
R E V I E W

Pore-Forming Toxins During Bacterial Infection: 
Molecular Mechanisms and Potential Therapeutic 
Targets

Haijie Hu 
Min Liu 
Shuang Sun

Institute of Biomedical Sciences, 
Shandong Provincial Key Laboratory of 
Animal Resistance Biology, Collaborative 
Innovation Center of Cell Biology in 
Universities of Shandong, College of Life 
Sciences, Shandong Normal University, 
Jinan, 250014, People’s Republic of China 

Abstract: Bacterial infections are predominantly treated with antibiotics, and resistance to 
antibiotics is becoming an increasing threat to our health. Pore-forming toxins (PFTs) are 
virulence factors secreted by many pathogenic bacterial strains, both in acute and chronic 
infections. They are special membrane-targeting proteins that exert toxic effects by forming 
pores in the cell membrane. Recent studies have elucidated the structure of PFTs and the 
detailed molecular mechanisms of their pathogenicity. Here, we discuss recent findings that 
highlight the regulatory mechanisms and important roles of two types of PFTs, α-PFTs and β- 
PFTs, in mediating the virulence of bacteria, and the therapeutic potential of targeting PFTs 
for antibacterial treatment. Therapeutic strategies based on PFTs are highly specific and may 
alleviate the issue of increasing resistance to antibiotics. 
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Introduction
Currently, most bacterial infections are treated with one or more antibiotics, but 
antibiotic resistance has become a significant concern, and has led to the need for 
new therapy targets and strategies to combat bacterial infections. Pore-forming 
toxins (PFTs) are produced by a variety of organisms that are widely found in 
eukaryotes and prokaryotes, including pathogenic bacteria.1,2 They act as crucial 
virulence factors in the pathogenicity of bacteria by destroying the cell barrier and 
promoting the survival of pathogenic bacteria under various stimuli and harsh 
environmental pressures.3 PFTs also can attack the human innate and adaptive 
immune defense systems, enabling the pathogen to persistently attack the host. 
Reducing the production of PFTs or interrupting their pathogenesis are therefore 
important steps to reduce their pathogenicity. PFTs are divided into two categories, 
α-PFTs and β-PFTs, according to the secondary structure that binds to the cell 
membrane, namely α-helices or β-barrels.4 Both α-PFTs and β-PFTs are further 
divided into three families, respectively. The synthesis of various PFTs is regulated 
via co-ordination of a variety of transcriptional regulators,5,6 but the specific 
mechanisms of most PFTs are not clear. The PFT structure has recently been 
elucidated, which has provided the basis for a deeper understanding of its patho-
genic mechanism.3,7 When initially secreted, PFTs are in the form of water-soluble 
monomers, and during the process of invasion, the monomers undergo specific 
assembly, and oligomerize into a polymer that forms a transmembrane structure, 
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which is the pore.8–11 This oligomerization process may 
occur before the PFT inserts into the cell membrane, or 
during interaction of the monomers with membrane 
receptors.12 It has become necessary to continuously 
develop new treatments to cope with the toxin-producing 
pathogens.

In this review, we have focused on Bacillus cereus and 
Staphylococcus aureus as examples. They are both clini-
cally significant pathogenic bacteria with secreted PFTs as 
their primary pathogenic factors during infection. We 
focus on recent studies on the toxicity characteristics of 
two α-PFTs predominantly produced by B. cereus, namely 
non-hemolytic enterotoxin (NHE) and hemolysin BL 
(HBL), and two β-PFTs predominantly produced by 
S. aureus, namely γ-hemolysin and leukocidin A/B (also 
named leukocidin G/H) (LukAB). We discuss their synth-
esis pathways, and corresponding regulatory and pathol-
ogy mechanisms. With this information we hypothesize 
potential therapeutic targets to interfere with PFT toxicity.

