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Abstract: Lipoprotein(a) forms a subfraction of the lipid profile and is characterized by the 
addition of apolipprotein(a) (apo(a)) to apoB100 derived particles. Its levels are mostly 
genetically determined inversely related to the number of protein domain (kringle) repeats 
in apo(a). In epidemiological studies, it shows consistent association with cardiovascular 
disease (CVD) and most recently with extent of aortic stenosis. Issues with standardizing the 
measurement of Lp(a) are being resolved and consensus statements favor its measurement in 
patients at high risk of, or with family histories of CVD events. Major lipid-lowering 
therapies such as statin, fibrates, and ezetimibe have little effect on Lp(a) levels. Therapies 
such as niacin or cholesterol ester transfer protein (CETP) inhibitors lower Lp(a) as well as 
reducing other lipid-related risk factors but have failed to clearly reduce CVD events. 
Proprotein convertase subtilisin kexin-9 (PCSK9) inhibitors reduce cholesterol and Lp(a) 
as well as reducing CVD events. New antisense therapies specifically targeting apo(a) and 
hence Lp(a) have greater and more specific effects and will help clarify the extent to which 
intervention in Lp(a) levels will reduce CVD events. 
Keywords: lipoprotein (a), cardiovascular disease, aortic stenosis, apheresis, genetics, 
lipoprotein turnover, statin, PCSK9, antisense therapy

Plain Language Summary
Lipoprotein (a) (Lp(a)) forms a small fraction of cholesterol profile. It is related to the bad 
cholesterol (low-density-lipoprotein cholesterol; LDL-C) that drives artery narrowing (ather-
osclerosis) and hence heart attacks, strokes, and large artery disease. It differs from LDL in 
having an additional protein - apolipoprotein(a) bonded to the particle. This addition changes 
both the secretion rate and clearance of these particles. Lp(a) levels are mostly inherited with 
the variation driven by a number of repeats within the apo(a) molecule. The standard 
treatments for lowering LDL-C such as statins or ezetimibe have little effect on Lp(a) levels. 
Niacin and proprotein convertase subtilisin kexin-9 (PCSK9) inhibitors reduce Lp(a) but 
affect other fractions such as LDL-C as well. New specific inhibitors for Lp(a) have been 
developed and are in early trials.

Introduction
A standard lipid profile consists of triglyceride-rich particles (especially post- 
prandially) and cholesterol-rich particles involved in transportation of lipids to 
body compartments (low-density lipoprotein; LDL) and those involved in transport-
ing cholesterol back to the liver for disposal through the biliary system (high 
density lipoprotein; HDL). While these components are responsible for most of 
the plasma-related risk for cardiovascular disease (CVD) risk, other factors 
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contribute including inflammation-related markers (eg, 
C-reactive protein), coagulation components (eg, fibrino-
gen or plasminogen), and lipid subfractions. These lipid 
subfractions include modifications to particle size distribu-
tion induced by insulin resistance (eg, small dense LDL) 
while a small proportion of both triglyceride-rich and LDL 
particles are distinguished by the covalent addition of 
apolipoprotein (a) (apo(a)) to apoB100 in an LDL-derived 
particle.

Structure and Genetics
Lp (a) is composed of a single apolipoprotein B100 

(apoB100), covalently linked by a disulfide bond to 
a single apolipoprotein(a) (apo(a)) allied with associated 
cholesterol, triglyceride and phospholipid.1–3 Apo(a) is 
encoded by the LPA gene located on chromosome 6q26- 
27, bears homology to plasminogen and is expressed in 
hepatocytes. Whereas plasminogen contains 5 kringle 
(K-I to K-V) and a protease domain, apo(a) contains 10 
kringle-IV subtypes (KIV1–10). Its molecular mass varies 
between 275–800 kDa due to the more than 40 allelic LPA 
variants4–6 with wide differences between ethnic groups.7 

Whilst a single copy each of K-IV1 and K-IV3–10 are 
present, the number of K-IV2 copies can range from 1 to 
more than 40.8 Variable glycosylation of K-IV motifs and 
linker sequences that join individual kringles also contri-
bute to this heterogeneity.9 Genetic studies have estab-
lished that serum Lp(a) levels are predominantly 
genetically inherited in an autosomal co-dominant 
manner2,4 and that the allelic variation of the LPA gene 
is responsible for the large range (up to 1000-fold) seen in 
Lp(a) concentrations with concentrations inversely related 
to the number of KIV2 repeats.8 These repeats are too 
large and too varied to be clearly differentiated by next 
generation sequencing techniques with current reading 
depths. A pentanucleotide10 and 2 single nucleotide poly-
morphisms (rs10455872 and rs3798220) predict higher 
Lp(a) concentrations11,12 and the risk of premature 
CVD.13,14 An intra-genic risk score based on single 
nucleotide polymorphisms can be used to approximate 
Lp(a) concentrations and has similar predictive power to 
Lp(a) levels.15

Proteomic analysis has been conducted for Lp(a) par-
ticles and shows profound differences from LDL 
particles.16 In the first analysis 9 proteins were associated 
with LDL and 31 with Lp(a). 15 proteins were confirmed 
to be associated with Lp(a). These proteins were involved 
in negative regulation of peptidase activity, regulation or 

transport of insulin growth factors, extracellular structure 
organization, protein processing and binding.16 Proteins 
such as transthyretin, vitronectin, paraoxonase-1 and pro-
tease inhibitors might be preferentially transported by 
Lp(a). It is interesting that the genetic study suggesting 
an interaction of Lp(a) with apoH was not reproduced in 
this study.17

