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Background: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, in late 2019 and created 
a global pandemic that overwhelmed healthcare systems. COVID-19, as of July 3, 2021, 
yielded 182 million confirmed cases and 3.9 million deaths globally according to the World 
Health Organization. Several patients who were initially diagnosed with mild or moderate 
COVID-19 later deteriorated and were reclassified to severe disease type.
Objective: The aim is to create a predictive model for COVID-19 ventilatory support and 
mortality early on from baseline (at the time of diagnosis) and routinely collected data of 
each patient (CXR, CBC, demographics, and patient history).
Methods: Four common machine learning algorithms, three data balancing techniques, 
and feature selection are used to build and validate predictive models for COVID-19 
mechanical requirement and mortality. Baseline CXR, CBC, demographic, and clinical 
data were retrospectively collected from April 2, 2020, till June 18, 2020, for 5739 
patients with confirmed PCR COVID-19 at King Abdulaziz Medical City in 
Riyadh. However, of those patients, only 1508 and 1513 have met the inclusion 
criteria for ventilatory support and mortalilty endpoints, respectively.
Results: In an independent test set, ventilation requirement predictive model with top 20 
features selected with reliefF algorithm from baseline radiological, laboratory, and clinical 
data using support vector machines and random undersampling technique attained an AUC 
of 0.87 and a balanced accuracy of 0.81. For mortality endpoint, the top model yielded an 
AUC of 0.83 and a balanced accuracy of 0.80 using all features with balanced random forest. 
This indicates that with only routinely collected data our models can predict the outcome 
with good performance. The predictive ability of combined data consistently outperformed 
each data set individually for intubation and mortality. For the ventilator support, chest X-ray 
severity annotations alone performed better than comorbidity, complete blood count, age, or 
gender with an AUC of 0.85 and balanced accuracy of 0.79. For mortality, comorbidity alone 
achieved an AUC of 0.80 and a balanced accuracy of 0.72, which is higher than models that 
use either chest radiograph, laboratory, or demographic features only.
Conclusion: The experimental results demonstrate the practicality of the proposed COVID- 
19 predictive tool for hospital resource planning and patients’ prioritization in the current 
COVID-19 pandemic crisis.
Keywords: COVID-19, mortality, NIV, X-rays, CBC, random forest, SMOTE; machine 
learning
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Introduction
Globally, the cumulative number of Coronavirus Disease 2019 
(COVID-19) cases is increasing daily. Consequently, it has 
caused a rapid surge of critically ill patients with ventilatory 
support and mortality rates.1 Although the respiratory system 
is the primary target for the Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2), other organ systems 
complications can also participate in the cause of death from 
COVID-19.2,3 Based on the clinical experience, SARS-CoV-2 
infection has shown substantial heterogeneity; it spans from 
asymptomatic patients to mild, moderate, and severe disease 
forms with low survival rates.4 Many studies5–7 have reported 
that some of the COVID-19 patients are assigned moderate 
disease grade at initial diagnosis and later, during the course of 
the disease, are reclassified into severe type due to new or 
worsening symptoms. Hence, early estimation of COVID-19ʹ 
severity helps clinicians prioritize patients and monitor cases 
that are more likely to deteriorate for timely intervention. It 
also helps them to plan hospital resources better. There are two 
main streams of studies to assess the severity of COVID-19: 1) 
studies to investigate biomarkers to test their association with 
severe cases, and 2) studies aiming to build severity predictive 
models from clinical symptoms, tests results, or chest radio-
graphic scans collected at the time of diagnosis, or at a pre-
defined fixed time before the occurrence of the outcome 
endpoint. Many studies5,8,9 have reported that in severe 
cases, the significant factors are age,8,9 comorbidity,8,9 and 
lymphopenia.5,8,9 Other studies have identified features in 
X-ray of COVID-19 patients that are associated with severe 
disease types, such as bilateral peripheral ground-glass opacity 
(GGO), consolidation, and other radiological manifestations.-
10,11 Toussie et al have investigated chest radiography as an 
independent prognostic factor of the disease outcome. The 
authors tested the association among hospital admissions, 
intubation, prolonged stay (>10 days), and the severity of 
baseline X-ray images in COVID-19 young patients, after 
adjusting for demographics and comorbidity.12 Each X-ray 
image was divided into six regions (three zones per lung), 
where each region was assigned a score. The overall score 
ranged between 0 and 6. Instead, here we investigated the use 
of chest radiographs in adults with laboratory findings, clin-
ical, and demographic data.

For the related work, Shi et al13 used five features: age, 
lactate dehydrogenase (LDH), C-reactive protein (CRP), 
CD4+ T cell counts, and mass of infection (MOI) in the 
whole lung. The MOI is a quantitative parameter, obtained 
from a computer tomography (CT) scan, to predict patient’s 

infection severity from baseline indicators. Furthermore, 
Gong et al14 utilized age and six serological variables (ie 
serum lactate dehydrogenase, C-reactive protein, red blood 
cell distribution width variation coefficient, blood urea nitro-
gen, albumin, and direct bilirubin) as an input to least abso-
lute shrinkage and selection operator (LASSO) algorithm 
and logistic regression to predict severe versus nonsevere 
cases. Various studies have attempted to utilize diagnostic 
tests and clinical data to predict COVID-19 outcome.15–18 

Cheng et al trained a random forest model with time-series 
data (vital signs, nursing assessment, laboratory data, and 
electrocardiograms) to predict within 24 hours ICU transfer. 
They achieved an accuracy of 76% on the test set (30% of the 
original data). Wu et al19 developed four logistic regression 
models to predict severe vs nonsevere COVID-19 types. For 
model 1, they used hospital employment and age, which 
achieved an AUC of 0.83 on the validation set. Model 2 
used hospital employment, age, body temperature, and time 
of onset and achieved 0.74 AUC on the validation set. Model 
3 was based on CT semantic features and age and achieved an 
AUC of 83 on the validation set. Model 4 used seven features 
(age, lymphocyte (proportion), CRP, LDH, creatine kinase, 
urea and calcium) and yielded an AUC of 0.90 on the 
validation set.19 Ryan et al16 compared machine learning to 
Sepsis Related Organ Failure Assessment (qSOFA), 
Modified Early Warning Score (MEWS), and CURB-65 
severity scores to predict patients outcome in Medical 
Information Mart for Intensive Care (MIMIC) and COVID- 
19 data from a community hospital. They have built an 
XGBoost model to predict in-hospital mortality of COVID- 
19 patients at 12-, 24-, 48-, and 72-hours. In the community 
hospital data, their model yielded an F1 score of 0.57 when 
predicting mortality before 72-hours using the last three 
collected observations of laboratory and clinical variables, 
and the model outperformed qSOFA, MEWS, and CURB-65 
risk scores. Note that the data is imbalanced. However, the 
trained XGBoost model does not account for the effect of 
skewed class distribution, which may explain its low F1 
score on the test set.