Synthesis of PFTs
HBL toxin comprises three subunits: HBL-B, HBL-L1, 
and HBL-L2, encoded by the genes hblA, hblD, and 
hblC, respectively.13,14 These three genes are located on 
the operon hblCDAB, and the promoter is located 
upstream of hblC.15 Alignment of the deduced amino 
acid sequences of the three proteins indicates significant 
similarity (20 to 24% identical), and structural analysis of 
the HBL protein shows that all three components are 
almost entirely composed of α-helices. HBL-B and HBL- 
L1 contain predicted transmembrane fragments of 17 and 
60 amino acid residues, respectively, at the same position, 
while HBL-L2 has no predicted transmembrane fragments. 
These observed similarities indicate that the HBL compo-
nents are produced by duplication of common genes. 
Similar to HBL, the coding genes of the three components 
of NHE, namely NHE-A, NHE-B, and NHE-C, are nheA, 
nheB, and nheC, respectively, and in an operon containing 
the three open reading frames (ORFs).16 There is a high 
degree of homology between NHE and HBL, and simila-
rities between NHE-A and HBL-C, NHE-B and HBL-D, 
and NHE-C and HBL-A, are the most significant.17,18 The 
gene encoding γ-hemolysin is present in more than 99.5% 
of human S. aureus isolates.12 γ-Hemolysin is composed 
of three subunits: two S components (HlgA and HlgC), 
and an F subunit (HlgB).19 Unlike hblCDAB and nheABC, 
hlgACB comprises two transcription units. The first tran-
scription unit comprises a single ORF, hlgB, which 

encodes an F subunit (HlgB), and the second unit com-
prises two ORFs, hlgA and hlgC, encoding two 
S components (HlgA and HlgC), respectively.20 The gene 
encoding LukAB is a part of the core genome of S. aureus, 
which exists in most genomes. It is composed of the 
S component, LukA/H, and the F component, LukB/G, 
and the sequence homology between the two components 
is unlike that of other toxins.21

Regulation of PFT Synthesis in Pathogens
HBL and NHE expression is regulated by multiple factors. 
For example, expression of the primary virulence factors 
of B. cereus, hblCDAB and nheABC, is regulated by the 
pleiotropic regulatory factor PlcR, redox regulator Fnr, 
two-component system ResDE, and the catabolic control 
protein CcpA, on the promoter regions of the two operons. 
These transcriptional regulatory factors may regulate toxin 
expression via a synergistic effect.22–24

PlcR is a small transcriptional activator that partici-
pates in the regulation of various virulence factors.25 

During the exponential phase of bacterial growth, PlcR 
promotes specific interactions with PapR quorum sensing 
peptides.26 PlcR expression reaches its highest level at the 
beginning of the stationary phase of bacterial growth.25 

High levels of PlcR activate most of the virulence factors, 
including the three components of HBL. PlcR appears to 
be a key regulator of the effective adaptation of B. cereus 
to the host environment. The transcription of another viru-
lence factor, cytotoxin K, is also regulated by PlcR.27 

PapR is a quorum sensing system signal molecule that is 
an autoinducing small signal peptide. It is secreted by 
bacterial cells and reintroduced into cells after 
processing.28 A previous study showed that a set of syn-
thetic PapR derived peptides could inhibit the activation of 
many virulence factors. These small artificial peptides 
interfere with the normal quorum sensing systems and 
are a potential target as anti-toxin agents.26,29 Thus, 
novel small molecules that interfere with the quorum sen-
sing systems, or facilitate the quorum quenching systems, 
may be selected as anti-virulence agents.

ResDE and Fnr are both regulators of redox regulatory 
pathways, and Fnr is a member of the iron-sulfur protein 
Crp/Fnr superfamily.30 ResDE is a typical two-component 
system (TCS) consisting of a membrane-bound histidine 
receptor kinase (ResE) and a cytoplasmic response regu-
lator (ResD). ResE senses signals inside and outside the 
cell, such as oxygen limitation and NO, and undergoes 
autophosphorylation of the conserved histidine residues.31 
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ResD phosphorylation is achieved by transphosphorylation 
with ResE as a phosphate donor. The phosphorylated 
ResD acts as a transcription activator for the transcription 
of hblCDAB and nheABC. Phosphorylated ResD also 
interacts with Fnr to form a transcriptionally active 
complex.30,31 Fnr plays an important role in the fermenta-
tion and metabolism of B. cereus and the transcriptional 
regulation of the enterotoxins, HBL and NHE.22,32,33 

CcpA is a member of the LacI family of transcriptional 
regulators. CcpA binds to a histidine-containing phospho-
carrier protein to enable it to function as an effector. CcpA 
acts as a repressor to inhibit transcription in the catabolic 
regulation of HBL and NHE. The expression of NHE and 
HBL in CcpA-deficient strains is higher than that of the 
wild-type.22,31

The expression of γ-hemolysin and LukAB are strictly 
regulated by a highly complex, and multifaceted, regula-
tory network. An important regulator, accessory gene reg-
ulator (AGR) and several TCSs, such as S. aureus 
exoprotein expression RS (SaeRS), autolysis-related 
locus ArlRS, and staphylococcal respiratory response AB 
(SrrAB), are all involved in the regulatory systems.34–37 