Assembly and Metabolism of Lp(a)
The site of Lp (a) assembly is unknown and may occur in 
hepatocytes, extracellularly in the space of Disse or in the 
plasma.18–20 Lp(a) is mostly assembled by addition of 
apo(a) to a newly synthesized LDL particle rather than 
added to a triglyceride-rich very low-density lipoprotein 
(VLDL) precursor particle. This assembly is accomplished 
by forming a covalent disulfide bond between K-IV9 of 
apo(a) and apoB100 of the LDL. In plasma, Lp(a) exists in 
3 subfractions – a triglyceride-rich fraction in VLDL, an 
apoE-rich apoB-containing particle, and a predominant 
apoB-containing particle.21 (figure 1). The major ApoE 
polymorphism seems to affect the amount of Lp(a) with 
apoE4/E4 resulting in a 65% higher level than apoE2/E2.22

The mechanism of Lp(a) clearance from the plasma 
has not been fully elucidated.23 The attachment point for 
apo(a) is close to the LDL Receptor (LDLR) binding site 
on apo-B and thus interferes with binding to LDLR lead-
ing to reduced clearance and longer plasma half-life of 
Lp(a) compared to LDL-C. However, LDLR function may 
be relevant to the clearance of Lp(a) as patients with 
familial hypercholesterolemia (FH) have higher Lp(a) 
levels than their unaffected siblings with the effect being 
dependent on allele dose. Other undefined clearance 
mechanisms (eg, proteolytic cleavage of apo(a), scavenger 
receptors including B1 and plasminogen receptors) prob-
ably exist for Lp(a).23,24

Lp(a) is thought to promote atherosclerosis by two 
main mechanisms.25,26 The function of Lp(a) is unknown 
but these particles may be involved in clearance of oxi-
dized phosphocholine phospholipids (OxPL) or their 
Schiff-based adducts to lysine resides in proteins.27 

OxPL have multiple atherogenic and signaling 
properties.28 Lp(a) infiltrates into the arterial intima, 
space and binds to components of the extracellular matrix, 
enhancing macrophage infiltration and smooth muscle pro-
liferation possibly through the effects of OxPL on macro-
phage function mediated by K-IV10 phospholipid-binding 
domain, interleukin-8, and the lipid scavenger receptor 
CD-36 and Toll-like-receptor-2 (TLR2).29,30 These 
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mechanisms may be relevant to disease, as in the Dallas 
Heart Study (n=3381), OxPL, apoB, Lp(a) and OxPL/ 
apoB levels differed between racial/ethnic subgroups, 
with blacks having the highest levels. OxPL/apoB levels 
correlated with Lp(a) (r=0.85, p<0.001) with the relation-
ship being a “reverse L” shape for log-transformed values 
but not other CVD risk factors. The correlation was depen-
dent on apo(a) isoform size; and became weaker with 
larger isoforms. The number of K-IV repeats negatively 
correlated with OxPL/apoB (r=−0.49, p<0.001) and Lp(a) 
(r=−0.61, p<0.001) but even after adjustment for apo(a) 
isoform size, the relationship between OxPL/apoB and 
Lp(a) remained (r=0.67, p<0.001).31

The structural similarity of apo(a) to plasminogen 
could enhance anti-fibrinolytic effects and have been 
reported in biochemical studies.25 However, an analysis 
of Dal-Outcomes study failed to demonstrate any effect of 
Lp(a) in increasing thrombosis in patients with recent 
acute coronary syndromes where thrombosis was the 
main precipitant of events.32

Lipoprotein turnover studies of lipoprotein particles 
using labeled amino acids have been conducted for many 
years for VLDL and LDL. However, the lower concentra-
tion of Lp(a) limited the application of these techniques 
until recently. Leucine-label protein turnover studies of 

Lp(a) show that plasma levels are dependent on production 
rate and isoform size33 and have confirmed the far longer 
half-life of Lp(a) compared to LDL.34

A lipid turnover study in patients with FH (LDLR or 
PCSK9 gain-of-function mutations) those with PCSK9 
loss-of-function mutations and controls.35 Subjects with 
PCSK9-loss-of-function mutations displayed reduced 
apoE concentrations associated with a reduced VLDL- 
apoE production rate. Lp(a) and VLDL-apoE absolute 
production rates were correlated (r=0.50; P<0.05) and 
apoE:apo(a) ratios in Lp(a) increased with plasma Lp(a) 
(r=0.96; P<0.001) but not with PCSK9 levels. Individuals 
with loss-of-function variants in PCSK9 (ie, increased 
LDL receptor expression) show lower concentrations of 
Lp(a) (63 vs 80nmol/L; p<0.001).36

Epidemiology of Lp(a) and 
Cardiovascular Disease
Numerous studies have described an association between 
elevated Lp(a) and CVD independent of LDL-C and other 
traditional CVD risk factors.11,12,37 These associations 
apply to mortality, CVD mortality, and individual vascular 
bed endpoints37 – myocardial infarction,38 stroke and per-
ipheral arterial disease (PAD) in multiple populations 

Figure 1 Distribution of Lp(a) within a density gradient profile compared to other lipid fractions showing the association of the distribution of apolipoprotein E with 
subfractions of Lp(a).
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mostly of European origin. Two studies of the Danish 
general population included Lp(a) concentration (n= 
69,764), LPA K-IV2 repeats (n=98,810), and LPA 
rs10455872 genotype (n=119,094). An Lp(a)>93 mg/dL 
(199 nmol/L; 96th–100th centiles) compared with 
<10mg/dL (18 nmol/L; 1st–50th centiles) was associated 
with a hazard ratio (HR) of 1.50 (95% confidence interval 
1.28–1.76) for CVD mortality and of 1.20 (1.10–1.30) for 
all-cause mortality. A 50mg/dL (105 nmol/L) increase in 
Lp(a) levels had a hazard ratio of 1.16 (1.09–1.23). For 
stroke, the multivariable-adjusted HR was 1.60 (1.24 to 
2.05) and for a 50mg/dl (105 nmol/l) higher Lp(a) the HR 
was 1.20 (1.13 to 1.28).39 In the European Prospective 
Investigation of Cancer (EPIC)-Norfolk cohort with 
212,981 person-years, Lp(a) levels were associated 
with PAD and CAD outcomes but not with ischemic stroke 
with HRs per 2.7-fold increase in Lp(a) of 1.37 (1.25– 
1.50), 1.13 (1.04–1.22) and 0.91 (0.79–1.03) 
respectively.40 In the Copenhagen General Population 
Study (CGPS), patients with familial hypercholesterolemia 
(FH) with Lp(a) levels >50mg/dl had a 1.4-fold HR of MI 
than those with FH and Lp(a) levels <50mg/dl.41