Organizations such as Fleischner Society have issued a 
consensus statement exploring the application of imaging in 
patient’s diagnosis and risk stratification.20 The American 
College of Radiology and the Society of Thoracic 
Radiology have also recommended against the use of CT 
scan and two-view chest radiography for large-scale screen-
ing and diagnosis.21 However, various investigations22–26 

have examined the utility of imaging for screening and 
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prognosis of COVID-19 and have demonstrated high classi-
fication accuracy rates.

The purpose of the study is to develop a holistic mor-
tality and ventilation requirement machine learning-based 
classification models using a heterogeneous combination 
of a patient’s chest X-ray (CXR), laboratory, underlying 
health condition, age, and gender data. This data was 
collected at the time of diagnosis of patients infected 
with COVID-19, at King Abdulaziz Medical City, 
Riyadh, Saudi Arabia, to support an early decision to 
predict the severity of COVID-19 disease.

Materials and Methods
Data Collection and Study Design
We retrospectively collected data of admitted confirmed 
COVID-19 patients (positive RT-PCR test) to King 
Abdulaziz Medical City in Riyadh. Starting from the first 
case, which was on April 2, 2020, till June 18, 2020; the 
total number of patients is 5739.

The aim of this study is to assess combining the base-
line (within 3 days of COVID-19 diagnosis) chest X-ray 
(CXR) image severity annotations, complete blood counts 
(CBC), age, gender, and comorbidity data of each patient 
to predict at the diagnosis two endpoints: ventilation 
requirement and mortality. We further investigate the abil-
ity to differentiate between mechanical ventilation (MV) 
and non-invasive ventilation (NIV).

For ventilation requirement, Figure 1 shows the inclu-
sion criteria flowchart, ie, a patient that lacks one of the 
following baseline features is excluded: 1) confirmed RT- 
PCR for COVID-19, 2) age >18, 3) CXR, 4) CBC test 
results, 5) availability of medical history, and 6) Full code 
status at the time of COVID-19 diagnosis. The total 
patients that met these criteria are 1508 with a mean age 
of 54.8 ±16.9 and 43% females and 57% males. The 
intubation or invasive ventilation status is assigned if the 
patient underwent NIV or MV within 30 days of the 
admission date.

For the mortality endpoint, the inclusion criteria are 
identical to ventilation requirements except that we 
included COVID-19 patients assigned no-code before the 
SARS-CoV-2 test as shown in Figure 2. The total patients 
that met the inclusion criteria for mortality endpoint are 
1513. A comparison between patients groups age, gender, 
CBC, and comorbidity for the mortality and ventilator 
support is described in Tables 1 and 2.

The local hospital ventilation criteria in COVID-19 
were obtained from the Saudi Ministry of Health 
Mechanical Ventilation Protocol for COVID-19 (May 
2020); this protocol is aligned with other international 
recommendations and previous guidelines to provide 
objective parameters for intubation and ventilation of 
COVID-19 patients.1,27,28 The indications for mechanical 
ventilation were: increase work of breathing and sign of 
organ failure (eg, altered mental status, low BP, increased 
lactate, signs of cardiac ischemia), acute hypoxic respira-
tory failure not responding to HFNC nor NIV for a max-
imum of 2 hours. Hypoxia with acute decreased level of 
consciousness and cannot protect his airway, hypoxia with 
large copious secretions, hypercapnic respiratory failure 
not responding to HFNC nor NIV, hemodynamically 
unstable, and to consider for a patient on HFNC or NIV 
therapy and transfer by ambulance.

The CBC data contain ten features: hematocrit, hemoglo-
bin, mean corpuscular hemoglobin concentration (MCHC), 
mean corpuscular hemoglobin (MCH), mean corpuscular 

Figure 1 Flowchart of selection criteria for ventilation requirement prediction 
endpoint. Patients that have any missing data are excluded from this study.
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volume (MCV), mean platelet volume (MPV), red blood cell 
count (RBC), platelet count, red cell distribution width 
(RDW), and white blood cells (WBC). The comorbidity 
data contain ten binary features: cancer, coronary artery dis-
ease, hypertension, asthma, chronic obstructive pulmonary 
disease (COPD), type 2 diabetes, liver cirrhosis, chronic 
hepatitis B, chronic hepatitis C, and chronic kidney disease 
(CKD) all stages. The CXR data contain 12 features anno-
tated by radiologists and is explained in detail in the subse-
quent section. The CBC, age, gender, and COVID-19 test 
results were automatically obtained from electronic health 
records, whereas the comorbidity, non-invasive and mechan-
ical ventilation, and mortality data were manually curated 
from admission and discharge charts.

Radiologists Scoring of Chest 
Radiographs
Baseline chest X-rays were divided into 12 regions, six 
regions per lung. Images were distributed randomly among 
four radiologists with experience of 3–15 years. Each radi-
ologist then scored each region according to the presentation 
of ground-glass opacity and consolidation severity. Zero is 
assigned if no manifestation is found, one for mild/moderate, 
and two for severely affected zones. Figure 3 demonstrates 
the segmentation of chest posteroanterior X-ray. The 

resulting matrix was then used alone to train a discriminative 
classifier to predict both endpoints. Additionally, it was com-
bined with other laboratory and clinical features.

