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Abstract: Extracorporeal membrane oxygenation (ECMO) is a temporary life support 
system used to assist patients with life-threatening severe cardiac and/or respiratory 
insufficiency. Patients requiring ECMO can be considered the sickest patients admitted 
to the intensive care unit (ICU). Acute kidney injury (AKI) represents a frequent compli-
cation during ECMO, affecting up to 70% of patients, with multifactorial pathophysiology 
and an independent risk factor for mortality. Severe AKI requiring Continuous Renal 
Replacement Therapy (CRRT) occurs in 20% of ECMO patients, but multiple indications 
and different timing may imply a significantly higher application rate in different centers. 
CRRT can be run in parallel to ECMO through different vascular access, or it can be 
conducted in series by connecting the circuits. Anticoagulation of ECMO is typically 
managed with systemic heparin, but several approaches can be applied for the CRRT 
circuit, from no anticoagulation to the addition of intra-filter heparin or regional citrate 
anticoagulation. The combination of CRRT and ECMO can be considered a form of 
multiple organ support therapy, but this approach still requires optimization in timing, set- 
up, anticoagulation, prescription and delivery. The aim of this report is to review the 
pathophysiology of AKI, the CRRT delivery, anticoagulation strategies and outcomes of 
patients with AKI treated with ECMO. 
Keywords: extracorporeal membrane oxygenation, acute kidney injury, continuous renal 
replacement therapy, multiple organ support therapy, anticoagulation, mortality

Introduction
Extracorporeal membrane oxygenation (ECMO) is a temporary life support system 
used to assist patients with life-threatening severe cardiac and/or respiratory insuffi-
ciency. It takes blood out of the body, removes carbon dioxide, adds oxygen, and 
pumps it back into the body. The Extracorporeal Life Support Organization (ELSO) 
guidelines1 indicate that it should be considered a rescue therapy when the risk of 
mortality would be 80% or greater if not applied. ECMO is divided into two systems: 
veno-venous ECMO (VV-ECMO), indicated for patients with respiratory failure but 
preserved cardiac activity and veno-arterial ECMO (VA-ECMO), indicated in refrac-
tory cardiogenic shock and it provides both pulmonary and circulatory support (VA- 
ECMO is also indicated as ExtraCorporeal Life Support -ECLS). ECMO has been 
applied even outside the intensive care unit (ICU), ie, in the emergency department 
where it can be attempted as an extracorporeal cardiopulmonary resuscitation, or in 
out-of-hospital cardiac arrest cases. More recently, a modified ECMO setup has been 
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proposed after cardiac death to perfuse the liver and/or the 
kidneys as a bridge to organ procurement.2,3

Even if there are no absolute contraindications to 
ECMO application, the presence of nonrecoverable comor-
bidities should imply to refrain from starting such an 
invasive and challenging therapy. Relative contraindica-
tions include major central nervous system damage, term-
inal malignancy, and old age.1

Patients requiring ECMO represent the sickest ICU 
patients and are at high risk of developing Multiple 
Organ Dysfunction Syndrome (MODS). Acute Kidney 
Injury (AKI) is one of the most frequent complications4,5 

affecting these patients and timely diagnosis and treatment 
of renal dysfunction are potential options to improve their 
outcomes and decrease mortality.

Epidemiology of AKI and Indications 
to Renal Replacement Therapy in 
ECMO Patients
Up to 75% of ECMO patients6–10 show signs of renal 
dysfunction (Table 1), although incidences may vary 
depending on patients’ categories, treating centers, and 
AKI definitions.11–13 About half of patients with AKI 
undergo a dialytic treatment during ECMO. AKI is often 
associated with fluid overload (FO), and both are asso-
ciated with increased mortality in critically ill patients, 
including those in ECMO.6,14–16

