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Abstract: Familial hypercholesterolemia (FH) is a genetic disorder of lipoprotein metabolism 

characterized by high plasma concentrations of low-density lipoprotein cholesterol (LDLc), 

tendon xanthomas, and increased risk of premature coronary heart disease. FH is one of the 

most common inherited disorders; there are 10,000,000 people with FH worldwide, mainly 

heterozygotes. The most common FH cause is mutations along the entire gene that encode for 

LDL receptor (LDLR) protein, but it has been also described that mutations in apolipoprotein 

B (APOB) and proprotein convertase subtilisin/kexin type 9 genes produce this phenotype. 

About 17%–33% of patients with a clinical diagnosis of monogenic hypercholesterolemia do 

not harbor any genetic cause in the known loci. Because FH has been considered as a public 

health problem, it is very important for an early diagnosis and treatment. Recent studies have 

 demonstrated the influence of the LDLR mutation type in the FH phenotype, associating a more 

severe clinical phenotype and worse advanced carotid artherosclerosis in patients with null than 

those with receptor-defective mutations. Since 2004, a molecular FH diagnosis based on a genetic 

 diagnostic platform (Lipochip; Progenika-Biopharma, Derio, Spain) has been developed. This 

analysis completes the adequate clinical diagnosis made by physicians. Our group has recently 

proposed new FH guidelines with the intention to facilitate the FH diagnosis. The treatment 

for this disease is based on the benefit of lowering LDLc and a healthy lifestyle. Actually, drug 

therapy is focused on using statins and combined therapy with ezetimibe and statins. This review 

highlights the recent progress made in genetics, diagnosis, and treatment for FH.

Keywords: LDLR, APOB, PCSK9, LDL cholesterol

Introduction
The object of this review is to update the status of familial hypercholesterolemia 

(FH, MIMN#143890), with special consideration on the genetics and diagnosis. 

 Heterozygous FH (heFH) is presented with high prevalence around the entire 

world, thus supposing elevated costs in health care.1 Although this disease has been 

 exhaustively studied, new locus and mutations associated with FH are described each 

year. Taking all things together, it is important to research about the FH causes, and 

the  effectiveness in the diagnosis and treatment.

FH is an autosomal codominant inherited disorder of lipoprotein metabolism 

 characterized by very high plasma concentrations of low-density lipopropotein 

 cholesterol (LDLc), tendon xanthomas (TX), and increased risk of premature coronary 

heart disease (CHD).1 The penetrance of FH is almost 100%, which means that half of 

the offspring of an affected parent have a severely increased plasma cholesterol level 

from birth onwards, being both males and females equally affected.
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FH was first described by Müller in 1938.2 Initially, the 

FH defect was long thought to be caused by cholesterol 

oversynthesis.3 In the middle 1970s, Brown and Goldstein4,5 

found that FH defect was due to the absence of a high 

 affinity receptor for uptake of serum low-density lipoprotein 

(LDL). These investigators characterized the LDL receptor 

(LDLr) pathway with its implications in other pathways and 

 identifying the genetic defect that caused malfunction of the 

LDLr.6 Nowadays, FH has become one of the best known 

genetic diseases.

Although the vast majority of FH cases are caused by 

mutations in the LDL receptor gene (LDLR) gene, there 

are other causative genes such as apolipoprotein B (APOB) 

that codifies for the natural ligand of the LDLr protein7 And 

a third gene, proprotein convertase subtilisin/kexin type 9 

(PCSK9) has been more recently identified as a cause of 

FH;8,9 however, mutations in this latter gene seems to be rare 

in the populations studied so far (Table 1).10

Epidemiology
FH is one of the most common inherited disorders with 

frequencies of heterozygotes and homozygotes estimated 

to be 1:500 and 1:1,000,000, respectively. In certain 

populations, a small number of mutations predominate 

due to founder effects and therefore, there is a high heFH 

frequency in these populations including French Cana-

dians,11 Christian Lebanese,12 Druze,13 Finns,14 South 

African Afrikaner,15 and Ashkenazi Jews of Lithuanian 

descent.16

FH heterozygous patients display a twofold increase in 

plasma cholesterol (generally above the 95th percentile value 

for population). In patients with FH, the age–sex  standardized 

mortality ratios are 4–5 times higher than in the general 

populations.17

Due to the high incidence of premature (,55 years in men 

and ,65 years in women) cardiovascular disease (CVD) and 

reduction in the life expectancy in many families with this 

disease, FH has been considered as a worldwide public health 

problem.18 Approximately, 85% of males and 50% of females 

will suffer a coronary event before the age of 65 years if they 

are not treated.19 It is noteworthy that up to 9% of the total 

premature CHD in eastern Finland and Germany is associ-

ated with FH.20–22

Long-term follow-up studies have shown that the main 

cause of death in FH patients is CHD.23,24 With adequate 

long-term pharmacological treatment, many FH patients 

could achieve substantial reductions in LDLc, and probably 

increase their life expectancy by 10–30 years.25

Intervention studies in FH
Scientific evidences, coming from large clinical trials, 