Chest X-Rays Inter-Rater Variability 
Assessment
To gauge the inter-rater variability, we randomly selected 
7% (n=110) of patients’ images. All four radiologists 
scored each zone of these selected images. Accordingly, 
we had a total of 12 matrices corresponding to the number 
of lung zones annotations (see Figure 3). In each matrix, 
the rows are patients and the columns are radiologists’ 
ratings. We assessed the inter-rater agreement with 
Fleiss-kappa statistic, and we used kappam.fleiss from irr 
package in R software (version 3.5.1).

Data Preprocessing and Feature Selection
Here, we describe the method used for handling missing 
values, feature normalization, and feature selection to 
remove irrelevant ones. Patients with any missing data 
were excluded from the analysis to limit bias, and thus we 
eliminated the need for imputation. As a preprocessing step, 
we standardized the data using z-score before fitting a 
model with a support vector machine (SVM) since the 
features present in the data differ in magnitude. When 
using SVM, features with larger values will dominate. 
Besides, it is challenging to calculate kernel, therefore, 
standardization can speed up the training phase. In the 
training set, the z-score transforms separate distributions 
of features in the training set into a standardized distribu-
tion. Each feature vector has a value between [−1, +1], 
where each data point has a 0 mean and 1 standard deviation 
from the distribution mean. Data points that are above the 
mean get a positive score, and a negative score if the data 
points are below the mean. We apply the same transforma-
tion for the test set. We used scikit-learn29 StandardScaler 
and the implementation is described in equation 1.

X 0j ¼
Xj � uj

sj
(1) 

where Xj’ is the jth transformed feature. Xj is the original 
jth feature, uj and sj are the samples mean and standard 
deviation of the jth feature in the training set.

Feature selection technique is a common preprocessing 
step in machine learning to improve classifiers performance 
and reduce training and inference time. In our analysis, we 
used ReliefF.30 Most heuristic filter approaches assume no 
interactions between features; however, relief-based 

Figure 2 Patients selection criteria flowchart for mortality prediction.
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algorithms do not make this assumption and thus are able to 
detect feature dependencies.31 ReliefF first sets a 0 value to 
all features in the quality weight W[F]. Then, the algorithm 
loops through m random (without replacement) observations 
R. For a given sample Ri, RelifF finds its k nearest neighbors 
from the same class Hj and k nearest neighbor from each of 
the other classes Mj (C), where C is the other classes in a 
multiclass dataset. The W[F] vector is then updated for all the 
features based on how these features separate the observation 
Ri from Hj and Mj. The weight vector is normalized to a value 
between [−1, 1], where a higher positive weight is assigned if 
the feature can differentiate Ri observation from Mj and a 
negative weight otherwise. We have set k=3, and m to the 
default value of RelifF Python package. The ReliefF features 
weights in the train set are shown in Table 3.

Class Balancing in Train Set
The patients cohort’s distribution of outcome classes is 
extremely skewed. Mechanical ventilation and mortality 
classes represent 7% and 9% of the data, respectively. 
When the training data are severely imbalanced, the 

classifier tends to focus more on learning the majority 
class and generally yields a lower predictive ability.32 

Hence, several resampling and cost-sensitive learning 
techniques have been proposed to tackle the class imbal-
ance problem.33 Here, we have used the Synthetic 
Minority Over-sampling TEchnique (SMOTE).34 This 
increases the number of samples in the minority class by 
creating a random synthetic data point along the line of the 
feature space of the k nearest neighbors to each minority 
class record. For k, we used the default value of 5 in 
imbalanced-learn implementation.35 Thus, we increased 
the number of instances of the minority class to match 
the number of majority class instances. Another technique 
that we used to balance the training set is Adaptive 
Synthetic (ADASYN) sampling approach.36 Unlike 
SMOTE algorithm, ADASYN upsamples the minority 
class by creating more instances from the harder to learn 
minority class examples. We also experimented with ran-
dom undersampling (RUS), which randomly downsamples 
the majority class such that the training set becomes 
balanced.

Table 1 COVID-19 Cohort Ventilation Requirement and Clinical Features Descriptive Statistics

Feature No Ventilation  
(n= 1213)  

(Mean ±SD, IQR)

Non-Invasive 
Ventilation (n=111) 
(Mean ±SD, IQR)

Mechanical 
Ventilation (n=184) 
(Mean ±SD, IQR)

P-value

Age (52.52 ± 16.94, 25) (60.23 ± 15.76, 9.5) (61.69 ± 14, 20.25) 1.5e–15*

Male/female 635/578 82/29 140/44 8.9e–12*
Haematocrit (0.42 ± 0.06, 0.075) (0.43 ± 0.05, 0.026) (0.42 ± 0.07, 0.074) 0.19

Hgb, g/L (134.12 ± 19.7, 25) (137.5 ± 17.4, 9) (135.37 ± 23.26, 25) 0.14

MCHC, g/L (319.75 ± 10.5, 13) (320.71 ± 10.1, 6) (319.72 ± 10.78, 13) 0.62
MCH, pg, (27.79 ± 2.66, 2.7) (28.32 ± 1.87, 1) (28.11 ± 2.23, 2.32) 0.011

MCV, fL (86.92 ± 7.86, 8.3) (88.3 ± 5.43, 2.59) (87.96 ± 6.87, 7.57) 0.017
MPV, fL (8.21± 1.04, 1.3) (8.08 ± 1.17, 0.60) (7.95 ± 1, 1.32) 0.004*

RBC, 1012/L (4.84 ± 0.67, 0.77) (4.87 ± 0.64, 0.35) (4.82 ± 0.78, 0.89) 0.85

Platelet count (250.1 ± 90.4, 106) (250.4 ± 115.3, 54) (255.22 ± 101.6, 132.7) 0.81
RDW, % (13.55 ± 1.81, 1.7) (13.5 ± 1.78, 0.6) (13.77 ± 1.44, 1.62) 0.17

WBC, 109/L (6.89 ± 4.26, 3.4) (9.01 ± 3.85, 2.27) (9.47 ± 5.24, 6.19) 4.8e-13*

Cancer, count 47 (3.87%) 3 (2.70%) 6 (3.26%) 0.90
CADa, count 107 (8.82%) 10 (9.01%) 24 (13.04%) 0.18