A study in UK Biobank in 370,049 individuals showed 
that a 120nmol/L increase in Lp(a) was associated with an 

1.26 (1.23–1.28) excess risk of CVD while an intra-genic 
genetic risk score of >120 based on 43 single nucleotide 
polymorphisms gave similar results with an excess risk of 
1.29 (1.26–1.33).15 (figure 2) Area under receiver operator 
curve (AUROC) was 0.64–0.642 for both methods but 
would be lower using a precision recall curve (AUPRC) 
which makes no assumption about balanced numbers in 
outcome groups.

Meta-analyses of epidemiological studies including the 
Emerging Risk Factors collaboration (36 studies; 
n=126,634). In the 24 cohort studies, the risk ratio for 
CHD (adjusted for age and sex) was 1.16 (1.11–1.22) per 
3.5-fold higher Lp(a) concentration (ie, per 1 SD), and 
1.13 (1.09–1.18) following further adjustment for lipids 
and other risk factors. The adjusted risk ratio for stroke 
was 1.10 (1.02–1.18).37 A plasma concentration of 20mg/ 
dl (50nM) was associated with a 1.5-fold risk elevation 
while levels exceeding 50mg/dl (125nmol/L) were asso-
ciated with a 2-fold risk elevation.37

As patients with CVD are now routinely treated with 
statins, there is increasing interest in the role of factors that 
drive recurrent events. Long-established data from epide-
miological studies such as the Framingham Heart Study 
have identified age, standard lipid fractions, blood 

Figure 2 Relationship of measured Lp(a) levels and an equivalent polygenic risk score with CVD events in the UK Biobank study. Data from Trinder et al. 15
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pressure, and diabetes as major predictors of recurrent 
events.42 In a study of 3359 patients from the 
Atherothrombosis Intervention in Metabolic Syndrome 
with low HDL/HIGH Triglycerides (AIM-HIGH) trial 
HRs for CVD events adjusted for age, gender, trial treat-
ment, LDL-C, and other risk factors showed HRs increas-
ing from 1.04 (0.82 to 1.32) to 1.51 (1.25 to 1.84) for 
Lp(a) 15–30mg/dl up to >70mg/dl (Figure 3.43 

A continuous relation for total events was observed 
(HR=1.08 (1.04 to 1.12)) per 20mg/dL greater Lp(a).

Data on the relationship of Lp(a) levels with CVD 
risk in non-Caucasian populations are scarce and/or 
underpowered.44 The multi-ethnic INTERHEART study 
of 12,943 subjects reported data from 7 populations 
showing that Africans (n=775) have the highest Lp(a) 
concentrations (27mg/dl) and smallest isoform size (med-
ian=24 K-IV2 repeats) while Chinese (n=4443) ethnicity 
have the lowest concentrations (8mg/dl) and a median of 
28 kringle repeats.45 Higher Lp(a) concentrations are 
associated with an increased risk of CVD in all popula-
tions but the exact thresholds for different risk levels vary 
by ethnic group.13,37 In West Africans, 3 polymorphisms 
and rare variants seem to account for the change in 
distribution.46

As most Caucasians have minimal Lp(a) concentra-
tions through inheritance of high copy number K-IV 
alleles, high Lp(a) levels (low copy K-IV number) tend 
to show an autosomal dominant pattern of inheritance. 
Given the association of higher Lp(a) with CVD this 
suggests that Lp(a) should co-segregate with a family his-
tory of premature CVD. The Atherosclerosis Risk In 
Communities (ARIC) study included 12,149 subjects of 
average age 54 years, 56% women, 23% black, and 44% 
with a family history of CVD. Of these, 3114 had CVD 
events over 21 years of follow-up. Both family history 
(HR 1.17 (1.09–1.26)) and elevated Lp(a) (HR 1.25 (1.12 
to 1.40)) were independently associated with CVD with no 
interaction (p=0.75).47 The highest risk was seen in those 
with a family history and high Lp(a) (HR: 1.43 (1.27 to 
1.62)). Similar findings in ARIC were observed for cor-
onary heart disease (CHD) risk in this study and in another 
for risk of stroke,48 and in analyses stratified by family 
history of premature CHD, as well as in the Dallas Heart 
Study cohort which had a higher proportion of African- 
Americans.47 In parallel with observational data from epi-
demiological studies, Mendelian randomization analyses 
provide strong evidence that the association between 
Lp(a) and risk of CVD is likely to be causal.12,13,38,49

Figure 3 Relationship of increasing levels of Lp(a) within the AIM-HIGH study with CVD events. Lp(a) 0–15nM is taken as the reference group. Reproduced from Wong ND, 
Zhao Y, Sung J, Browne A. Relation of first and totalrecurrent atherosclerotic cardiovascular disease events toincreased lipoprotein(a) levels among statin treated adults 
withcardiovascular disease. Am J Cardiol. 2021;145:12–17. © 2021 Elsevier Inc. All rights reserved.43
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A post hoc analysis of intravascular ultrasound regres-
sion trials (6 trials; 3943 patients) stratified into high 
(≥60 mg/dL; 17%) (17%) and low (<60 mg/dL; 83%) 
baseline serum Lp(a) showed that percent atheroma 
volume (PAV) was higher in the high Lp(a) group before 
adjustment for CVD risk factors (38 (33–44)% vs 37 (31– 
43), P=0.01) and more clearly after adjustment (39%±0.5 
vs 38%±0.5, P<0.001). Risk-adjusted PAV increased 
across quintiles of Lp(a) (1–5; 37±0.5%, 37±0.5%, 37 
±0.5%, 38±0.5%, 39±0.5%, P=0.002).50