have demonstrated the benefit of LDLc reduction in the 

 prevention of CVD in a broad spectrum of populations, 

especially in subjects with symptomatic CHD or with 

absolute high risk.26,27 As mentioned earlier, FH patients 

should be  considered high risk subjects due to the prevalence 

of CHD, and they should benefit as a group at least as much 

as other high risk groups. According to the presence of major 

risk factors and/or clinical or subclinical atherosclerosis, 

three categories of risk for heFH are suggested (Table 2): 

(1) low 10-year risk, with no major risk factors; (2) moderate 

10-year risk, with one major risk f actor; and (3) high 

10-year risk: (a) with $2 major risk factors, (b) subclinial 

atherosclerosis, or (c) clinical CVD.

In the last 15 years, different studies have used well-

established surrogates of CVD to study the effects of 

 aggressive LDLc reduction in FH. These studies demonstrate 

Table 1 Frequency of different types of primary hypercholesterolemia

Monogenic hypercholesterolemia (1:500)
Autosomal dominant
FH LDLR 60%–80%
FDB-100 APOE 1%–5%
FH type 3 PCSK9 0%–3%
Unknown Unknown 20%–40%
Autosomal recessive (1:1,000,000)
ARH ARH
Phytosterolemia 
Cholesterol 7  
α-hydroxylase deficiency

ABCG5/G8 
CYP7A1

Complex hypercholesterolemia (1:50)
FCH Unknown
Polygenic hypercholesterolemia (1:25) APOB, APOE,  

LDLR, unknown
Abbreviations: FH, familial hypercholesterolemia; FDB, familial defective Apo B 
gene; FCH, familial combined hyperlipidemia; LDLR, low-density lipoprotein receptor; 
APOE, apolipoprotein e; PCSK9, proprotein convertase subtilisin/kexin type 9; APOE, 
apolipoprotein B gene; ARH, autosomal recessive hypercholesterolemia.

Table 2 Major CvD risk factors in heterozygous FH

1 Age 
  Men: $30 yo 
  women: $45 yo or postmenopausal
2 Cigarette smoking: active smokers
3 Family history of premature CHD
4 Male first-degree relative ,55 yo
5 Female first degree ,65 yo
6 very high LDLc: .330 mg/dL (8.5 mmol/L)
7 Diabetes mellitus
8 Lp(a): .60 mg/dL

Abbreviations: CHD, coronary heart disease; LDLc, low-density lipoprotein 
cholesterol; yo, years old.
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that coronary lesions measured by coronary angiography 

in SCOR,28 LARS,29 L-CAPS,30 LAARS and FHRS,31,32 or 

by intracoronary ultrasonography in LACMART;33 aortic 

lesions evaluated by transesophageal echocardiography;34 

carotid intima-media thickness measured by quantitative 

B-mode ultrasound in ASAP;35 endothelial dysfunction 

measured by flow mediated dilatation and E-selectin;36 

myocardial ischemia detected by exercise test in LAARS;31 

and myocardial perfusion abnormalities assessed by digi-

tal angiography in LAARS,37 all improve with aggressive 

LDLc reduction obtained with LDL apheresis and/or lipid 

 lowering drugs.

Consistent with these findings, the use of lipid lowering 

drugs, especially methylglutaryl coenzyme A (HMGCoA) 

reductase inhibitors, has been shown to be associated with 

improved cardiovascular prognosis without any change in 

noncardiovascular mortality in FH subjects on the Simon 

Broome Register in the United Kingdom.18

The LDL receptor
The LDLr is synthesized as a 120 KDa precursor protein. 

The glycosylated mature receptor reaches the cell surface 

and is directed towards clathrin-coated pits where it binds 

to Apo B-enriched and apolipoprotein E (Apo E)-enriched 

lipoproteins via its extracellular domain (Figure 1).38 The 

complex is endocytosed and migrates to the endosomes. 