Hypertension, count 511 (42.13%) 59 (53.15%) 108 (58.70%) 2.7e-05*

Asthma, count 135 (11.13%) 10 (9.01%) 15 (8.15%) 0.40
COPDb, count 11 (0.91%) 3 (2.70%) 2 (1.09%) 0.13

T2Dc, count 511 (42.13%) 57 (51.35%) 109 (59.24%) 2.8e-05*

Liver cirrhosis, count 10 (0.82%) 1 (0.90%) 3 (1.63%) 0.50
CHBd, count 8 (0.66%) 0 (0.00%) 1 (0.54%) 1

Chronic HCVe, count 3 (0.25%) 0 (0.00%) 1 (0.54%) 0.58

CKDf, count 97 (8.00%) 11 (9.91%) 27 (14.67%) 0.01

Notes: aCoronary artery disease, bChronic obstructive pulmonary disease, cChronic hepatitis B, dType 2 diabetes, eChronic hepatitis C virus, fChronic kidney disease (all 
stages), *p<0.01.
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Classifiers
Here, we briefly describe the four classifiers used in this study: 
linear Support Vector Machine (SVM), Random Forest (RF), 

Linear Regression (LR), and eXtreme Gradient Boosting 
(XGB) to model COVID-19 disease outcome.

In a linearly separable two-class classification problem, 
SVM37 finds the optimal hyperplane that maximizes the 
distance between the two classes’ closest points, also called 
support vectors. In this study, SVM with a linear kernel is 
used. For non-linearly separable data, the cost term C is 
introduced to balance misclassification and maximum mar-
gin.The optimal C hyperparameter was selected using grid 
search in the validation set.

RF38 is a type of ensemble method that constructs a 
strong classifier from many weak classifiers. For a classi-
fication problem, RF builds a user predefined number of 
decision trees to form a forest, and then it takes the 
majority vote of these trees to output a single class pre-
diction. For each tree, RF selects random samples with 
replacement and randomly generates subset of features to 
decide each candidate node split; typically, the one with 
the highest Gini impurity or entropy. To measure the split 
quality, we have used Gini impurity, which is the default 
measure in Scikit-learn.29

BRF is a random forest classifier that takes into 
account the class distribution. BRF creates a balanced 

Table 2 COVID-19 Cohort Vital Status at Discharge and Clinical Features Descriptive Statistics

Feature Alive (n=1377)  
(Mean ±SD, IQR)

Deceased (n=136)  
(Mean ±SD, IQR)

P-value

Age (53.42 ± 16.63, 24.29) (69.17 ± 13.74, 19.02) < 2.2e-16*

Male/female 760/617 100/36 5.62e-05*

Haematocrit (0.42 ± 0.06, 0.07) (0.41 ± 0.07, 0.1) 0.0344
Hemoglobin (g/L) (134.9 ± 19.8, 24) (129.83 ± 22.97, 31) 0.0139

MCHC (g/L) (319.92 ± 10.54, 14) (318.56 ± 10.35, 13) 0.1474

MCH (pg) (27.86 ± 2.59, 2.6) (28.08 ± 2.26, 2.53) 0.2804
MCV (fL) (87.07 ± 7.66, 7.9) (88.18 ± 7.07, 8.55) 0.0864

MPV, fL (8.18 ± 1.05, 1.3) (8.08 ± 0.99, 1.2) 0.2598
RBC, 1012/L (4.86 ± 0.67, 0.77) (4.63 ± 0.79, 1.13) 0.0013*

Platelet count (250.34 ± 91.98, 110) (252.24 ± 111.85, 109.25) 0.8483

RDW (%) (13.52 ± 1.73, 1.7) (14.21 ± 2.04, 2) 0.0001*
WBC, 109/L (7.24 ± 4.48, 3.68) (8.56 ± 4.08, 4) 0.0004*

Cancer, count 47 (3.41%) 14 (10.29%) 7.67e-05*

CADa, count 107 (7.77%) 28 (20.59%) 5.57e-06*
Hypertension, count 511 (37.11%) 94 (69.12%) 6.02e-09*

Asthma, count 135 (9.80%) 8 (5.88%) 0.0817

COPDb, count 11 (0.80%) 3 (2.21%) 0.168
Type 2 diabetes, count 511 (37.11%) 97 (71.32%) 1.82e-10*

Liver cirrhosis 10 (0.73%) 4 (2.94%) 0.0306

CHBc, count 8 (0.58%) 1 (0.74%) 0.5726
Chronic HCVd, count 3 (0.22%) 2 (1.47%) 0.0426

CKDe (all stages), count 97 (7.04%) 29 (21.32%) 5.03e-07*

Notes: aCoronary artery disease, bChronic obstructive pulmonary disease, cChronic hepatitis B, dChronic hepatitis C virus, eChronic kidney disease, *p<0.01.

Figure 3 Frontal chest X-ray lung zone segmentation. The horizontal lines A and B 
represent the upper and lower poles of the hilum. The vertical line C is from the 
junction of the middle/inner third of the clavicle to the diaphragm. The light green 
squares are the regions in which radiologists assign a severity score.
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train set via randomly selecting records at every iteration 
to build each tree by under-sampling the majority class.

Gradient boosting is an ensemble method that itera-
tively combines weak learners to build strong learner. It 
uses decision tree as base learner and adaptively adds 
trees that minimizes a differentiable loss function. We 
used XGBoost implementation of Gradient boosting in 
python.

Model Selection and Performance 
Estimation
To assess the predictive ability and generalizability of the 
constructed models, we split the data into train set and 
independent test set with 80:20 ratio by conducting a 
stratified random sampling to make the class distribution 
equal in both the train and test sets. We further split the 
train set, using stratified sampling, to create a validation 
set (20% of the train set). Grid search was performed on 
the validation set to tune the four classifiers hyperpara-
meters and to choose the best operating point (classifica-
tion threshold) that maximizes Youden J index (see 
equation 5). We then refit a model on the entire train set 
with the selected optimal hyperparameters and operating 
point and predicted the test set.