During ECMO, large-volume fluid therapy is fre-
quently needed to optimize hemodynamics, due to hypo-
tension that may be secondary to hypovolemia and 
reduced vascular systemic resistances. In many cases, 
fluids are administered to minimize the chattering of the 

circuit and to treat bleeding complications.8 It is clear that 
if the capacity of the kidneys to cope with such important 
demand is altered, fluid homeostasis is rapidly and signifi-
cantly compromised. In these cases, FO itself becomes one 
of the causes of renal dysfunction (renal congestion), and 
it certainly is one of the main contributors to patients’ 
reduced survival. Timely and aggressive treatment of FO 
is required in ECMO patients with renal dysfunction. In 
clinical practice, clinically relevant fluid accumulation is 
one of the most important factors to consider as a sign of 
renal dysfunction. In a survey involving 65 international 
ECMO centers, the indications for starting CRRT on 
ECMO were FO treatment (43%), FO prevention (16%), 
AKI (35%) and electrolyte disturbances (4%).17 In a well- 
conducted observational study by Hoover et al, in 62% of 
all patients receiving CRRT/ECMO the primary indication 
was fluid overload (62%) without apparently established 
renal insufficiency.18 Recently, in a retrospective study 
evaluating 357 children with ECMO requiring CRRT, the 
primary indications for the initiation of CRRT were FO or 
FO prevention (84.6%), AKI (11.2%), electrolyte abnorm-
alities (1.1%), toxin removal (1.1%), and other (2%).19 In 
a retrospective study of 63 ECMO patients requiring 
CRRT, Antonucci et al reported the following indications: 
acidosis (n=48), excessive urea levels (n=7), hyperkalemia 
(n= 4), and fluid overload (n=4).7 However, during 
ECMO, as for other critically ill patients, the absolute 
indications for CRRT are the “renal indications” including 
uremia, acidosis, overdose/toxicity from a dialyzable drug/ 
toxin and electrolyte abnormalities.20

Currently available reports highlight that, in the vast 
majority of cases, AKI is present at the time of ECMO 

Table 1 Epidemiology in Retrospective Studies Evaluating ECMO Patients with and without Renal Dysfunction

Author AKI During 
ECMO

CRRT During 
ECMO

Population (ECMO 
+CRRT)

Mortality (Hospital 
Mortality)

Renal Recovery (at 
Discharge)

Dado et al (2020)6 36/48 (75%) 48/92 (46%) 48 adults 39.5% 80%
Antonucci et al (2016)7 95/135 (70%) 63/135 (47%) 63 adults 60% Not explored

Schmidt et al (2014)8 97/172 (57%) 103/172 (60%) 103 adults 35% 3-month mortality Not explored

Paden et al (2011)9 50/68 (74%) 154/378 (41%) 154 children 56% 96%
Barbaro (2020)10 247/779 (32%) 444/1006 (44%) 444 adults Not explored Not explored

Deatrick (2021)14 Not explored 94/187 (50%) 94 adults 38.6% 93%

Hoover et al (2008)18 Not explored 26/86 (30%) 26 children 27% 100%
Wolf et al (2013)23 Not explored 59/153 (39%) 59 children 75% Not explored

Kielstein et al (2012)24 Not explored 120/200 (60%) 120 adults 83% 3-month mortality Not explored

Wu et al (2007)25 Not explored 18/45 (40%) 18 adults 88% Not explored
Thajudeen et al (2015)26 Not explored Not explored 40 adults 80% 1-month mortality 62.5% at 1 month

Aubron et al (2013)27 Not explored 61/105 (58%) 61 adults 37.3% Not explored
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cannulation or develops within 48 h from ECMO.13,21 

Nevertheless, more prolonged ECMO support is associated 
with a higher risk of AKI development.22 Hence, renal 
replacement therapy is used between 30% and 60% of 
ECMO patients with severe AKI (Table 1),6–10,14,18,23–27 

and CRRT is the most commonly used modality.

Pathophysiology: AKI and ECMO
Etiopathogenesis of AKI during ECMO treatment is 
multifactorial.11 Patient’s pre-existing comorbidities (eg, 
chronic heart failure, chronic kidney disease, diabetes), the 
primary disease (respiratory failure, cardiac failure, sepsis) 
and their management (need for vasoactive support, chronic 
diuretic therapy, antibiotic therapy, contrast media) play 
a key role in the development of AKI. Furthermore, factors 
directly related to ECMO contribute to the development of 
AKI. One of the most important factors is the exaggerated 
inflammatory response due to the overproduction of cyto-
kines that causes an unregulated host response (similar to 
that observed during sepsis). Contact of the blood compo-
nents with the artificial surface of the bypass circuit activates 
the complement system with the release of C3a and C5a.28 