Upon acidification of the endosomal pH, the LDL particle is 

released and later degraded in lysosomes. The LDLr returns 

to the membrane and enters in a new cycle. There is extensive 

evidence that plasma PCSK9 raises LDLc levels by binding 

to cell surface LDLr and targeting the receptor to lysosomes 

for degradation.39,40

The LDLR is mapped to 19p13.1–13.3, spans 45,000 base 

pairs (bp), and codifies for an ubiquitous transmembrane 

glycoprotein of 839 amino acids that mediates the transport 

of LDL into cells via endocytosis.41 It contains 18 exons and 

17 introns encoding the six functional domains of the mature 

LDL

APOB

LDLr ARH

Synthesis

PCSK9
Idol

Recycling

Clathrin-coated
pits

Endosome

Lysosome

ER
GOLGI

Figure 1 The LDL receptor pathway. 
Notes: The low-density lipoprotein receptor (LDLr) is synthesized as a 120 KDa precursor protein and processed in the golgi apparatus (GOLGi) producing the glycosylated 
mature receptor that is transported to the cell surface and is directed towards clathrin-coated pits through interactions involving LDL particle, enriched with apolipoprotein 
B (APOB) where it binds to LDL particle. The complex is transported to endosomes where the acidic pH causes a dissociation of the receptor–ligand complex, releasing 
the LDLr to its recycling so the LDL is degraded in the lysosomal compartment. The proprotein convertase subtilisin/kexin type 9 (PCSK9) and idol protein participate in a 
decreasing of receptor recycling and increasing the LDLr degradation.
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LDLR gene

Exon number

LDLr protein

Domain Signal
peptide

Ligand binding
with cys-rich repeats

EGF precursor-like OLS TM Cytoplasmic

1 2 3 4 5 6 7–10 11 12 13 14 15 16 17 18

Figure 2 The LDLR gene. 
Notes: exons are shown as dark bars numbered underneath. Arrows indicate exons encoding the different domains of the low-density lipoprotein receptor (LDLR) protein: 
the signal peptide (exon 1), ligand-binding domain (exons 2–6), eGF precursor-like domain (exons 7–14), the domain named as OLS, O-linked carbohydrate chains (exon 15), 
transmembrane (TM) domain (exons 16 and 5′ part of exon 17), and the cytoplasmic domain (3′ region of exon 17 and 5′ region of exon 18).

protein: signal peptide, ligand-binding domain,  epidermal 

growth factor precursor (EGFP) like, O-linked sugar, 

transmembrane, and cytoplasmic domain (Figure 2).42 The 

prediction of the presence of different domains in the protein 

was possible because of the gene sequencing, determining 

that each domain was encoded by separate exons or group 

of them and suggesting that the LDLr might have evolved 

through shuffling of exons from other genes, because it has 

parts similar to unrelated proteins.43,44 After Goldstein and 

Brown6 identified LDLr dysfunction as cause of FH, multiple 

mutations were associated with this disease.43,45,46

The LDLr production is tightly regulated by a sophisticated 

feedback mechanism that controls the transcription of the LDLR 

in response to variations in the intracellular sterol concentra-

tion and the cellular demand for cholesterol.47 DNA motifs are 

essential for the transcriptional regulation of the LDLR and are 

located within 280 bp of the proximal promoter (Figure 3). This 

region contains all the cis-acting elements for basal expres-

sion and sterol regulation and includes three imperfect direct 

repeats of 16 bp each, repeats 1–3. Repeats 1 and 3 contain 

binding sites for Sp1 transcription factor, and contribute to the 

basal expression of the gene requiring the contribution of the 

repeat 2 for a strong expression.48 Repeat 2 contains a sterol 

regulatory element (SRE) that enhances transcription when 

the intracellular sterol concentration is low through interaction 

with a transcriptional factor designated as sterol regulatory 

element binding protein-1.49 Other two regions, named as FP1 

and FP2 and located between −281 to −269, contain important 

cis-acting elements that have been described as essential for 

maximal induction of transcription.50 To date, several naturally 

occurring mutations have been mapped to the transcriptional 

regulatory elements of the LDLR.51–59

Exon 1 encodes the signal peptide, a hydrophobic 

sequence of 21 amino acids. This peptide is cleaved from 

the protein during the translocation into the endoplasmic 

reticulum. Currently, 79 (4.6% of total variants described) 

frameshift, missense, and nonsense sequence variants have 

been described in this exon (see http;//www.ucl.ac.uk/fh, 

http://www.umd.necker.fr).