For SVM with a linear kernel and logistic regression, 
using the train and validation sets, we searched for the best 
C value from the set: [0.1, 1, 10]. For random forest and 
XGBoost, we selected the best number of trees to grow 
from the set: [10, 100, 1000]. We used the same technique 
for the four prediction tasks performed in this study: MV, 
NIV and MV vs no ventilation, MV vs NIV vs no ventila-
tion, and mortality.

Performance Metrics
For imbalanced data, the overall accuracy is not an appro-
priate classifier performance measure. To assess the mod-
els’ predictive ability in the test set, the balanced accuracy, 
and area under the ROC Curve (AUC) were used. 
Balanced accuracy takes class distribution into account 
by averaging the recall from each class; thus, it is a better 
measure of performance than accuracy for imbalanced 
data sets. For the best performing models, the confusion 
matrix is reported, which shows the number of true posi-
tive (TP), false positive (FP), true negative (TN) and false 
negative (FN) counts. Equations 2–4 show the metrics 
used in this study.

Sensitivity ¼
TP

TPþ FN
(2) 

Specificity ¼
TN

TN þ FP
(3) 

Balanced accuracy ¼
Sensitivity þ Specificity

2
(4) 

Youden index ¼ Sensitivity þ Specificity � 1 (5) 

AUC was used to select the best model with grid search of 
hyperparameters in the validation set and to select the 
optimal classification decision threshold (operating point) 
that maximizes the Youden index. Since the data is imbal-
anced, this performance metric takes class distribution into 
account by averaging the recall from each class; thus, it is 
a better measure of performance than accuracy for imbal-
anced data sets.

Results
Among the patients included in our study, 7% underwent 
non-invasive ventilation (either high-flow nasal cannula 
(HFNC) or bi-level/continuous positive airway pressure 
(BIPAP/CPAP)) and 12% received mechanical ventilation. 
Table 1 shows the clinical characteristics and descriptive 
statistics for each ventilation requirement cohort subgroup 
separately, ie, patients who were not ventilated, patients 
who received only non-invasive ventilation, and patients 
who required mechanical ventilation. Data were analyzed 
using R software to compare groups using one-way 
ANOVA for continuous variables and Chi-square or two- 
tailed Fisher’s exact test for categorical variables as 
appropriate.

Table 2 shows the clinical characteristics and descrip-
tive statistics for patients discharge status, 9% of COVID- 
19 patients in this study died during hospitalization. The 
analysis revealed that younger patients and female gender 
are more likely to survive the disease.

To choose the best hyperparameter for classifiers, we 
performed grid search on 80% of the train set and vali-
dated on the validation set (20% of train set). Figure 4 
shows the receiver operating characteristic curves (ROC 
curve) of the top constructed models and the point that 
maximizes the Youden index. In the validation set, the top 
MV model was built with logistic regression, random 
undersampling, regularization parameter C set to 10, and 
top 20 features selected using ReliefF. The model achieved 
an AUC of 0.80. For ventilation requirement (MV+NIV), 
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constructing a model with linear SVM and top 20 features 
with the misclassification penalty set to 1 yielded an AUC 
of 0.83. Also, we found that the best performing model for 
three classes classification (MV, NIV, and no ventilation) 
was built using SVM with linear kernel, SMOTE, top 20 
features, and a C set to 0.1 with an AUC of 0.78. For 
mortality, the best performing model was created with 
balanced random forest and using all the combined fea-
tures, with the number of estimators set to 1000. This 
model scored an AUC of 0.82 in the validation set.

The top-performing models in the test set for classify-
ing 1) mechanical ventilation (MV) and non-invasive ven-
tilation (NIV) + no ventilaton, 2) MV+NIV and no 
ventilation, and 3) three classes (MV, NIV, and no 

ventilation), and 4) alive, dead patients within 30 days 
follow-up are reported in Figure 5. The results show that, 
in the test set, the best model for MV prediction was 
obtained with logistic regression and random undersam-
pling with an AUC of 82 and a balanced accuracy of 0.79. 
For MV+NIV prediction, the best model achieved an AUC 
of 0.86 and a balanced accuracy of 0.81. For the 3 class 
classification task (MV, NIV, and no ventilation), the best 
model yielded an AUC 0.78 of and a balanced accuracy of 
0.56 with SVM and top 20 features selected with ReliefF. 
For mortality prediction, the top model attained 0.83 AUC 
and 0.80 balanced accuracy with BRF using the combined 
data. Table 4 shows the performance of the four classifiers 
SVM, LR, RF, and XGBoost on the test set.

Figure 4 Receiver operator characteristic curves for ventilation support and mortality end points prediction on the validation sets. The optimum cutoff point that 
maximizes Youden index, identified with a red X mark. (A) MV with LR and top 20 selected features, and random undersampling. (B) Ventilation requirement (MV+NIV) 
prediction with the best performing model, linear SVM with 20 top ranked features and random downsampling. (C) three-class classification (MV, NIV, no ventilation) with 
linear SVM and SMOTE on top ranked 20 features. (D) Mortality prediction with BRF and all features. The C hyperparameter for SVM represents the tradeoff between 
maximizing the margin minimizing the error, and the C for logistic regression represents the value assigned to control the regularization strength.
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Figure 6 shows the confusion matrix for the best per-
forming models in the test set for the four prediction tasks 
tackled in this study. The top-performing model for MV 
yielded a specificity of 0.80 and a sensitivity of 0.78 with 
logistic regression after applying random undersampling to 
the majority in the train dataset. The best model for venti-
lation requirement achieved a specificity of 0.71 and a 
sensitivity of 0.91 using a linear SVM classifier and ran-
dom undersampling. The balanced random forest model 
for mortality prediction has a specificity of 0.61 and a 
sensitivity of 1.

Table 3 shows the top features ReliefF weights in the 
train set, where CXR zone 11 and 12 radiological semantic 
features are ranked top-1 and top-2 in with the weight of 
0.23 and 0.19 for MV, 0.21, and 0.14 for MV+NIV, 0.20 
and 0.17 for MV, NIV, and no ventilation, and a weight of 
0.24 and 0.24 in the mortality train data set.