Activated complement factors induce the production of pro- 
inflammatory (IL1, IL 6, TNFalpha) and anti-inflammatory 
(IL10) cytokines.29,30 The result is an increased vascular 
permeability and endothelial dysfunction. Furthermore, dur-
ing ECMO there is a high risk of bacterial translocation due 
to gut mucosa hypoperfusion. Endotoxin expressed by 
gram-negative bacteria induces pro-inflammatory interleu-
kins release from innate immunity cells expressing toll-like 
receptor and endothelial cells.31 At the same time, these 
cytokines activate the coagulation cascade. Moreover, this 
leads to the disruption of the glycocalyx layer and alteration 
of the microcirculatory system of all the organs, including 
the kidneys.

Hemolysis is another factors directly related to the 
ECMO due to the red cell stress.32,33 During prolonged 
use of ECMO, the constant shear stress of the ECMO 
circuit can produce hemolysis with hemoglobinuria, 
which may itself induce kidney damage.34 Plasma-free 
haemoglobin (fHb) and free iron contribute to Reactive 
Oxygen Species (ROS) damage to the kidney.35 

Ischemia-reperfusion injury due to the hemodynamic 
changes at ECMO cannulation may represent a further 
key factor in the microcirculatory dysfunction leading to 
AKI. The reperfusion of hypoxic cells leads to leukocyte 
activation with local inflammation and ROS production 
inducing mitochondrial dysfunction.36 Other factors 

directly related to the renal damage are the absence of 
pulsatile flow and the need of multiple blood component 
transfusions.37 Finally, as already highlighted, FO itself 
before and during ECMO may increase the risk of AKI.8

Timing of CRRT
The right time to start CRRT during ECMO is a poorly 
studied field and to date there are no clinical trials 
specifically addressing this issue. Conflicting results are 
found in the literature. In a large meta-analysis on adult 
patients on ECMO the early initiation of CRRT seemed 
to increase the survival.38 Other studies performed in 
children on ECMO suggested that early start of CRRT 
is associated with improved outcomes.39,40 Instead, in 
a retrospective analysis of 153 cardiac ECMO children, 
59 (39%) received early CVVH (within 48 hours of 
ECMO initiation), and they were 3 times more likely to 
die during their hospitalization.23 Further studies, espe-
cially randomized clinical trials, are needed to better 
clarify the topic even if prospective research is very 
limited in this field. In patients receiving ECMO, as 
well as critically ill patients in general, the right timing 
to start CRRT should be evaluated on a case-by-case and 
daily basis considering the risks and benefits. It is well 
known that FO is a determining factor in higher mortal-
ity, especially in patients with heart and respiratory fail-
ure and it should be kept as one of the main triggers for 
a proactive CRRT start. As reported by the ELSO guide-
lines, the real goal is to keep the patient close to dry 
weight. CRRT should be promptly instituted when diure-
tic therapy is not effective with the aim of preventing or 
treating FO.19

Delivery of CRRT to ECMO Patients
During ECMO, all RRT modalities – continuous veno- 
venous hemofiltration (CVVH), continuous veno-venous 
hemodialysis (CVVHD), continuous veno-venous hemo-
diafiltration (CVVHDF) or slow continuous ultrafiltration 
(SCUF) can be selected and applied. There are different 
ways to combine ECMO and CRRT with associated 
advantages and disadvantages (Table 2), without 
a standard method recommended.41 In clinical practice, 
the decision often depends on local expertise and institu-
tional protocols. Patients of all ages have been described to 
receive ECMO and CRRT: the in series – or integrated – 
connection appears to be most common in children,42 

whereas a parallel approach has been recommended in 
adults.43
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Parallel Approach
One possibility is to perform CRRT and ECMO indepen-
dently, using separate vascular accesses and circuits. 
Considering that flows reached in the ECMO circuit are 
much higher than those reached in the CRRT circuit 
(approximately 4000–5000 mL/min against 150–200 mL/ 
min), one advantage is the absence of interference between 
the two devices without concerns related to CRRT pres-
sure alarms. A standard CRRT prescription can be applied, 
and the management of the CRRT circuit (eg, to change 
the filter) can be performed by the bedside nurse without 
the direct involvement of an ECMO perfusion/circuit spe-
cialist. A combined (systemic and regional) anticoagula-
tion can be performed.