Exons 2–6 encode the ligand-binding domain, which 

 consists of seven tandem repeats of 40 amino acids each. 

There is a cluster of negatively charged amino acids, 

 Asp-X-Ser-Asp-Glu in each repeat and six cysteine residues 

that form three  disulfide bonds.37 Binding of lipoproteins to the 

LDLr appears to be mediated by an interaction between acidic 

 residues in the LDLr-binding domain and basic residues of Apo 

E and Apo B-100.60,61 Deletion of individuals repeats R3–R7 

results in a loss of LDL binding (Apo B-100- mediated), but a 

LDLr fragment consisting of R4 and R5 is sufficient to bind to 

Apo E-phospholipids vesicles.62 Recently, a new mechanism 

for the release of LDL particles in the endosome has been 

 proposed. It is based on the instability of R5 at endosomal 

low pH and low Ca2+. Under this kind of condition, R5 is 

unable to bind Ca2+ and appears in an unfolded conformation 

not expected to bind LDL particles.63 To date, in this region, 

693 allelic variants (40.7%) have been found.

The second domain of the human LDLr consists of a 411 

amino acid sequence, encoded by exons 7–14. This sequence 

shows a 33% of homology of the human EGFP. Like the 

ligand-binding domain, this region also contains three repeats 

of 40–50 amino acids with cysteine-rich sequences. The 

EGFP-like domain is required for the acid-dependent 

dissociation of the LDL particles from the LDLr and clathrin-

coated pits that takes place in the endosome during receptor 

recycling. When the EGFP domain is deleted from the LDLr, 

the receptor can no longer bind LDL but it still binds lipopro-

teins that contain Apo E.64 Zhang et al65 showed that PCSK9 

bind to EGFP-A repeat (the first one) of LDLr, decreasing 

receptor recycling and increasing degradation. From all 

mutations described to date, approximately 788 (46%) have 

been associated with this domain (see http://www.ucl.ac.uk/

fh, http://www.umd.necker.fr).
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The third domain of the LDLr is a region of 58 amino 

acids rich in threonine and serine residues that is encoded 

by exon 15. The function of this domain is unknown, but has 

been observed that this region serve as attachment sites for 

O-linked carbohydrate chains.1,66 This region shows minimal 

sequence conservation among six species analyzed and can 

be deleted without adverse effects on receptor function in 

cultured fibroblasts.66 It is thought that this domain plays a 

role in the stabilization of the receptor.1 Actually, 41 allelic 

variants within exon 15 are registered in LDLR databases.

The transmembrane domain that contains 22  hydrophobic 

amino acids is coded by exon 16 and the 5′ end of exon 

17. This domain is essential for anchor the LDLr to the 

cell membrane. The cytoplasmic domain of the LDLr, that 

 compromises 50 amino acid residues, is encoded by the 

remainder 3′ region of the exon 17 and the 5′ end of the exon 

18.1 This domain contains two sequence signals for targeting 

the LDLr to the surface and for localizing the receptor in 

coated pits.67 This domain is the most conserved region of the 

LDLr, which is more than 86% identical among six species.1 

Only a few allelic variants, 5.9% of total, have been  identified 

within these domains.

Nowadays, over 1,000 mutations in LDLR have been 

described in FH patients along many populations (see http://

www.ucl.ac.uk/fh, http://www.umd.necker.fr). The naturally 

occurring LDLR can produce defects in transcription, 

posttranscription processes, translation, and posttranslation 

processes.59 FH mutations have been classified into five classes 

depending on the phenotypic behavior of mutant protein.43

Class 1 mutations are known as “null alleles.” These 

kinds of mutations are due to LDLR promoter deletion, by 

frameshift, nonsense, splicing mutations, or rearrangements 

in a way that messenger RNA (mRNA) is not produced; it 

generates an abnormal mRNA or normal in size but in a 

reduced concentration.68

Class 2 mutations are transport defective alleles which 

encode for proteins that do not have an adequate three-

 dimensional structure after being synthesized and keep blocked, 

complete or partially (2A and 2B, respectively) in transport 

process between endoplasmic reticulum and golgi apparatus. 

