuing to express 
BCMA.216,246,314–317 Furthermore, a genome-wide gene- 
editing CRISPR study failed to identify BCMA as being 
among 90 different genes essential for MM.318 Thus, 
combinatorial strategies using BCMA and other estab
lished targets, such as CD19, CD38, and SLAMF7 or 
emerging viable targets, for instance GPRC5D319 and 
FcRH5,190 may be of value in overcoming this issue.250 

The orphan receptor GPRC5D has special appeal as 

Table 7 Selected Trials of Checkpoint Inhibitors in Multiple Myeloma (MM)

Trial ID 
(References)

Treatment Phase Enrollment 
(N)

Trial Title

PD-1 Inhibitors

NCT03848845132 Pembro + BelMaf I/II 41 A phase I/II single arm open-label study to explore safety and clinical 
activity of GSK2857916 administered in combination with 

pembrolizumab in subjects with RRMM (DREAMM 4)

NCT04361851311 Pembro + Dara II 33 Phase II Study of daratumumab-pembrolizumab for MM patients with ≥ 

three prior lines of therapy

NCT03267888 Pembro + Radiation I 24 Pilot study of pembrolizumab and single-fraction, low-dose, radiation 

therapy in patients with RRMM

NCT03292263 Niv + ASCT I 30 Autologous stem cell transplantation with nivolumab in patients with MM

NCT04205409 Niv II 20 Nivolumab for relapsed or refractory disease post CAR T-cell treatment 

in patients with hematologic malignancies, including MM

NCT04119336 Niv + Ixazo + Ctx + 

Dex

II 50 A phase II study of nivolumab in combination with ixazomib, 

cyclophosphamide, and dexamethasone in RRMM

NCT03194867 Isa + Cem I/II 109 A phase I/II study to evaluate safety, pharmacokinetics and efficacy of 

isatuximab in combination with cemiplimab in patients with RRMM

PD-L1 Inhibitors

NCT02431208312 [Atz ± Len] or [(Atz + 
Dara) ± (Len or 

Pom)]

I 85 A phase Ib study of the safety and pharmacokinetics of atezolizumab 
alone or in combination with an immunomodulatory drug and/or 

daratumumab in patients with MM

CD47 Inhibitors

NCT03530683305 TTI-622 I 156 A phase Ia/Ib dose escalation and expansion trial of TTI-622 in patients 
with advanced relapsed or refractory lymphoma or myeloma

Abbreviations: Atz, atezolizumab; BelMaf, belantamab mafodotin; Cem, cemiplimab; Ctx, cyclophosphamide; Dara, daratumumab; Dex, dexamethasone; Isa, isatuximab; 
Ixazo, ixazomib; Len, lenalidomide; Niv, nivolumab; Pembro, pembrolizumab; Pom, pomalidomide.
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a target in immunotherapy constructs since its expression 
is associated with poor prognosis in MM.320 Moreover, as 
a seven-pass transmembrane protein it, unlike BCMA, 
does not shed into the serum. In addition, expression of 
GPRC5D is independent of BCMA, offering the possibi
lity of a suitable alternative target in instances of anti- 
BCMA therapy relapse. The encouraging results, noted 
earlier, from myeloma-based studies of the 
CD3xGPRC5D bi-specific talquetamab should inform 
future clinical exploration of the potential of GPRC5D- 
targeted CARs. Indeed, this prospect was bolstered by the 
finding that anti-GPRC5D CAR T-cells produced long- 
term survival, accompanied by disease eradication, in 
a myeloma mouse model resistant to BCMA-targeted 
therapy.319

As CAR T-cell and T-BsAb-based immunotherapies 
become more widespread in the future, the role of ASCT in 
MM patients who are considered transplant-ineligible, gen
erally defined as elderly (over 75 years) and/or exhibiting 
frailty and possible comorbidities, will need to be more 
clearly defined. Current treatment protocols tend to favor 
the combination of daratumumab, lenalidomide, and dexa
methasone for newly diagnosed and RRMM patients who are 
ASCT ineligible.24 However, much more work lies ahead, 
including the need to conduct head-to-head comparison 
trials, in order to adequately serve this patient population.321

Going forward, much better insight into the mechanisms 
that drive resistance to MM therapy needs to be gained. 
A key to deepening our knowledge in this area is the bone 
marrow microenvironment and the role it plays in enabling 
malignant cells to escape immune detection. Better under
standing of the mechanisms at play here will contribute to 
future advances that will translate into further improving 
immunotherapeutic outcomes for MM, including the ability 
to reverse bone loss.322 In addition to PFS, OS, ORR, and 
other measures, the ability to detect minimal residual dis
ease (MRD) is now emerging as a key element in directing 
anti-myeloma therapy. Achievement of MRD negativity is 
increasingly viewed as a reliable prognostication marker of 
PFS and potential relapse.323 As technological advances 
enable malignant cell detection at extremely low levels, 
MRD measurements need to be more consistently and uni
formly employed in clinical trials in order to drive thera
peutic decision-making in the future.

The upsurge in knowledge gained about MM and its 
treatment over the past twenty years has been most 
impressive. The deeper understanding of the mechanisms 
that underlie the disease and the identification of an array 

of druggable biomarkers have been translated into more 
efficacious treatments that enable positive outcomes with 
greater frequency, elevating the disease to its current status 
as a reasonably manageable chronic condition, at least in 
the short-term. However, the road to a true cure for MM 
remains fraught with challenges which, although not insur
mountable, will need to be overcome for that dream to 
become a future reality.
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