AGR acts as an activator of toxin production. At the 
population level, AGR is an auto-inducing peptide, 
which produces an effector RNA molecule, called 
RNAIII, in the process of activating its own synthesis. 
RNAIII acts as a direct or indirect regulator of many 
virulence genes, either up- or down-regulating their tran-
scription and protein production.7 The SaeRS system is 
a key switch that regulates the production of leukocidins.34 

It plays an important role in protecting microbial cells 
from exposure to the cytotoxic concentration of intracel-
lular heme.38 In the ArlRS TCS, ArlS is a membrane- 
anchored sensor protein, and ArlR is an intracellular 
response regulator.37 The ArlRS two-component system 
inhibits the transcription of the Staphylococcus AGR 
operon via interaction with the AGR promoter. SrrAB 
regulates the pathogenic factors of S. aureus by directly 
binding the corresponding promoter region, including 
TSST-1, RNAIII, and protein A. SrrAB TCS is the main 
regulator of the respiratory growth and virulence of 
S. aureus.36

Pathogenicity of PFTs
Hemolysin HBL has been identified as a three-component 
toxin. Recent studies have demonstrated that the formation 
of pores in macrophages by HBL leads to the outflow of 
potassium ions, which triggers rapid cell death, and the 

pyrin domain-containing protein, NLRP3 inflammasome.39 

HBL also has a variety of toxic effects, such as enteric 
toxicity, hemolysis, cytotoxicity, vascular permeability, and 
skin necrosis.40–42 It is a heat-sensitive protein comprising 
binding component B and two soluble components, L1 and 
L2, which assemble on the cell membrane in a specific 
order; B-L1-L2.43,44 HBL-B is the component believed to 
bind to the cell. The binding of HBL-B to target cells is 
a key step in the formation of the membrane pore, and pores 
will not form if there is insufficient B binding to the cells, or 
if there are excess quantities of L2 or L1 (Figure 1). 
Optimal pore-forming activity occurs when the B:L1:L2 
ratio is 10:10:1.45 Of the three components, only HBL-B 
binds to Chinese hamster CHO cells in vitro, and one study 
showed that only HBL-L1, and not HBL-L2, binds to HBL- 
B.45 The three components of HBL are essential for its 

Figure 1 A brief summary of the regulation and pathogenic mechanisms of two 
typical α-PFTs, non-hemolytic enterotoxin (NHE) and hemolysin BL (HBL) toxins. 
The promoter regions of hblCDAB and nheABC are regulated by pleiotropic regula-
tory factor PlcR (along with the quorum sensing system signal molecule PapR), 
redox regulator Fnr, catabolic control protein CcpA, and two-component system 
ResDE. The three components of HBL and NHE were secreted and assemble on 
the cell membrane to form the pore in a specific order; B-L1-L2 and C-B-A. NHE 
and HBL cooperate to influence the secretion of K+ and activate an inflammatory 
response.
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cytotoxicity and pore formation. The combination of any 
two components will not produce cytotoxicity, and maxi-
mum activity can only be exerted when all three compo-
nents are present at the same time, and in the correct ratio.46

The non-hemolytic enterotoxin, NHE, is a homolog of 
HBL, and another important toxin secreted by B. cereus. 
Single, or combinations of two NHE components cannot 
induce hemolysis; maximum activity is only achieved 
when all three subunits (NHE-A, NHE-B, and NHE-C) 
interact in a molar ratio of 10:10:1.44 This was confirmed 
in a eukaryotic, cell-free protein synthesis system using 
the three purified proteins, which showed that the toxicity 
of NHE was diminished when NHE-C was present at 
higher concentrations. NHE-B and NHE-C form 
a complex that was shown to directly bind to Vero kidney 
epithelial cells; however, only NHE-C was required to 
induce cytotoxicity.44 NHE-A is dispensable for initial 
cell binding, but necessary for cytotoxic effect.47,48 NHE 
was recently reported to induce rapid cell death via the 
NLRP3 inflammasome, and NHE and HBL cooperate to 
activate an inflammatory response.49 Compared with the 
wild-type, the cytotoxicity of the Δnhe mutant was shown 
to be reduced, and the B. cereus Δhbl and Δnhe mutant 
strain failed to activate the NLRP3 inflammasome.39,41,49 

Based on this feature, screening small molecules to target 
one of these components, in particular HBL-B or NHE-C, 
may be an effective strategy to inhibit the cytotoxicity of 
HBL and NHE.