This defect is caused, normally, by missense mutations or small 

deletions in LDLR avoiding partial or completely the folding 

protein. These mutations are located within exons that encode 

ligand-binding domain and EGFP-like domain.69

Class 3 mutations are binding defective alleles which 

encode for LDLr that are synthesized and transported to 

cell surface but are not able to bind LDL particles. This is 

a heterogeneous group, because LDL binding activity goes 

from 2% to 30% of normal. This defect is due to rearrange-

ments in repeat cysteine residues in binding ligand domain 

or repeat deletions in EGFP-like domain.70

Class 4 mutations are known as internalization-defective 

alleles which produce proteins that are not able to group into 

clathrin-coated pits; therefore, LDLr are not  internalized (4A: 

only cytoplasmic domain is affected and 4B: also affected 

transmembrane domain).66

Finally, recycling-defective alleles are also named as 

class 5 mutations, such as missense mutations in EGFP-like 

domain, which encode for LDLr that are not able to release 

LDL particles in endosomes avoiding receptor return to cell 

surface.59

The heterogeneity observed in FH patients in relation to 

plasma LDLc levels and CHD has been suggested due to dif-

ferences in the nature of the mutation in the LDLR and several 

studies have been published in support of this.39,40,71–73 Even 

HMGCoA reductase inhibitors may depend on the nature of 

the mutation in the LDLR gene.74,75 Recently, a study carried 

out by our group, with 436 Spanish FH patients with known 

LDLR mutations classified as null alleles or defective alleles, 

has demonstrated that patients with a molecular diagnosis of 

LDLR PROMOTER5’ 3’

+1−50−100−150−200−250−300

Figure 3 The LDLR promoter regulation.
Notes: Low-density lipoprotein receptor gene (LDLR) 5′ promoter region of 300 bp is represented, numbered the A of the ATG codon as +1. The major regulatory regions 
are indicated with different colors: FP2 (from −280 to −268); FP1 (−238 to −217); repeat (ReP) 1 (−196 to −181); ReP 2 (−161 to −146); ReP 3 (−145 to −128); and TATA 
box (from −116 to −110 and −107 to −101). interaction between cis-element and trans-element at the proximal promoter drives high levels transcription when sterol level 
becomes deficient. The sterol regulatory element (SRE) binding protein transcription factor interacts with the SRE-1 of REP 2, whereas SP1 transcription factors interact with 
ReP 1 and ReP 3 to promoter high levels of LDLR gene transcription in response to low intracellular sterol concentrations. SP1 also involved with constitutive, basal-level 
expression of the LDLR gene. The TATA boxes recruit and direct the assembly of general transcription factors at the promoter.
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FH characterized by null allele mutations of LDLR show a 

more severe clinical phenotype and worse advanced carotid 

artherosclerosis than those with receptor-defective muta-

tions, independently of age, gender, lipid, and nonlipid risk 

factor.76

Other genes associated with FH
Apolipoprotein B
In 1986, Vega and Grundy77 showed that some patients 

(5 of 15 studied) with hypercholesterolemia have reduced 

 clearance of LDL not because of decreased activity of 

LDLr but because of a defect in structure or composition of 

LDL that reduces its affinity for receptors. Innerarity et al78 

found that moderate hypercholesterolemia, presented in 

the five  subjects previously studied, could be attributed to 

a d efective receptor binding of a genetically altered Apo 

B-100 to the LDLr.77,78 The inherited nature of this disease 

was indicated by the findings of the same defect in proband’s 

first-degree relatives. These findings resulted in referring this 

disease as Familial Defective Apo B-100 (FDB).78

The first mutation found as a FDB cause was demonstrated 

by Soria et al79 who sequenced the two alleles of APOB 

from patients of three families. They observed the mutation 

R3500Q.79 Two new mutations were described in 1995 as 

cause of FDB: R3500W and R3531C.80,81 For the classical 

mutation, R3500Q, frequency was estimated in 1:500–1:700 

in several Caucasian populations in North America and 

Europe (Table 1).82 On the other hand, R3500W and R3531C 

have been found in a minor frequency.