Relationships of Lp(a)51,52 with OxPL53,54 have also 
been shown in aortic stenosis and this association may 
explain part of the atheromatous appearance of degenera-
tive aortic valve disease.55 Whether the association also 
occurs in mitral valve disease as opposed to mitral annulus 
calcification is unclear.56

Lp (a) Measurement
The standardized accurate measurement of Lp(a) concen-
trations remains a challenge. The mass measurement of 
Lp(a) includes all of the cholesterol, cholesterol esters, 
phospholipids, apoB100 and apo(a). The variability in K- 
IV2 repeats will thus influence the mass concentration 
whilst also rendering multiple epitopes available for 
immunoassays thereby making standardization with 
a single calibrant impossible.57,58 Furthermore, immunoas-
says must be specific for antigenic loci of apo (a) that are 
not present in plasminogen or apoB and are specific for K- 
IV2 which is a major contributor to apo(a) polymorphism. 
An example is an enzyme linked immunosorbent assay 
(ELISA) method employing monoclonal antibodies that 
are specific for a unique apo(a) epitope located in K-IV9 

which shows excellent agreement with an ultraperfor-
mance liquid chromatography/mass spectrometry 
method.57 The selection of assay calibrators is difficult 
given the high degree of apo(a) size/KIV2 copy number 
variation but most kits now use 5-point calibration. Results 
should be expressed in nmol/l of Lp(a) particles, yet most 
of the previous literature reports Lp(a) concentrations in 
mass units and most papers do not specify the platform or 
traceability of reference materials. The use of a conversion 
factor of 2.4 to convert mass to molar units is not recom-
mended given errors involved.57

A further complication is that most Lp(a) forms part of 
the small dense sub-fraction within the spectrum of LDL 
particle subspecies. It exists as 3 subspecies running in the 
VLDL fraction as a triglyceride-rich apoB-apo(a) particle, 
a subfraction of apoB-apo(a) with added apoE and an LDL 

apoB-apo(a) fraction. The density of Lp(a) means that it 
forms part of the calculated LDL-C (cLDL-C) level 
reported using the Friedewald equation by most labora-
tories. A number of formulae have been proposed to cor-
rect cLDL-C for Lp(a)-C but none have been widely 
adopted.59 Furthermore, the precipitation of Lp(a) by 
most direct LDL-C methods may vary.

Assays measuring Lp(a)-cholesterol content have been 
devised using lectin-based,60 ultracentifugation61,62 or 
immunofixation electrophoresis63 methods. The lectin 
Lp(a)-C assay was assessed in the Framingham Heart 
study (n=3121).60 The mean Lp(a)-C concentration in 
men with CHD (n=156) was 0.24±0. 20 mmol/L and 
34% higher than in controls (P<0.001). The odds ratio 
for CHD risk in men with Lp(a)-C>0. 259mmol/L 
(>10mg/dL) was 2.29 (1.55–3.94; p<0.001). In this case, 
Lp(a)-C correlated highly with a mass immunoassay 
(ApotekTM Lp(a); r=0.83; P <0.0001). This finding was 
not reproduced in the Framingham Offspring study.64 For 
other methods Lp(a)-C shows a modest correlation with 
ELISA mass methods (r=0.56; P 0.01–0.001) accounting 
for 31% of the variance61 but results are often 
discordant.62 A new assay based on magnetic particle- 
based isolation of Lp(a) may be more practical.65 High 
Lp(a)-C levels may have an effect on calculated LDL-C 
and may affect classification in 38% of patients if an 
adjustment formula is used59 and even 3% of individuals 
for FH risk categories using the Dutch Lipid score.66 They 
might also affect the eligibility for therapies which are 
dependent on LDL-C levels such as proprotein convertase 
subtilisin kexin-9 (PCSK-9) inhibitors.

Lp (a) and Current Guidelines
Consensus groups and expert opinion suggest that Lp(a) 
should be measured at least once in high risk groups such 
as those with established CVD or with a family history of 
early onset CVD.24,67

In 2010, the European Atherosclerosis Society (EAS) 
Consensus Panel recommended screening for Lp (a) in 
a number of risk groups11 (Table 1). These categories were 
slightly amended in the 2019 European Society of 
Cardiology (ESC) guidelines for the management of 
dyslipidemia.68 Similar statements on measuring Lp(a) in 
patients at higher risk of CVD have been made by the US 
American Heart Association70 and in detail by the National 
Lipid Association.69 All these guidelines recommend that 
Lp(a) is measured once and used as an additional risk 
stratification tool especially in high-risk groups for CVD. 
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In the UK, NICE guidelines have not reviewed the role of 
Lp(a) and neither has the National Screening committee 
reviewed whether it should be measured as part of CVD 
risk assessment. The HEART-UK consensus statement71 

reproduced guidance from the ESC in the absence of assess-
ment from NICE. These guidelines suggest a desirable level 
Lp(a) <50mg/dl for patients with established CVD if the 
primary goal of LDL-C lowering had been achieved, partly 
based on this level being the 80th centile of the general 
population distribution.11 Other authors have suggested an 
even lower target of 30mg/dl (90th centile).72,73

With consensus guidelines recommending Lp(a) mea-
surement in several patient groups the question on how 
a result will influence the clinician’s clinical decision 
making needs to be addressed. The use of Lp(a) levels to 
reclassify intermediate risk groups in primary prevention 
is feasible if risk modifiers can be agreed and added to 
calculator/web systems. Similarly, using Lp(a) as part of 
reclassification for recurrent disease and amending review 
intervals may be possible.