The disadvantages include the need for an additional 
central venous (dialysis) catheter, in patients who may not 
have additional sites for central venous cannulation avail-
able, added to all the associated complications, such as 
infection and thrombosis. Moreover, there might be an 
increased risk of bleeding during the catheter placement 
due to the anticoagulation required for ECMO.

Integrated Approach
Dialysis can be performed by introducing aonly filter (in- 
line hemofilter) or afull C RRT machine into the ECMO 
circuit.

In-Line Hemofilter
The filter inlet is connected after the blood pump and the 
filter outlet before the pump (Figure 1A). The advantages 
of this method are the low cost, the easy setup and the 
absence of the need for a second device and separate 
vascular access. The disadvantages are the absence of 
pressure monitoring, a less precise ultrafiltration with lim-
ited solute clearance (an error up to 800 mL/die44) requir-
ing an external pump to control it, a high risk of hemolysis 
and enhanced systemic inflammation for the flow 
turbulences.

RRT Machine and Circuit into the ECMO Circuit
The CRRT inflow and outflow can be integrated into the 
ECMO circuit, before the oxygenator, in three different 
sections with different pressures: 1. The limb of the 
ECMO circuit with positive pressure, after the centrifugal 
blood pump (Figure 1B); 2. The limb of the circuit with 
negative pressure, before the centrifugal blood pump 
(Figure 1C); 3. The CRRT inflow is connected to the 
limb of the ECMO circuit with positive and the outflow 
in the negative pressure side (Figure 1D). Unlike the in- 
line hemofilter, this approach allows to monitor the pres-
sures and guarantees a more precise ultrafiltration with an 
effective solute clearance, as demonstrated by Symons 
et al.45 One of the most important disadvantages is the 
exposure of the CRRT machine to pressures outside the 

Table 2 Delivery of CRRT to ECMO Patients: Advantages and Disadvantages

Approach Advantages Disadvantages

Parallel Separate CRRT and 
ECMO circuit

- Absence of interference related 
to pressure differences 

- Standard CRRT prescription 

- Standard CRRT circuit 
management 

- Combined anticoagulation 

strategy (systemic + regional)

- Need of separate vascular access 
- Risk of bleeding during the catheter placement 

- Increased nursing efforts

Integrated In-line hemofilter - Low cost 

- Easy set-up 
- No need for separate vascular 

access

- No pressure monitoring 

- Less precise ultrafiltration 
- Requires external pump to control ultrafiltration 

- Flow turbulences and risk of hemolysis

Full CRRT circuit into 

the ECMO circuit

- Pressure monitoring 

- More precise ultrafiltration 
- No need for separate vascular 

access

- Exposure of the CRRT machine to pressures outside the safety 

range (> down time → < delivered dose) 
- Flow turbulences and risk of hemolysis 

- Shunt within ECMO circuit 

- CRRT circuit management 
by an ECMO perfusion/circuit specialist

Abbreviations: CRRT, Continuous Renal Replacement Therapy; ECMO, ExtraCorporeal Membrane Oxygenation.
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safety range. In some CRRT devices, these pressure 
changes might trigger the CRRT pressure alarms and 
often lead to repeated stops in treatment with an increase 
in down time and decreased delivered dose. However, 
third- and fourth-generation CRRT machines can adjust/ 
adapt the pressure ranges to the integrated setup and allow 
to safely run the dialytic session. Moreover, this method, 
as the inlet hemofilter, does not require any additional 
central vascular access. Still, it has a high risk of hemo-
lysis and enhanced systemic inflammation for the flow 
turbulences. These specific aspects require further evalua-
tion and dedicated studies in the future. Advantages and 
disadvantages of different approaches are listed in Table 2.