Interobserver variability of severity scores among radi-
ologists for the randomly selected CXR image annotations as 
Kappa values using Fleiss Kappa test is reported in Table 5. 
Landis and Koch have suggested the interpretations of the 
strength of rater agreement for Kappa statistic to be divided 
into six categories (poor: <0.00, slight: 0.00–0.20, fair: 0.21– 

0.40, moderate: 0.41–0.60, substantial: 0.61–0.80, and 
almost perfect: 0.81–1.00).39 Lung zone 3 (see Figure 3 for 
lung segmentation) has the best inter-rater agreement (kappa 
= 0.71), which is equivalent to substantial agreement. The 
lowest inter-rater agreement attained was in region 7 (kappa 
= 0.21), which corresponds to a fair agreement.

Figure 7 shows the severity scores distribution for the 
12 lung zones from baseline CXR as a heatmap of patients 
that underwent MV or those who did not need any ventila-
tion, as well as patients who were discharged alive or died 
during hospitalization.

Discussions
In this work, we assessed the predictive ability of com-
bined CBC, age, gender, comorbidity, and CXRs severity 
annotated data. This data was collected at the time of 
COVID-19 diagnosis in our hospital. The proposed models 
can be used to predict mechanical ventilation (MV), 
mechanical and non-invasive ventilation, and mortality 
early on to prioritize patients and manage the allocation 
of hospital resources. We have found that balancing the 
train set, classifiers consistently yielded better perfor-
mance than using the original skewed data (results not 

Figure 5 Best performing models on test and validation sets for mortality and ventilation support need. MV represents mechanical ventilation prediction. MV+NIV 
represents a model that predicts the need for either mechanical ventilation or non-invasive ventilation versus no ventilation. The C hyperparameter for SVM represents the 
tradeoff between maximizing the margin minimizing the error, and the C for logistic regression represents the value assigned to control the regularization strength.
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Table 4 Performance at Optimal Operating Point of Four ML Algorithms and Different Balancing Techniques for Prediction of 
Ventilation Requirement and Mortality

Features Set Model MVa MV+NIVb MV, NIV, Nonec Mortality

(Balanced Accuracy, AUC)

SVM+ADASYN (0.70, 0.71) (0.63, 0.71) (0.42, 0.65) (0.67, 0.78)
SVM+SMOTE (0.64, 0.72) (0.62, 0.71) (0.44, 0.65) (0.69, 0.78)

SVM+RUS (0.66, 0.71) (0.62, 0.69) (0.41, 0.66) (0.66, 0.78)

LR+ADASYN (0.66, 0.72) (0.66, 0.71) (0.40, 0.66) (0.69, 0.78)
LR+SMOTE (0.64, 0.72) (0.66, 0.71) (0.39, 0.66) (0.68, 0.78)

Age + gender LR+RUS (0.65, 0.71) (0.65, 0.69) (0.41, 0.67) (0.64, 0.78)
XGB+ADASYN (0.65, 0.70) (0.61, 0.67) (0.41, 0.63) (0.52, 0.64)

XGB+SMOTE (0.65, 0.69) (0.60, 0.68) (0.46, 0.67) (0.66, 0.70)

XGB+RUS (0.61, 0.68) (0.62, 0.68) (0.49, 0.67) (0.63, 0.66)
RF+ADASYN (0.61, 0.68) (0.57, 0.61) (0.42, 0.60) (0.58, 0.63)

RF+SMOTE (0.65, 0.68) (0.58, 0.62) (0.47, 0.64) (0.60, 0.65)

BRF (0.63, 0.70) (0.60, 0.65) (0.47, 0.65) (0.69, 0.73)
SVM+ADASYN (0.67, 0.71) (0.75, 0.82) (0.50, 0.74) (0.49, 0.72)

SVM+SMOTE (0.70, 0.74) (0.75, 0.81) (0.56, 0.75) (0.51, 0.75)

SVM+RUS (0.64, 0.70) (0.76, 0.82) (0.47, 0.74) (0.70, 0.73)
LR+ADASYN (0.70, 0.74) (0.79, 0.85) (0.48, 0.76) (0.53, 0.73)

LR+SMOTE (0.71, 0.74) (0.79, 0.85) (0.56, 0.77) (0.52, 0.73)

LR+RUS (0.70, 0.72) (0.79, 0.84) (0.53, 0.76) (0.67, 0.74)

X-ray XGB+ADASYN (0.57, 0.69) (0.77, 0.82) (0.52, 0.76) (0.58, 0.63)
XGB+SMOTE (0.68, 0.73) (0.77, 0.82) (0.51, 0.76) (0.58, 0.65)

XGB+RUS (0.71, 0.72) (0.79, 0.82) (0.50, 0.73) (0.54, 0.75)

RF+ADASYN (0.63, 0.56) (0.74, 0.70) (0.47, 0.62) (0.53, 0.51)
RF+SMOTE (0.52, 0.63) (0.71, 0.75) (0.47, 0.62) (0.43, 0.49)

BRF (0.70, 0.74) (0.79, 0.82) (0.51, 0.75) (0.71, 0.72)

SVM+ADASYN (0.64, 0.72) (0.61, 0.68) (0.43, 0.62) (0.62, 0.66)
SVM+SMOTE (0.66, 0.72) (0.62, 0.69) (0.42, 0.62) (0.61, 0.65)

SVM+RUS (0.64, 0.73) (0.64, 0.68) (0.40, 0.64) (0.60, 0.61)

LR+ADASYN (0.65, 0.71) (0.61, 0.68) (0.42, 0.62) (0.59, 0.66)
LR+SMOTE (0.63, 0.71) (0.62, 0.68) (0.42, 0.61) (0.53, 0.66)

LR+RUS (0.66, 0.72) (0.66, 0.68) (0.43, 0.61) (0.59, 0.62)

CBC XGB+ADASYN (0.61, 0.67) (0.57, 0.65) (0.42, 0.56) (0.54, 0.60)

XGB+SMOTE (0.64, 0.70) (0.61, 0.65) (0.36, 0.58) (0.62, 0.62)

XGB+RUS (0.65, 0.73) (0.63, 0.69) (0.46, 0.59) (0.62, 0.63)
RF+ADASYN (0.59, 0.63) (0.59, 0.65) (0.37, 0.57) (0.58, 0.62)