Lipid Lowering Therapies Indirectly 
Affecting Lp(a)
The effects of interventions on Lp(a) are very different to 
those on LDL particles which they partially resemble in 
structure apart from the addition of apo(a). Diet and lifestyle 
factors do not seem to influence Lp(a) concentrations74 

though this has not been formally well tested in prospective 
intervention studies.72

Most studies that have investigated the effects of med-
ications on Lp(a) have done this as a secondary endpoint 
or as a post hoc analysis. These studies (Table 2) generally 
do not select patients based on Lp(a) concentration, they 
are recruited from mostly Caucasian populations and 
report results either in the whole population or split at 
median values. Given the highly skewed distribution of 
Lp(a) this can lead to contrasting results depending on the 
population selected. The data on the effects of lipid- 
lowering drug therapies are presented based on meta- 
analyses of efficacy on Lp(a) levels in clinical trials; 
lipoprotein turnover studies suggesting the mechanism of 

Table 1 Summary of Groups Recommended for Lipoprotein (a) Testing in Different International Guidelines

Category EAS (2010)11 ESC (2019)68 NLA69 NICE

Premature CVD Undefined <55yrs male <55yrs male No
< 60yrs female < 60yrs female

Stroke <55yrs

Familial 

Hypercholesterolemia

Yes Yes Yes No

Family history of premature 
CVD

Yes Yes Yes No

Family history of elevated 
Lp(a)

Yes Yes No No

Recurrent CVD despite statin 
treatment

Yes Yes Yes plus inadequate 
LDL-C response

No

Primary prevention >3% 10-year risk of fatal CVD (Systemic 
Coronary Risk Evaluation (SCORE) 

calculator)

≥5% 10-year risk of fatal CVD 
Systemic Coronary Risk Evaluation 

(SCORE)

>10% 10-year risk of 
fatal and/or non-fatal 

CHD

No

Risk of progressing aortic 

stenosis

No No Yes No

Reclassification around 

primary prevention risk 

threshold

No Yes Yes (7.5–19.9% risk) No

Reclassification around 

secondary prevention 
monitoring interval

No No Yes No
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any effect (production or catabolism) and any CVD out-
come trial event data stratifying by Lp(a) concentration.

Lipoprotein Apheresis
Apheresis methods including apheresis reduce Lp(a) levels 
about 65–75% immediately post-procedure and 40–50% on 
standard schedules. Most descriptions of the effects have 
involved apheresis techniques that remove LDL and Lp(a) 
particles with the majority of cases having concurrent homo-
zygous or heterozygous FH but a smaller fraction with severe 
vascular disease, polygenic hypercholesterolemia, and high 
Lp(a) levels. A systematic review of early studies showed 
that apheresis reduced CVD events by 54–90%.75 A later 
study of 154 patients with baseline Lp(a) 108mg/dL showed 
apheresis reduced Lp(a) by 68% and reduced CVD events by 
81%.76 One variant of apheresis (Lipopac) is specific for 
removing Lp(a) but data on this intervention are limited. In 
a study of 15 patients, Lp(a) specific apheresis reduced Lp(a) 
by 75% and showed angiographic benefit.77

Statins and Lp(a)
Most meta-analyses of the effects of statins (n=20; 23,605 
patients) show minimal effect of these drugs on Lp(a) 
levels78 but selecting on uniform assays (6 studies; 5526 
patients) gave different results.79 The only major study 
showing a different effect was JUPITER (Justification for 
the Use of Statins in Prevention: an Intervention Trial 
Evaluating Rosuvastatin). Rosuvastatin therapy raised 
Lp(a) by 10% in a study of 9612 multi-ethnic patients 
(7746 Caucasian). Lp(a) concentrations (median (25–75th 
centile); nmol/L) were highest in blacks (60 (34–100)), 
then Asians (38 (18–60)), Hispanics (24 (11–46)), and 
whites (23 (10–50)).80 The median change in Lp(a) with 
rosuvastatin was zero, but statin therapy resulted in 
a positive shift in the Lp(a) distribution (P<0.0001). 
Rosuvastatin reduced CVD by 38% (HR 0.62 (0.43– 
0.90)) with Lp(a) above the median and 54% in those 
with Lp(a) below the median (HR 0.46 (0.30–0.72)), 
with no evidence of interaction.80 The effect of statins on 

Table 2 Effects of Different Lipid-Lowering Drugs on Lp(a) Levels, Production and Catabolic Rates in Turnover Studies and Effects on 
CVD Outcomes Either Combined with LDL-C Changes or if Analyzed for Heterogeneity by Lp(a) Level Within Trials. Lp(a) Specific 
Studies are Quoted Separately

Intervention Baseline 
Lp(a)

Change in Lp(a) Change in 
Production Rate (%)

Change in Fractional 
Catabolic Rate (%)

Change in CVD 
Events

Apheresis Usually 
>100nM

NA NA NA 54–90% (include 
LDL-C effect)

Apheresis Lp(a) study76 108nM 68% NA NA 81% (includes LDL- 
C effect)

Statins Variable Nil but 

distribution shift

NA NA No differential

Fibrates Variable −2.7mg/dL NA NA No differential

Niacin Variable −23% −50 −37 No differential

Niacin Lp(a) analysis 

(THRIVE)90

128nM −31% (12–34nM) NA NA No differential

PCSK9 inhibitor Mean 21 

or 25nM

−25 to 27% Reduced 

(monotherapy only)

Reduced (combination with 

statin only)

No clear 

differential

Mipomersen (apoB antisense 

oligonucleotide)

Not stated −26% Nil −27 NA

CETP inhibitor Variable −5% dalcetrapib 

(low efficacy) 
-30 to 40% (high 

efficacy)

−41% Nil No differential

Abbreviations: CETP, cholesterol ester transfer protein; MTP, microsomal transfer protein; PCSK9, proprotein convertase subtilisin kexin 9.
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Lp(a) is likely neutral but may be confounded by insulin 
resistance, or isotype distribution.