Anticoagulation
The contact between blood and the foreign surface of the 
ECMO circuit induces a pro-inflammatory and procoagu-
lant response. Systemic anticoagulation is needed for the 

prevention of clot formation.46 Although the ELSO guide-
lines do not recommend a specific anticoagulant, systemic 
unfractionated heparin (UFH) is the most used one.47 UFH 
is an indirect coagulation inhibitor. Indeed, it binds and 
increases antithrombin (AT) activity, which inactivates the 
formation of factor Xa and thrombin. Therefore, the effi-
cacy of UFH depends on the AT concentration. Despite the 
UFH availability, low cost, and the presence of a specific 
antidote,1,48 many challenges can arise, such as heparin- 
induced thrombocytopenia (HIT), heparin resistance, and 
variable response from heparin due to its binding to sev-
eral plasma proteins, endothelial surface, and primarily by 
circulating platelets, which scavenge heparin by releasing 
platelet factor 4 (PF4).49,50 Direct thrombin inhibitors 
could be used as an alternative to heparin. Bivalirudin is 
a direct thrombin inhibitor with a short half-life and partial 
kidney clearance (about 20%).49 Its use during ECMO has 
been successfully reported in the case of HIT.51 Recently, 

A

C

B

D

Figure 1 (A) In-line Hemofilter. (B) Full RRT circuit into the ECMO circuit: section of the circuit under positive pressure. (C) Full RRT circuit into the ECMO circuit: 
section of the circuit under negative pressure. (D) Full RRT circuit into the ECMO circuit: section of the circuit under positive and negative pressure. 
Abbreviation: CRRT, Continuous Renal Replacement Therapy.
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Rivosecchi et al52 performed a retrospective cohort study 
where they compared 162 patients receiving UFH with 
133 patients receiving bivalirudin for anticoagulation on 
VV-ECMO. The bivalirudin group showed a decrease in 
clot formation in the ECMO circuit as well as a significant 
decrease in volume of blood product administration (red 
blood cells, plasma and platelet).

In a retrospective analysis of 135 AKI patients treated 
with bivalirudin for HIT, Tsu and Dagger demonstrated 
how the bivalirudin dose needed to reach a therapeutic 
activated partial thromboplastin time (aPTT) goal was 
lower with respect to patients with normal renal 
function.53 Specifically, the reduction was 40% for patients 
with a creatinine clearance of 30–60 mL/min and for those 
on dialysis (Intermittent HemoDialysis - IHD, Slow Low 
Efficiency Dialysis – SLED and CRRT) and 60% for 
patients with a creatinine clearance under 30 mL/min. On 
the other side, part of bivalirudin is removed through the 
hemofilter54 and during ECMO dosing requirements can 
increase when high intensity CRRT is included.55 The 
infusion rate of bivalirudin is usually reported around 
0.03–0.2 mg/kg/h, and the UFH infusion rate range 
between 20 and 70 IU/kg/h.46 For both drugs, the correct 
dose is indicated by hemostasis tests. Monitoring the 
hemostatic system is essential to maintain the correct 
balance between the necessary coagulation and its possible 
complications, and many different tests can be used. 
During UFH and bivalirudin anticoagulation in ECMO 
patients, Activated Clotting Time (ACT) remains the stan-
dard of monitoring. The ACT is usually maintained 
between 180 and 220 s.46 APTT poorly correlates with 
ACT56 and a range of 1.5 times the baseline value (50–80 
s) is considered the target during ECMO.46 The anti-Xa 
activity assessment can be helpful for the definition of the 
UFH infusion rate. A correct range is between 0.3 and 0.7 
IU/mL.57

During CRRT, outside the setting of ECMO, regional 
citrate anticoagulation (RCA) is considered as the standard 
method.58 Citrate chelates the ionized calcium (iCa) in the 
extracorporeal circuit. ICa is an essential cofactor of many 
coagulation cascade reactions. Thus, an iCa reduction 
(post-filter calcium target 0.25–0.4 mmol/L) prevents 
blood clotting within the circuit.

When ECMO and CRRT are applied at the same time, 
the commonly used anticoagulation is systemic UFH. 
CRRT circuit may present a high risk of clotting due to 
consumption of coagulation factors and to turbulence in 
high-pressure connections.59 Although systemic anticoa-
gulation may be considered adequate in many cases to 
prevent repeated CRRT circuit clotting, an additional 
anticoagulant has to be added in some cases. In a recent 
retrospective study, Giani et al60 enrolled 37 vvECMO 
patients receiving CRRT with a different anticoagulation 
approach. Fifteen patients received only systemic UFH 
(UFH group) and in 22 patients RCA was added (RCA + 
UFH group) to the CRRT circuit. RCA + UFH group had 
a lower incidence of CRRT circuit clotting (11% vs 38% in 
the UFH group, p < 0.001) and no significant complica-
tions related to the use of RCA have occurred. When RCA 
is applied on the CRRT circuit, the management of sys-
temic anticoagulation for ECMO does not change. Another 
beneficial aspect of combined therapies is the possibility, if 
required due to clinical needs (eg, bleeding complica-
tions), of interrupting ECMO systemic anticoagulation 
while maintaining the regional one preserving the CRRT 
circuit (Table 3).