Recently, a novel mutation H3543Y in APOB associated 

with FDB has been described with a high prevalence (4 times 

R3500Q) in a German population.83

Recent data reveal that compared with FH patients with 

LDLR mutations, FDB patients have lower LDLc levels by 

20%–25% (Table 3),84 respond better to statins and have 

lower risk of CHD.85 This difference could be due to normal 

clearance of very low-density lipoprotein remnants through 

Apo E-mediated uptake in FDB.86

Proprotein convertase subtilisin/kexin 
type 9 gene
In 1999, Varret et al87 identify a new autosomal dominant 

hypercholesterolemia (ADH) locus in 1q34.1-p32 chromo-

some (Tables 1 and 2). PCSK9 was first identified as a mem-

ber of proprotein convertase family with hepatic, intestine, 

and kidney expression.88 Mutations in PCSK9 gene (S127R, 

P216L, and D374Y y N157K) that produce gain of function 

were associated with a decrease in LDLr number and ADH.89 

Initially, it was thought the hypothesis of a PCSK9 role in 

LDLr degradation in the cell surface.89 Nowadays, as we 

have described earlier, there are enough evidence to think 

that PCSK9 participates in LDLr lysosomal degradation 

(Figure 1).39,40,90 Recently, it has been proposed that PCSK9 

may induce internalization and degradation of LDLr by 

leading receptor to ubiquitination by Idol.91

PCSK9 mutations have been also classified into five 

classes, including “null alleles”, mutations that affect 

autocatalytic scission avoiding the protein transport through 

endoplasmic reticulum or from the endoplasmic reticulum to 

cell surface, alleles that affects PCSK9 stability and finally 

mutations that produce gain of function because of gene 

overexpression.92–94 Some mutations in PCSK9 (Y142X, 

C679X, and R46L) produce a loss of function and are 

associated with low LDLc.95,96

About 17%–33% of patients with a clinical diagnosis of 

monogenic hypercholesterolemia based on Simon Broome 

Register Group (SBRG) criteria do not harbor any genetic 

cause in the known loci suggesting a possibility of additional 

hypercholesterolemia loci (Table 1).9,10

FH diagnosis
Clinical criteria used to identify patients with FH include 

high plasma levels of total and LDLc (.250 mg/dL 

or .7 mmol/L), family history of hypercholesterolemia 

 especially in children, deposition of cholesterol in extravas-

cular tissues such as TX or corneal arcus, and personal and 

family history of premature CVD.1 Heterozygous FH (heFH) 

patients have LDLc levels approximately twice those of 

the normal population, ranging from 190 to 400 mg/dL 

(4.9–10.3 mmol/L). Triglycerides (TG) levels are usually 

in the normal range. However, some patients with FH have 

increased TG levels, explained in part by the interaction with 

other genes (ie, E2/E2 genotype) or environmental factors 

(ie, alcohol, overweight, and diabetes mellitus).

TX are pathognomonic of FH; however, their identification 

is not always easy and they are considered insensitive diagnos-

tic markers. A high variability of xanthoma presence in FH 

patients has been reported.97 Xanthelasmas occur commonly 

in heterozygotes, but are rare in homozygotes. Xanthelasmas 

are not specific for FH and can appear in subjects with normal 

lipid levels.1 TX may appear in patients with cerebrotendinous 

xanthomatosis and are indistinguishable from those FH. This 

kind of xanthomas also occur in subjects affected by FDB, 

dysbetalipoproteinemia, and sitosterolemia (Table 3).1

Variability in the frequency observed in different studies 

depends in part on the clinical criteria used for FH (some of 
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them included the presence of xanthomas), as well as the 

methods used for the identification of xanthomas.15

There are no absolutely predictive clinical criteria for the 

diagnosis of FH, and arbitrary criteria must be used. Several 

criteria have been proposed (Table 4) by SBRG,18 the USA 

Make Early Diagnosis to Prevent Early Death (MEDPED) 

Program,98 and the Dutch MEDPED Program.99 Our group 

demonstrated that MEDPED programs resulted in high 

sensitivities and specificities being more accurate as more 

complex is the scoring system.100 The best approach in most 

populations is to determine LDLc in all first degree of a FH 

proband and it is recommended that all second-degree family 

members are also screened.101

Although clinical diagnosis criteria have been extensively 

used for FH,18 the genetic testing is the preferred method for 

FH because it provides an unequivocal diagnosis.1,10,19 Since 

2004, a genetic diagnostic platform for FH called Lipochip 

(Progenika-Biopharma, Derio, Spain) has been developed, 

which includes a microarray for the detection of common point 

mutations and small deletions in the LDLR and APOB genes, 

the diagnosis of large rearrangements, and a full LDLR coding 

sequence analysis when the former are negative.102 By provid-

ing either a positive (presence of LDLR or APOB mutations) 

