Hydroxyapatite Nanoparticles Facilitate Osteoblast Differentiation and Bone Formation Within Sagittal Suture During Expansion in Rats [Corrigendum]

The authors have advised Figure 3 on page 911 is incorrect. Due to an error at the time of figure assembly part of the 25 μg/ml and 100 μg/ml groups in figure part D were duplicated. The correct Figure 3 is shown below.

The authors apologize for this error and advise it does not affect the results of the paper.
Figure 3 The effects of nHAP on the viability and osteoblast differentiation of SuSCs. (A) SuSCs were exposed to various concentrations of nHAP (0, 25, 50 and 100 μg/mL) for 48h. Live/dead staining was applied to assess the cytotoxicity of nHAP. Scale bar, 100 μm. (B) CCK-8 analysis evaluates the viability of SuSCs treated with nHAP in different concentrations at 24 h, and (C) 48 h. (D) The extracellular calcium deposition was visualized by Alizarin Red S staining after cells were cultured with nHAP in different concentrations for 14 days; scale bar, 100 μm. (E) Mineralization was quantified following the colorimetric analysis of Alizarin Red S elution from calcium nodules. The expression level of osteoblastogenic genes (F) alp, (G) runx2 and (H) col1 in the presence of various concentrations of nHAP \(p < 0.05, \ p < 0.01, \ p < 0.001 \). (I) The expression of osteoblast-associated proteins (col1, runx2, osteopontin) under nHAP treatment was assessed.