The pore-forming γ-hemolysin and LukAB secreted by 
S. aureus are members of the β-PFT family and consist of 
two different monomeric protein components.50 According 
to their chromatographic elution characteristics, these are 
named the S and F subunits, where S and F represent slow 
elution and fast elution, respectively.51 The S component 
is responsible for recognizing and binding to the cell 
membrane receptors, and recruiting the F component to 
dimerize through conformational changes. These proteins 
bind to the host leukocyte membrane and form beta-barrel 
pores that span the phospholipid bilayer (Figure 2).52 γ- 
Hemolysin exhibits lytic activity on human and rabbit cells 
and recognizes and binds to the red blood cell membrane 
as an octamer through direct interaction with host lipids 
and glycolipid derivatives.19 γ-Hemolysin HlgCB targets 
the human complement membrane receptors, C5a anaphy-
latoxin chemotactic receptor 1 and C5a anaphylatoxin 
chemotactic receptor 2, to mediate interaction with the 
cell membrane.53 γ-Hemolysin HlgAB also induces 
human phagocyte cell death by interacting with the 

chemokine receptors, chemokines CXC chemokine recep-
tor 1 (CXCR1), CXCR2 and CC-chemokine receptor 2 
(CCR2).12 This interaction appears to be species specific 
as, in a mouse model, HlgAB did not bind to the mouse 
neutrophil CCR2 receptor. In addition to the formation of 
induction pores, HlgAB and HlgCB can also induce pro- 
inflammatory reactions, which have been shown to be 
related to the pathogenesis of septic arthritis.12,19,54 

Studies show that the S. aureus USA300 strain, lacking 
hlgABC, has less ability to form pores in human neutro-
phils than wild-type strains, and the mutant strain can 
improve the survival rate in a mouse bacteremia model.55

LukAB, with a molecular weight of 75KDa, is a newly 
discovered member of the two-component interleukin 
family.56 LukAB fundamentally differs from the other 
two-component toxins in its mechanism of toxicity. The 
monomers are pre-assembled into heterodimers in solu-
tion, and these insert into the cell membrane and recruit 
other heterodimers to finally form an octamer β-barrel pore 
spanning the phospholipid bilayer (Figure 2).50 The indi-
vidual subunits are not cytotoxic.57 Compared with other 
leukotoxins, this unique assembly method eliminates the 
pore formation process, and seems to increase the toxicity 
of LukAB. The ability of LukAB to cause disease in the 
body is largely due to its precise targeted killing of specific 
immune cells, including neutrophils, monocytes, macro-
phages, and lymphocytes, to avoid the hosts natural 
immunity.57,58 LukAB promotes bacterial survival by 
facilitating their escape from the neutrophils after 
phagocytosis.19,59 LukAB interacts directly with CD11b 
via the binding site in the I domain.60,61 As LukA and 
LukB are secreted as monomers and form heterodimers 

Figure 2 The pore-forming process of two β-PFTs. The water-soluble monomers 
S subunits (HlgA and HlgC) and one F subunit (HlgB) of γ-hemolysin target the 
receptors C5aR and C5L2 on the cell membrane. These proteins form beta-barrel 
pores that span the phospholipid bilayer. LukAB are pre-assembled into hetero-
dimers in solution. Four LukAB heterodimers form an octamer on the cell mem-
brane through direct interact with the receptor CD11b. The potential therapeutic 
targets are highlight by pentagram.
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before recognizing and binding to receptors on the cell 
membrane, it would seem unlikely to be able to inhibit the 
toxic effect by inhibiting the dimerization of LukA and 
LukB. A better strategy may be to interfere with the 
binding of the LukAB complex to the cell, or with dimer 
oligomerization into the pore complexes. The I domain of 
mouse CD11b differs from human CD11b, which results in 
a weaker affinity of LukAB with mouse CD11b. Thus, 
even when mouse leukocytes express high levels of 
CD11b they have a greater tolerance to high doses of 
toxins.19

HlgAB, HlgCB, and LukAB can also activate NLRP3 
inflammasomes in macrophages and monocytes, and pro-
mote their lysis and pro-inflammatory activity.62 These 
two types of pore-forming toxins mediate cell death by 
inserting into the cell membrane to “dissolve” the cell 
membrane.7 The formation of pores leads to a K+ efflux, 
considered to be the key factor for activation of the 
NLRP3 inflammasome. The NLRP3 inflammasome then 
initiates the release of caspase-1-dependent cytokines, IL- 
1β and IL-18, and induces cell necrosis.63