or negative (absence of defects in these genes) diagnosis, this 

platform has allowed the genetic characterization of .5,000 

Spanish patients.100,103 Even though the diagnosis of FH based 

on the detection of a functional mutation on a causative gene 

is the recommended procedure in most suspicious cases but it 

cannot be recommended for all cases of hypercholesterolemia 

because the genetic testing is still complex, expensive, and 

require specific families for microarray analysis. For those 

reasons, clinical diagnosis is still very important and in the FH 

Table 3 Common hypercholesterolemia and hypertriglyceridemia

Molecular mechanism Clinical features

Dominant inheritance
 Familial hypercholesterolemia LDLr defect TX, arcus cornealis, premature CHD,  

TC: .400 mg/dL (.10.3 mmol/L) or  
TC: 190–400 mg/dL (4.9–10.3 mmol/L) in heFH

 Familial defective APOB-100 APOB defect Xanthomas, arcus cornealis,  
premature CHD, and TC: 250–350 mg/dL (7–13 mmol/L)

 Familial hypercholesterolemia type 3 PCSK9 Premature CHD  
TC: 250–500 mg/dL (6.5–9 mmol/L)

 Familial hypertriglyceridemia Possible multiple unknown defects No symptoms  
TG: 200–500 mg/dL (2.3–5.7 mmol/L)

 Familial combined hyperlipidemia Possible multiple unknown defects Premature CHD, Apo B elevated,  
TC: 250–500 mg/dL (6.5–13 mmol/L)  
TG: 250–750 mg/dL (2.8–8.5 mmol/L)

Recessive inheritance
  Autosomal recessive  

hypercholesterolemia
ARH Xanthomas, arcus cornealis, xanthelasmas,  

premature CHD.  
TC: .350 mg/dL (.9 mmol/L)

 LPL deficiency endothelial LPL defect Failure to thrive, xanthomas, hepatosplenomegaly, 
pancreatitis  
TG: .750 mg/dL (8.5 mmol/L)

 Apo C-II deficiency Apo C-ii defect Pancreatitis and metabolic syndrome.  
TG: .750 mg/dL (8.5 mmol/L)

 Hepatic lipase deficiency Hepatic lipase Premature CHD  
TC: 250–1,500 mg/dL  
TG: 395–8,200 mg/dL

 Cerebrotendinous xanthomatosis Hepatic mitochondrial 27-hydroxylase defect Cataracts, premature CHD, neuropathy, ataxia
 Sitosterolemia ABCG5/G8 Tendon xanthomas, premature CHD
variable inheritance
 Familial dysbetalipoproteinemia APOE (usually e2/e2 homozygotes) Palmar xanthomas, yellow palmar creases,  

premature CHD.  
TC: 250–500 mg/dL (6.5–13 mmol/L)  
TG: 250–500 mg/dL (2.8–5.6 mmol/L)

 Polygenic hypercholesterolemia Possibly multiple unknown defects Premature CHD  
TC: 250–350 mg/dL (6.5–9 mmol/L)

Abbreviations: CHD, coronary heart disease; LDLr, low-density lipoprotein receptor protein; LPL, lipoprotein lipase; TC, total cholesterol; TG, triglycerides; TX, tendon 
xanthomas.
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diagnostic guidelines published by our group, we recommend 

genetic analysis because these populations use to present a few 

LDLR mutations that are responsible for most FH cases; the 

most frequent causative mutations are known; or in subjects 

from families with known mutations with an uncertain clinical 

diagnosis (Table 4).19 We have recently published a study 

that proves the molecular diagnosis usefulness to distinguish 

familial combined hyperlipidemia (FCH) of FH patients, when 

clinical presentation can produce a misclassification, which can 

be solved by finding LDLR mutations that cause the disease.104 

At this work, 28 carriers of LDLR mutations were found in 

143 unrelated FCH subjects. Our group has recently shown 

that presence of TX is highly specific of FH when primary 

hypercholesterolemia, family history of hypercholesterolemia, 

and premature coronary disease are presented. Moreover, a 

sonographic evaluation of Achilles tendons for the diagnosis 

of FH has been performed.105 Thus, taking all these findings 

together, a new set criteria to maximize the likelihood of 

genetic confirmation in subjects with clinical suspicions of 

FH based on age, TX presence, and LDLc levels have been 

proposed (Table 4).100

Treatment
The standard of care for patients with homozygous FH has 

been LDL apheresis.106,107 The LDLc reduction observed with 

LDL apheresis is over 60%, and similar values were observed 

in Lp(a). LDL apheresis is an invasive and expensive but safe 

procedure. The inconvenience of this method is that it has to 

be performed at 1-weekly or 2-weekly intervals.108

A statin is the drug of first choice in the majority of 

cases. The safety and efficacy of statins as LDLc lowering 

drugs and their demonstrated performance in preventing 

CVD  morbidity and mortality in primary and secondary 

prevention trials have been amply demonstrated. In addition, 

statins can be safely combined with either resins or ezetimibe. 