Other Established Lipid-Lowering 
Drugs
A meta-analysis (16 studies; 1388 patients) showed 
fibrates have a small effect in reducing Lp(a) (2.7 (0.8– 
4.5) mg/dl) which is increased in combination therapy 
with statins.81 Drugs with a primary site of action in the 
gut such as ezetimibe (an enterocyte-acting Niemann Pick- 
C1-like protein 1(NPC1L1) antagonist)82 have no effect on 
Lp(a) and the bile acid sequestrant cholestyramine showed 
similar effects in the Lipid Research Clinics study.83 There 
are little data on the effects of bempedoic acid (a hepatic 
acid-citrate lyase inhibitor) on Lp(a).84

Niacin and Lp(a)
A meta-analysis of studies (14 studies; n=14,375) with 
niacin have shown that this treatment reduces Lp(a) by 
23 (19–27%).85 A crossover design lipoprotein turnover 
study in 8 patients treated with extended-release niacin 
showed it decreased triglycerides by 46%, raised HDL-C 
by 20%, and decreased apo(a) concentrations by 20%. It 
decreased apoB100 by 22% and PCSK9 levels by −29%. 
Apo(a) production rates were decreased by 50% and frac-
tional catabolic rate by 37%.86 A further study of niacin 
treatment showed reductions in Lp(a) and VLDL-apoE 
absolute production rate were correlated (r=0.83; 
P=0.015). In contrast, PCSK9 reduction (−35%; 
P=0.008) was only correlated with that of VLDL-apoE 
absolute production rate (r=0.79; P=0.028).35

Coronary and carotid artery regression studies show 
the predicted effect of baseline Lp(a) on risk of progres-
sion but no effect of niacin therapy in post hoc median- 
split analyses where diabetes, metabolic syndrome and 
nonHDL-cholesterol predicted effects.87 In outcome stu-
dies, Lp(a) was not measured in the Coronary Drug Project 
but it was measured in the AIM-HIGH88 and HPS/ 
THRIVE studies.89 The increased risk of events with base-
line Lp(a) was seen in both studies. Niacin has multiple 
beneficial effects on lipid profiles including on Lp(a) but 
neither study showed any reduction in CVD events. A pre- 
specified analysis of HPS2/THRIVE investigated the 
effect of niacin-laropiprant on Lp(a) and CVD risk.90 

Niacin therapy reduced mean Lp(a) by 12 (SE, 1) nmol/ 
L overall and 34(6) nmol/L in the top quintile of Lp(a) 
(>128nmol/L). The mean reduction in Lp(a) with niacin 

was 31% but varied with predominant apolipoprotein(a) 
isoform size (PTrend=4×10−29) but was only 18% in the 
highest quintile (Lp(a)>128nM) with low isoform size.90

PCSK9 Inhibitors and Lp(a)
PCSK9 inhibitors, like statins, modulate expression of the 
LDL receptor. However, the 2 drug classes have different 
effects on Lp(a). Meta-analysis of the effects of PCSK9 
inhibitors (41 studies; n=64,107) showed reduced Lp(a) by 
28% in contrast to the lack of effect of statins.91 

Lipoprotein turnover studies with PCSK9 inhibitors have 
shown confusing effects with a reduction in particle synth-
esis with monotherapy but changing to increased catabo-
lism in combination with statins.92

Subgroup analyses of the FOURIER and ODYSSEY- 
Outcomes trials showed that higher baseline Lp(a) pre-
dicted CVD risk and thus was associated with a greater 
absolute risk of CVD reduction. In the FOURIER trial, in 
27,564 patients with CVD, evolocumab reduced Lp(a) by 
a median 27 (6–47)%.93 The change in Lp(a) of median 25 
(6–47)nmol/L correlated with change in LDL-C (r=0.37; 
p<0.001). Evolocumab reduced CVD events by 23% (HR 
0.77 (0.67–0.88)) in patients with above median Lp(a) and 
by 7% (HR 0.93 (0.80–1.08); Pinteraction=0.07) in those 
below the median level. The higher baseline risk of 
2.49% vs 0.95% and the greater absolute risk reductions 
translate to a number needed to treat over 3 years (NNT3) 
of 40 vs 105 individuals.93 The 25 nmol/L (12 mg/dL) 
reduction in Lp(a) corresponded to a 15% reduction in 
CVD events.94

Data from 4 Phase 3 trials with evolucumab compris-
ing 895 patients showed heterogeneity between LDL-C 
and Lp(a) effects.95 Concordance was defined as LDL-C 
reduction >35% and Lp(a) reduction >10%. A discordant 
response was observed in 20% of patients with a higher 
prevalence in those with baseline Lp(a) concentrations 
>30mg/dL (26.5%) or >50 mg/dL (28.6%).95

The ODYSSEY-Outcomes study randomized 18,924 
patients to alirocumab or placebo and followed them for 
2.8 years. Baseline Lp(a) levels were 21 (7–60)mg/dl and 
predicted CVD events.96 Alirocumab reduced Lp(a) by 5.0 
(0–14) mg/dl, LDL-C by 51 (34–67)mg/dl, and reduced 
CVD events by 15% (HR 0.85 (0.78–0.93)). Alirocumab- 
induced reductions of Lp(a) and LDL-C independently 
predicted lower risk of CVD events, after adjustment for 
baseline concentrations, demographics and clinical char-
acteristics. In a further analysis, ODYSSEY-Outcomes 
higher baseline Lp(a) levels were associated with 
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a greater reduction in CVD events with alirocumab (HR 
Ptrend=0.045).97 A 1mg/dl reduction in Lp(a) with alirocu-
mab was associated with a 0.6% reduction in CVD 
events96 while a 5mg/dL reduction in Lp(a) predicted 
a 2.5% reduction in CVD events.97