RF+SMOTE (0.60, 0.66) (0.60, 0.64) (0.37, 0.57) (0.57, 0.63)

BRF (0.64, 0.71) (0.59, 0.67) (0.42, 0.61) (0.60, 0.66)
SVM+ADASYN (0.50, 0.59) (0.49, 0.64) (0.40, 0.51) (0.70, 0.77)

SVM+SMOTE (0.50, 0.59) (0.56, 0.60) (0.37, 0.57) (0.70, 0.66)

SVM+RUS (0.50, 0.56) (0.56, 0.49) (0.37, 0.52) (0.68, 0.77)
LR+ADASYN (0.53, 0.57) (0.52, 0.63) (0.39, 0.55) (0.72, 0.80)

LR+SMOTE (0.52, 0.59) (0.55, 0.61) (0.42, 0.58) (0.70, 0.78)

(Continued)
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shown). Random downsampling for creating a balanced 
train set with logistic regression and random forest pro-
duced a better model compared to SMOTE or ADASYN 
for mechanical ventilation and MV+NIV and mortality 
prediction. However, SMOTE with linear SVM yielded 
the better model for the three-class classification problem 
(MV, NIV, no ventilation). We have compared the perfor-
mance of random forest and XGBoost, which are capable 
of capturing nonlinear relationships between features and 
the target, with logistic regression and linear SVM since 
these are widely used classifiers with good generalization. 
In all of the prediction tasks attempted in the current study, 
combined clinical, laboratory, and radiological data with 
ReliefF feature selection consistently performed better 
than each data set individually. The model LR with RUS 
and top 20 selected features for the combined data sources 
achieved 0.82 AUC in predicting mechanical ventilation 
requirement in the test set. When we merged both MV and 
NIV patients into a positive class and assigned the no 
ventilation to the negative class, we observed that linear 
SVM with RUS outperformed other models with an AUC 
of 0.86 in top 20 ranked features. The top achieving model 
in the test set for mortality prediction yielded an AUC 

score of 0.83 and a balanced accuracy of 0.80, using all 
features from combined data and balanced random forest. 
The dramatic difference in performance between fitting a 
model with and without data balancing is perhaps due to 
severe data skewness (see Tables 1 and 2). Comorbidity 
features alone, which are a binary feature for diseases 
listed in Table 1, yielded a predictive ability of 0.78 
AUC for mortality prediction. However, as shown in 
Table 4, building a model with CXRs severity scores to 
predict intubation and invasive ventilation outperforms 
models that use age, gender, medical history, or laboratory 
data alone, which is consistent with what other studies 
have reported.40 In accordance with earlier reports, males 
(57% in our cohort) were infected more than females,7,41 

and the number of males is higher in both mortality and 
severe disease type (MV: 76%, and mortality: 73% in our 
cohort) than females.42 Other studies investigate the use of 
complete blood count parameters to stratify patients based 
on disease severity.43,44 ACE2 protein, which is a receptor 
of COVID-19, is expressed in lymphocytes. It is worth 
mentioning that numerous studies have concluded that 
lymphopenia is associated with the severity of COVID- 
19.5,45 Similarly, we have observed that WBC is 

Table 4 (Continued). 

Features Set Model MVa MV+NIVb MV, NIV, Nonec Mortality

(Balanced Accuracy, AUC)

Comorbidity LR+RUS (0.51, 0.57) (0.55, 0.58) (0.37, 0.59) (0.70, 0.77)
XGB+ADASYN (0.54, 0.61) (0.61, 0.60) (0.41, 0.55) (0.71, 0.76)

XGB+SMOTE (0.53, 0.60) (0.55, 0.58) (0.39, 0.58) (0.71, 0.75)

XGB+RUS (0.54, 0.63) (0.56, 0.57) (0.40, 0.58) (0.67, 0.75)
RF+ADASYN (0.54, 0.61) (0.56, 0.61) (0.41, 0.55) (0.68, 0.74)

RF+SMOTE (0.55, 0.60) (0.55, 0.57) (0.38, 0.56) (0.71, 0.74)

BRF (0.58, 0.63) (0.50, 0.57) (0.39, 0.56) (0.70, 0.79)
SVM+ADASYN (0.73, 0.81) (0.78, 0.86) (0.53, 0.79) (0.77, 0.83)

SVM+SMOTE (0.73, 0.81) (0.80, 0.86) (0.56, 0.78) (0.78, 0.83)

SVM+RUS (0.74, 0.81) (0.81, 0.87) (0.53, 0.77) (0.74, 0.82)
LR+ADASYN (0.73, 0.82) (0.80, 0.86) (0.53, 0.79) (0.78, 0.85)

LR+SMOTE (0.74, 0.81) (0.81, 0.87) (0.53, 0.79) (0.77, 0.84)

Combined LR+RUS (0.79, 0.82) (0.80, 0.86) (0.56, 0.76) (0.75, 0.82)

XGB+ADASYN (0.74, 0.82) (0.78, 0.84) (0.43, 0.78) (0.72, 0.81)
XGB+SMOTE (0.76, 0.83) (0.75, 0.82) (0.46, 0.67) (0.73, 0.82)

XGB+RUS (0.72, 0.72) (0.78, 0.83) (0.53, 0.74) (0.73, 0.78)

RF+ADASYN (0.76, 0.80) (0.76, 0.82) (0.45, 0.78) (0.68, 0.77)
RF+SMOTE (0.75, 0.80) (0.78, 0.84) (0.45, 0.78) (0.71, 0.80)

BRF (0.77, 0.80) (0.78, 0.86) (0.53, 0.78) (0.80, 0.83)

Notes: aMechanical ventilation versus non-invasive ventilation or no ventilation, bNon-invasive ventilation or mechanical ventilation versus no ventilation, cThree class 
classification: mechanical ventilation versus non-invasive ventilation versus no ventilation.
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significantly different (P = 4.8e-13) between patients who 
required ventilation and those who did not require ventila-
tion during hospitalization. There is growing evidence that 
older COVID-19 patients tend to be more critically ill than 
younger patients.46,47 This is also consistent with what we 
have found in this study, where increased age is signifi-
cantly associated with disease severity and mortality (see 
Tables 1 and 2). We have found that White Blood Cell 
(WBC) count was higher in patients with mechanical 
ventilation and non-invasive ventilation compared to 
patients that required no ventilation. For mortality, we 
have found that WBC count was significantly higher (p- 
value = 0.0004) in deceased patients compared to patients 
that were discharge alive (see Table 2). Studies have 

shown that patients who died from COVID-19 had signif-
icantly higher levels of neutrophils (%) compared to 
patients who survived, and the patients who died had 
significantly lower levels of lymphocyte (%) than those 
who survived.48–51