Outcomes
Unsurprisingly, patients requiring ECMO and CRRT have 
a high mortality rate. The presence of AKI itself rather than 
the requirement for CRRT is an independent risk factor for 
mortality in critically ill patients undergoing ECMO. In 
a retrospective analysis, Kielstein et al24 observed that AKI 

Table 3 Systemic Anticoagulation Strategy During ECMO and CRRT: Advantages and Disadvantages

Anticoagulant Strategy Advantages Disadvantages

Systemic 
anticoagulation

UFH - Less nursing work 

- Usable with both integrated and parallel approach

- Less effective 

anticoagulation
Bivalirudin

Systemic + Regional 
anticoagulation

UFH/ 

Bivalirudin + 
RCA

- More effective anticoagulation 

- Possibility of interrupting systemic anticoagulation while maintaining the 
regional one (eg, bleeding complications)

- More nursing work 

- Unusable with in- 
line hemofilter

Abbreviations: UFH, unfractionated heparin; RCA, regional citrate anticoagulation.

https://doi.org/10.2147/IJNRD.S292893                                                                                                                                                                                                                                

DovePress                                                                                                  

International Journal of Nephrology and Renovascular Disease 2021:14 326

Foti et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


requiring CRRT in patients undergoing ECMO treatment 
increased 3-month mortality (83% vs 47%, p < 0.001). 
Other authors also confirm the increased mortality in CRRT 
patients during ECMO (Table 1).6–9,14,23–27 In these patients, 
fluid balance plays a key role in ICU patients’ outcomes, and 
its management is a challenge, particularly during ECMO. To 
date, it is established that a positive fluid balance is indepen-
dently associated with mortality6 and it should be prevented. 
As remarked before, CRRT can be useful to timely and 
accurately control patients’ fluid balances, mainly if an 
early approach is used.24

Renal recovery in patients who have received ECMO 
with CRRT is another critical issue with scant information 
available. The few studies that address this topic suggest 
that there is a favorable renal outcome in children and VA- 
ECMO survivors (Table 1).6,9,14,18,26

A considerable observation is safety of the combination of 
ECMO with CRRT. A lot of studies in the literature have 
demonstrated the safety and feasibility of this multiple extra-
corporeal approach. In a systematic review, Chen et al 
observed a higher mortality and longer ECMO duration in 
patients where CRRT was added to ECMO which however 
reflected a relatively higher severity of illness. They concluded 
that the combination of ECMO and CRRT resulted a safe and 
effective technique that improves fluid balance and electrolyte 
disturbances.11 It has been remarked that significant hemoly-
sis, addition of scarcely biocompatible extracorporeal tubing, 
drug sequestration into circuit inner surface and membranes, 
and requirement for specifically trained personnel (that may 
not be available in all centers) may contribute to the potential 
unsafety of this double extracorporeal support. However, these 
risks must be counterbalanced with the potential life-saving 
indication of applying both the treatments and, currently, 
potential benefits seem to widely overcome the potential 
risks. Furthermore, many potential unsafety issues appear to 
be modifiable and can be adjusted once monitoring protocols 
(ie, fHb check, therapeutic drug monitoring) and appropriately 
skilled staff operate on these patients.

Conclusion/Future Directions
The combination of CRRT and ECMO is part of the 
concept of Multiple Organ Support Therapy (MOST), an 
extracorporeal approach that is becoming increasingly 
applied in the ICU. Next-generation machines are needed 
to achieve harmonization of components, techniques, and 
operations of MOST.

In this setting, many questions remain open, as how to 
optimize FO, the best circuits set-ups (integrated vs parallel 

approach), the optimal anticoagulation strategy, drug posol-
ogy adjustments (eg, sedatives, vasopressors and antibiotics), 
the timing to start and to interrupt CRRT. It is possible that 
with the increased application of MOST in the ICU and the 
evolution of future technology, more information and data 
from prospective studies will be available in the literature to 
optimize the outcomes of these frail patients.
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