A post hoc analysis of the ODYSSEY program 
(10 trials) also showed discordance between Lp(a) and 
LDL-C responses. The total prevalence of discordant 
LDL-C/Lp(a) responses was 13% with LDL-C>35% 
reduction and Lp(a)<10% reduction; and 9% with LDL- 
C<35% reduction and Lp(a)>10% reduction.98

Little data are available, as yet, on Inclisiran -a modified 
siRNA targeting apo(a). In the ORION-1 study with 501 
participants a single dose of inclisiran reduced apo B, non- 
HDL-C, and VLDL-cholesterol over 210 days. A second dose 
of inclisiran delivered additional lipid lowering. Inclisiran 
with reduced LDL-C and apoB similar to PCSK9 antibody 
therapies and Lp(a) reductions of 15–25% were obtained.99

Antisense Therapy to apoB
Mipomersen, a second-generation antisense oligonucleotide 
against apo-B100 was approved to treat homozygous FH 
(HoFH) but has now been withdrawn for commercial rea-
sons. It has shown consistent effects in reducing Lp(a).100 

Meta-analysis of all four phase 3 randomized trials including 
382 patients found that mipomersen reduced Lp(a) by 
26%.101 A lipoprotein turnover study in 14 healthy indivi-
duals using 150mg mipomersen showed a 21% reduction in 
Lp(a) driven by a 27% increase in the fractional catabolic 
rate, but no change in the production rate.102

Cholesterol Ester Transfer Protein 
Inhibitors
Cholesterol ester transfer protein (CETP) inhibitors reduce 
Lp(a) levels. Analysis of the Investigation of Lipid Level 

Management to Understand its Impact in Atherosclerotic 
Events (ILLUMINATE) trial showed that Lp(a) was dose- 
dependently increased with increasing atorvastatin doses dur-
ing optimization. Torcetrapib therapy decreased Lp(a) by 
11%.103 Evacetrapib decreased Lp(a) by up to −40% with 
evacetrapib 500 mg in dose ranging studies while evacetrapib 
combined with statins reduced Lp(a) by 31%.104 Dalcetrapib 
had lesser effects on lipids than torcetrapib, evacetrapib or 
anacetrapib and decreased Lp(a) by 5%.32

A lipoprotein turnover study investigated the effects of 
anacetrapib, statin or combined therapy. Anacetrapib treat-
ment reduced Lp(a) by 34% (P<0.001). The decreases in 
Lp(a) levels were caused by a 41% reduction in the apo(a) 
production rate, with no effects on fractional catabolic rate.105

Specific Therapies for apo(a)
All the lipoprotein turnover data suggest that intervention on 
production rate of apo(a) is likely to reduce Lp(a). Antisense 
technology has been applied to apo(a) as a method of deliver-
ing a specific effect. The effect of ISIS 144367, a 2nd gen-
eration ASO to apo(a) was initially investigated in transgenic 
mouse models overexpressing human apo(a). It produced 
a decrease of 20, 30, and 86% in the three different models, 
respectively.106 ISIS 144367 was optimized and the new 
ASO called ISIS-APO(a)Rx was tested in cynomolgus mon-
keys achieving a reduction of 97% in hepatic apolipoprotein-
(a) mRNA of 90% in Lp(a) at the highest dose.107

The Phase 1 study of ISIS-APO(a)Rx in man (n=47) 
assigned 16 patients to single-dose treatment and 31 were 
assigned to a multi-dose cohort treated for 4 weeks (Table 3). 
After 36 days all 3 treated groups showed 100mg ISIS-APO 
(a)Rx reduced Lp(a) by 40%, 200mg 59%, and 300mg 
decreased Lp(a) by 79%. No serious adverse events were 
seen but one patient stopped due to injection site reaction and 
another stopped due to flu-like symptoms.108

Table 3 Efficacy of Antisense108 and GalNAc Conjugated in Single and Multidose110 Preclinical Studies

ISIS-APO(a) 
Dose

Trial 1 Lp(a) 
Reduction (%)

Trial 2 Lp(a) 
Reduction (%)

ISIS-APO(a)Rx 
Dose

Trial 1 Lp(a) 
Reduction (%)

Trial 2 Lp(a) 
Reduction (%)

0 0 (n=4) 0 (n=6) 0 0 (n=3) 0 (n=6)

50 12 (n=3) 10 33 (n=3) 59 (n=8)

100 19 (n=3) 40 (n=8) 20 33 (n=3) 72 (n=8)

200 15 (n=3) 59 (n=9) 40 44 (n=3) 72 (n=8)

300 72 (n=9) 80 79 (n=6)

400 36 (n=3) 120 85 (n=6)
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The Phase 2 study of ISIS-APO(a)Rx included 64 
individuals with 51 assigned to cohort A with baseline 
Lp(a) levels from 50–175mg/dL (125–437 nmol/L) and 
13 individuals (cohort B) had baseline Lp(a) levels 
>175 mg/dL (≥ 438 nmol/L).109 Both cohorts received 
100 mg weekly for 4 weeks, then 200 mg for 4 weeks, 
and last 300 mg for 4 weeks.109 Levels of Lp(a) decreased 
by 67% for individuals in cohort A and 72% in cohort B, 
measured on day 85 or 99. No severe adverse events were 
recorded; but 2 individuals suffered a myocardial infarc-
tion, one in the placebo arm and one after a single dose of 
ISIS-APO(a)Rx. Regarding mild adverse events, 10% in 
cohort A and 19% in cohort B had injection site reactions.

Further modification of ISIS-APO(a)Rx (renamed 
IONIS/AKCEA-APO(a)-LRx; pelacarsen) involved add-
ing a triantennary N-acetylgalactosamine (GalNAc) to 
induce high plasma clearance through the hepatocyte asia-
loglycoprotein (ASGP) receptor. A phase 1/2A dose- 
ranging study recruited 58 healthy volunteers assigning 
28 to a single-dose cohort and 30 to a multiple-dose cohort 
(Table 1).110 Lp(a) was decreased by 59% in the 10mg 
group, 72% in the 20 mg group, and 72% in the 40 mg 
group at day 36. No serious adverse events were recorded, 
and no injection site reactions, bleeds, or changes in liver 
parameters were seen.