Furthermore, the LDLc-lowering effect of these drugs is not 

modified by the concomitant use of plant sterols/stanols that 

can be recommended also to these patients.109

Considering that ,100 mg/dL (2.6 mmol/L) is the optimal 

LDLc concentration defined by ATPIII guidelines,26 it would be 

necessary to achieve mean reductions between 50% and 75% 

to reach that goal. Based on published data from both heFH 

and other high risk populations, three different LDLc goals 

can be recommended for heFH (Table 5). An important aspect 

of FH treatment with many benefits beyond LDLc lowering is 

a healthy lifestyle, which includes a healthy diet, ideal body 

weight, no smoking, and moderate physical activity. Although 

LDLc is the main CVD risk factor in FH patients, other risk 

factors such as smoking habit or low HDLc  concentration are 

great modifiers of the CVD development.110

Table 4 Familial hypercholesterolemia diagnostic criteria

SBRG Definitive TC .290 mg/dL or LDLc .190 mg/dL + familial history of TX presence
Possible TC .290 mg/dL or LDLc .190 mg/dL + familial history of myocardial 

infarction or family history of hypercholesterolemia
USA MeDPeD Family with clinical  

suspicions of FH
Age ,20 yo, TC .270 mg/dL  
Age 20–29 yo, TC .290 mg/dL  
Age 30–39 yo, TC .340 mg/dL  
Age $40 yo, TC .360 mg/dL

DLCN MeDPeD Familial history Hypercholesterolemia  
Premature vascular disease  
TX and/or arcus cornealis  
Children ,18 yo with LDLc .95th percentile

1 (score)  
1  
2  
2

Personal history  
Physical exam

Premature vascular disease  
TX presence  
Arcus cornealis (,45 yo)

1–2  
6  
4

LDLc levels $330 mg/dL  
250–329 mg/dL  
190–249 mg/dL  
155–189 mg/dL

8  
5  
3  
1

Civeira et ala Familal history of TX + LDLc $190 mg/dL
Nonfamily history of TX Age ,30 yo with LDLc .220 mg/dL  

Age 30–39 yo with LDLc .225 mg/dL  
Age .40 yo with LDLc .235 mg/dL

Notes: aClinical criteria proposed for genetic testing.100

Abbreviations: SBRG, Simon Broom Register Group from United Kingdom;18 MeDPeD, Make early Diagnosis to Prevent early Death program in the United States;98 DLCN 
MEDPED: Dutch Lipid Clinic Network MEDPED group criteria scoring system for the diagnosis of heterozygous FH patients (“Definitive” diagnosis .7 points, “Probable” 
5–7 points).99
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Several intervention studies have clearly demonstrated 

that a healthy diet reduce cardiovascular risk factors indepen-

dently of classic risk factors (Table 2). Moreover, this kind 

of diet can increase the LDLc-lowering power of drugs.19 

The beneficial effect is probably mediated by a variety of 

mechanisms including improved carbohydrate metabolism, 

lower blood pressure, greater antioxidant protection, and 

regulating inflammatory and thrombogenic processes.

Summary
In this manuscript, we have reviewed the recently genetic and 

molecular mechanisms described as target for hypercholes-

terolemia and updated FH diagnosis and treatment.

FH has been studied widely since its first description in 

1938.2 Despite this knowledge, new mutations and genes 

implicated in cholesterol pathway, as PCSK9 or Idol,88,91 have 

been recently associated with hypercholesterolemia. In fact, 

over 17% of ADH is caused by unknown  mechanisms, because 

of that an exhaustive research in this way has to be done.9

Moreover, an accurate FH clinical diagnosis combined 

with genetic testing allows physicians to discriminate FH 

from other dyslipemias.104 The treatment goal in FH for 

decreasing CHD risk is LDLc levels but not denying the 

benefits obtained with lifestyle changes that reduce the 

environmental risk factors.
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