Potential PFT-Derived Strategies for the 
Treatment of Bacterial Infections
Antibiotics are, and have always been, the primary treat-
ment for bacterial infections. However, with the continu-
ous mutation of drug-resistant strains, and the overuse of 
antibiotics, the antibiotic-based treatment strategy needs to 
be challenged.64 It is worth noting that with the continuous 
progress of research, a variety of treatment methods have 
been explored and innovated. PFTs are a powerful tool in 
the pathogen’s armor to attack and resist the host organ-
ism. Potential treatment strategies based on PFTs can be 
divided into two parts: targeting the PFT-producing 
strains, and targeting the host cells after infection.

Strategies for Targeting PFT-Producing Strains
We put forward three possible avenues to reduce the 
virulence of PFTs-producing strains: toxin synthesis, 
toxin secretion, and the process of invasion. The coding 
genes of most PFTs are in an operon. siRNAs or 
microRNAs can be used to directly decrease the expres-
sion level of the PFTs. siRNAs are currently used in the 
treatment of cancer and present as a promising treatment 
for diseases caused by bacterial infections. However, it is 
a challenge to accurately deliver the siRNA into the PFTs 
producing strains, while avoiding the degradation and 
removal of siRNAs in the host cells. Therefore, the 

development of safe and effective delivery systems is 
crucial to the application of siRNAs as a treatment strategy 
to reduce toxin synthesis. Currently, various of siRNA 
delivery systems have been proposed, such as chemical 
modification of siRNA, lipid-based siRNA delivery sys-
tems, polymer-based siRNA delivery systems, and conju-
gate siRNA delivery systems.65 The conjugate siRNA 
delivery system involves covalently linking the siRNA 
with small molecules and antibodies to improve targeting 
to specific cells.66 Antibodies to bacterial cell wall com-
ponents are the preferred choice to link to siRNAs, 
enabling far more accurate delivery of the siRNA. 
Research into effective delivery systems has room for 
innovation.

Many PFTs, such as HBL and NHE, contain Sec-type 
signal peptides that are necessary for secretion through 
the Sec pathway.67 SecA, the ATPase motor of the Sec 
pathway, is unique to bacteria, and is thus an ideal target 
for the development of novel antibacterial agents.68 

Some in vitro studies have confirmed that certain anti-
bacterial effects can be achieved using SecA inhibitors, 
and a variety of SecA inhibitors have been discovered 
and designed, such as azide compounds, imino- 
containing molecules, pannomycinan, 5-cyano-6-aryl- 
2-thiouracils derivatives, thiazolo [4,5-d] pyrimidine 
derivatives, and indole derivatives.69–71 However, 
whether these inhibitors can achieve the conditions and 
standards used for in vivo treatment need to be further 
explored.71 The Sec system is widely used in various 
strains and inhibiting this system may disrupt the normal 
metabolism and balance of beneficial gut microbiota. 
Thus, therapeutics that target PFTs themselves are 
a more effective alternative to inhibitors and antibiotics 
for the treatment of pathogenic infections.72,73 Thirdly, 
PFTs are cell-specific and recognize lipid, sugar, and 
protein receptors on the cell membrane. Surface binding 
to target cells leads to an increase in the concentration of 
PFTs and promotes the formation of oligomers. This is 
a key step in the formation of the pores in the cell 
membrane that destroy the epithelial barrier and cellular 
structure to promote bacterial growth. Interfering with 
the formation of these pores in an appropriate ratio may 
be an effective therapeutic strategy. In S. aureus some 
compounds, including Oroxylin A, Oroxylin 
A 7-O-glucuronide (OLG), Oroxin A (ORA), and 
Oroxin B (ORB), have been shown to bind to α- 
hemolysin and inhibit the self-assembly process, thus 
making it impossible to form pores in the membrane.74,75
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Strategies for Targeting the Host Cell After Infection
Previous studies have shown that monoclonal antibodies 
(mAbs) are effective in the treatment of experimental 
models of infection by PFTs.76 For example, two cross- 
neutralizing leukocidin mAbs, SAN177 and SAN481 can 
cross-neutralize a variety of toxins, including HlgAB and 
HlgBC, by binding to the F subunit of the toxin.77 The 
human LukAB antibody can be combined with toxin 
monomers or dimers to neutralize cytotoxicity.78 