The phase 2 study of pelacarsen (ISIS 681257 now 
AKCEA-APO(a)-LRx; TQJ230) in 286 patients with 
CVD and Lp(a)>60 mg/dL (127nmol/L), divided them 
into 5 cohorts and a placebo group.111 At 6 months, the 
20mg/4 weeks group showed a decrease in Lp(a) of 35%; 
40mg/4 weeks achieved 56%; 60mg/4 weeks 72%; while 
20mg/2 weeks reduced Lp(a) by 58%; and 20mg/week 
80%. The most frequent adverse event was an injection 
site reaction that occurred in 26% of individuals.

Other siRNA-based therapies (ARC-LPa as known as 
AMG890 and SLN360) targeting LPA RNA are also in 
early development. These have just started phase 1 and 2 
studies in man.112 Structural work on the binding proper-
ties of Kringle domains has led to the development of AZ- 
005 which inhibits the function of K-IV10 domain and this 
small molecule inhibitor may proceed to human trials.113

Cardiovascular Outcome Studies for 
Lp(a)
All therapies licensed to date either have minimal effects on 
Lp(a) or have multiple actions on other parts of the lipid 
profile including LDL-C (PCSK-9 inhibitors); triglycerides 

and HDL-C (niacin). The development of specific therapies 
for Lp(a) means it is now possible to investigate whether 
intervention specifically on this risk factor will translate 
into clinical benefits. The first question that needs to be 
addressed is how to deliver sufficient statistical power to 
answer the question. Data from HPS-THRIVE suggested 
that Lp(a) reductions were predicted to reduce CAD risk by 
≈2% overall and 6% in the top quintile by Lp(a) levels, so 
new therapies needed to reduce Lp(a) levels by >80nmol/L 
to produce worthwhile benefits.90 A Mendelian randomiza-
tion study showed that a 102mg/dl (≈260nmol/L) reduction 
would reproduce the effects seen with a 1mmol/L reduction 
in LDL-C based on a 10mg/dl (≈25nmol/L) translating to 
a 6% reduction in CVD events using a genetic risk score.49 

Patients with Lp(a) levels>100nmol/L account for 5.7% of 
CVD events in the UK Biobank cohort, so recruiting 
patients with CVD and Lp(a) >175nmol/L may reduce 
CVD risk by 20%, assuming causality, if the intervention 
reduces Lp(a) by 80%.114

The second question is whether the effects of LDL-C 
and Lp(a) on CVD outcomes are independent. Data from 
observational studies suggest that Lp(a) may not have 
a significant effect in driving CVD risk if LDL- 
C<2mmol/L.115 Data from a study of 2769 patients with 
possible CVD who had coronary angiography with Lp(a) 
16mg/dl (>30 mg/dl in 38%) showed elevated Lp(a) was 
associated with a 2.3 (1.7–3.2) fold likelihood of signifi-
cant angiographic stenosis (P<0.001) and 1.5 (1.3–1.7) 
fold chance of 3-vessel disease. Lp(a) levels were related 
to CVD outcomes in patients with LDL-C 70–100 mg/dl 
(1.8–2.4mmol/L) (P=0.05) and >100mg/dl (2.4mmol/L) 
(P=0.02), but not in those with LDL-C<70mg/dl 
(1.8mmol/L) (p=0.77).115 Current guidelines all suggest 
that patients with established CVD should attain LDL- 
C<2mmol/L70 (or be on highest dose of potent statin likely 
to have similar effects).116 Yet recent studies in patients 
with acute coronary syndromes with ezetimibe and PCSK9 
inhibitors showed that LDL-C 1.6mmol/L was attained 
with ezetimibe117 and 0.9mmol/L with PCSK9 
inhibitors118,119 with further benefits in CVD outcomes. 
This has led the ESC to suggest a target LDL-C of 1.4 
mmol/L.68 Whether and to what extent Lp(a) will remain 
a significant risk factor in many patients after attainment 
of such low LDL-C remains unclear.

A CVD outcomes trial is underway with an Lp(a) 
reducing therapy (https://clinicaltrials.gov/ct2/show/ 
NCT04023552). The trial aims to recruit 7680 patients 
with established CVD, likely a treated LDL-C <2mmol/ 
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L, and an Lp(a)>70mg/dl (≈175nmol/L). Patients had to 
have had a CHD or CVA event within 0.25–10yrs or have 
PAD. The trial is designed for a follow-up of 4 yrs. A pre- 
specified analysis will also be conducted in patients with 
Lp(a)>90mg/dL.

Conclusion
Assessment of Lp(a) levels may be useful, yet standardized 
measurement of Lp(a) concentrations remains a challenge 
which restricts and complicates inferences made across 
studies, intervention trials, and the usefulness of measure-
ment in routine clinical practice. There is a clear consensus 
that elevated Lp(a) levels are associated with increased risk 
of CVD events and may aid reclassification or review 
intervals. However, detailed health economic based policy 
recommendations for identifying exact threshold levels and 
which high-risk subgroups should be targeted or screened, 
remain to be developed.44 Recent CVD epidemiology pre-
viously showed enthusiasm for homocysteine measurement 
which had similar evidence for reclassification, but clinical 
trials failed to show any benefit on intervention. Modern 
lipid management of CVD is becoming more aggressive 
and targeting lower LDL-C levels. Whether reducing Lp(a) 
has any role once LDL-C has been optimally controlled, 
remains unclear. The results of ongoing intervention trials 
which target Lp(a) reduction with concomitant effects on 
other lipid sub-fractions, are eagerly awaited. These trials 
will help clarify the role of Lp(a) in atherosclerotic CVD.
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