Similarly, the use of monoclonal antibodies to neutralize 
α-PFTs is worthy of further investigation. Recent studies 
have also shown that nanoparticles and toxins coated with 
a biofilm can effectively neutralize toxins, and the devel-
opment of this kind of nanotoxoid vaccine is expected to 
slow down the threat of many types of toxins.79,80 

Furthermore, single-stranded DNA or RNA oligonucleo-
tides, named aptamers, are screened against α-toxin- 
induced cell death. These aptamers inhibit toxin-mediated 
activation of the transcription factors TNF-α and IL-17. 
However, development of agents based on these aptamers 
for the treatment of infections need further exploration.74

Specific receptors on the cell surface are the key to the 
toxic effects of β-PFTs, and some receptors are shared by 
multiple toxins. Therefore, the inhibitors of specific recep-
tors may be used to simultaneously slow the effects multi-
ple toxins. Current studies have shown that the C5a 
receptor is the co-receptor of HlgCB and another β-PFT, 
Panton-Valentine Leukocidin (PVL), on the surface of 
human immune cells, and a variety of C5a receptor inhi-
bitors have been demonstrated in in vitro experiments. 
This inhibition has a significant effect on neutralizing the 
PVL toxin, but the effect on the HlgCB toxin is not 
obvious.53 Therefore, it is feasible that an inhibitor may 
block the interaction between the toxin and the C5aR 
without interfering with the normal C5aR immune func-
tion. Further research to better understand the mechanism 
involved here is required.

PFTs form pores in the cell membrane and change the 
permeability of the cell, which results in increased Ca2+ 

inflows, and the stimulation of Ca2+-dependent repair 
mechanisms. Compared with the protein pores caused by 
mechanical damage of the cell membrane, the pores 
formed by PFTs are proteolipid pores which have certain 
boundaries. These proteolipid pores are considered to sti-
mulate two main repair mechanisms; shedding and 
endocytosis,81 both of which remove damaged membranes 
through vesicles or endocytosis.81,82 Recent studies have 

shown that Ca2+-activated lipid scramblase TMEM16F 
can enhance the fluidity and plasticity of the membrane, 
and the release of damaged membrane bubbles, to promote 
the repair of the plasma membrane after pore formation.83 

To treat cellular inflammation caused by Ca2+ outflow 
mediated by PFTs, some studies have proposed the use 
of DNA aptamers to inhibit toxin-mediated cytolysis and 
activation of transcription factors, but this protective 
mechanism needs further exploration.84

Conclusion
Pathogenic bacteria secrete various virulence factors to 
attack host cells; PFTs being one of the most complex of 
these. This review has highlighted the synthesis of two 
types of PFTs, α-PFTs and β-PFTs. The regulatory systems 
especially transcriptional regulatory factors have been con-
cluded which provided several potential targets for thera-
peutic. The invasive mechanism of these two types PFTs 
are also discussed. Though PFTs are not very widely 
spread, these various toxins are mostly participated in 
destroying the host immune system in different ways to 
mediate different cellular responses, which leading to high 
levels of resistance to the innate and adaptive immune 
defenses.3,7 These effects lower the immunity of the host 
and trigger more infections. Though deletion of PFTs will 
not completely protect from disease in animal models, it 
will be helpful in enhancing the immunity. Therefore, an 
in-depth exploration of the structure of toxins secreted by 
these pathogens, and their pathogenic mechanisms have 
enabled us to understand the heterogeneity of pore forma-
tion more clearly.

Overall, we propose several potential strategies based 
on our understanding of PFTs, with particular emphasis on 
their biosynthesis and pathogenic features. The possible 
strategies are focused mainly on the synthesis, secretion, 
and invasion process of PFTs. Such as SecA inhibitors and 
some compound like Oroxylin A and its derivatives which 
can bind to α-hemolysin to inhibit the pore-forming pro-
cess. Furthermore, targeting the host cell after infection are 
also important strategies that can decrease pathogenicity or 
facilitate recovery of the host cells. Here, we discussed the 
application of monoclonal antibodies, nanoparticles and 
DNA aptamers. Further studies are warranted for the 
application of these strategies to treat PFT-induced dis-
eases. A better understanding of the mechanisms of action 
of PFTs may aid in the design of novel strategies for the 
prevention and treatment of bacterial PFT-induced 
diseases.
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