The most affected zones with GGO and consolida-
tion in mechanical ventilation and mortality groups are 
the lower lobes. In addition, semantic radiological fea-
tures obtained from zone 11, and 12 (see Figure 3) 
ranked top-1 and top-2 based on ReliefF weight as 
reported in Table 3 for MV and MV+NIV and mortality 
prediction task. This indicates that the radiological 
semantic features (GGO) of lower lobe is an important 
biomarker of severe COVID-19 disease type. Figure 7 

Figure 6 (A) mechanical ventilation prediction confusion matrix in the test set with linear SVM and SMOTE; (B) ventilation requirement (MV or NIV) prediction in the test 
set with BRF; (C) MV vs NIV vs no ventilation in the test set prediction with BRF; (D) mortality prediction in the test set with BRF.
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shows a clear difference of severity distributions 
between MV and no ventilation groups, where severe 
opacities are more pronounced in patients with poor 
outcome. Our finding confirms the conclusions of 
many studies that COVID-19 pneumonia in CXR 
images predominantly appears as airspace opacity and 
often in bilateral, peripheral, and lower zone.10,52,53

We focused on baseline variables that are readily avail-
able and routinely collected at the disease diagnosis time. For 
example, several studies have used CT scans to assess the 
severity of COVID-19 disease.54,55 Although CT scan shows 
the COVID-19 pneumonia presentations of ground-glass 
opacity and pulmonary consolidation and has a better sensi-
tivity than CXR;56,57 however, it is not the standard of care 
for COVID-19 diagnosis in many countries.57,58 Among 
other reasons, it is preferable to avoid CT scan as a first- 
line imaging method to limit unnecessary extra radiation 
exposure, prevent CT device shortages, and minimize 
cross-infection by using portable X-ray machines.58

The current study has some limitations. First of all, this is 
a single-center study; so, the predictive model generalizabil-
ity to other hospitals has not been tested. We plan to extend 
this work to include patients from other healthcare providers. 
Another limitation is that the class distribution is severely 
imbalanced, and therefore, having roughly balanced data 
could enhance our model’s predictive ability. In the future, 
we plan to use stratified random sampling with a larger 
sample size. Furthermore, we have not tested the predictive 
ability of features such as vitals such as temperature, respira-
tory rate and SPO2, which have been found to be effective in 

Table 5 Fleiss Kappa Scores of Four Raters’ Agreement on 110 
Randomly Selected Patients for the 12 CXR Lung Regions 
Semantic Features

CXR Lung Zone Kappa Z-Score P-value

1 0.552 14.6 0

2 0.451 11.9 0
3 0.713 20.3 0

4 0.698 20.2 0

5 0.526 16.3 0
6 0.54 16.6 0

7 0.216 6.16 7.06e–10
8 0.608 16.5 0

9 0.493 13.6 0

10 0.66 18.5 0
11 0.416 13.3 0

12 0.536 17 0

Figure 7 Heatmap of severity scores distribution from the baseline CXR images in the 12 lung region: (A) mechanical ventilation; (B) no ventilation; (C) dead; (D) 
discharged alive. White color represents severe GGO/consolidation, gray color represents mild/moderate manifestations, and black color represents no presentations of 
abnormality.
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predicting COVID-19 prognosis.59–63 Lastly, the CXR sever-
ity scores depend on radiologists’ observations, which are 
prone to interrater variability. Thus, extracting relevant fea-
tures directly from CXR images using deep learning techni-
ques may lead to a more robust model with an automated 
end-to-end prediction system.

Conclusions
In summary, we have developed models to predict COVID- 
19 patients’ invasive mechanical ventilation requirement and 
mortality. In conclusion, these models scored an AUC of 0.82 
and 0.83, respectively, in an independent test set from top 20 
selected features with ReliefF from combined baseline radi-
ological, laboratory, and clinical features. For this indepen-
dent test set, all the data was collected retrospectively at King 
Abdulaziz Medical City in Riyadh. We selected best models 
using grid search on the validation set for ventilation require-
ment and mortality prediction from a combination of four 
machine learning classifiers (linear support vector machines, 
logistic regression, random forest, and XGBoost) and three 
data balancing techniques (random undersampling, SMOTE, 
and ADASYN) and top ranked features based on ReliefF 
algorithm weights. The proposed tool provides insights into 
the efficient planning of hospital resources and patients’ 
prioritization in the current COVID-19 pandemic crisis.

Data Sharing Statement
We made the datasets generated during and/or analyzed in 
the current study publicly available in the Mendeley Data 
repository, “KAMC_COVID-19”, Mendeley Data, V2, 
doi: 10.17632/r6t9tmzzmz.2.

Ethical Consideration
This retrospective study was approved on July 6, 2020, 
by the ethical committee (IRB approval number: RC/ 
357/R) at King Abdulaziz Medical City in Riyadh, 
Saudi Ministry of National Guard Health Affairs. The 
data used was anonymized, and all the personal infor-
mation was de-identified to preserve the privacy of the 
human subjects. Additionally, due to the minimal risk to 
the patients, the written informed consent was waived. 
This study was conducted in accordance with the ethical 
principles outlined in the Declaration of Helsinki.

Acknowledgments
We thank the KAIMRC Research Data Management group 
for their technical help.

Author Contributions
All authors made substantial contributions to conception 
and design, acquisition of data, or analysis and interpreta-
tion of data; took part in drafting the article or revising it 
critically for important intellectual content; agreed to sub-
mit to the current journal; gave final approval of the 
version to be published; and agreed to be accountable for 
all aspects of the work.

Funding
This research received no external funding.

Disclosure
The authors declare no conflicts of interest for this work.

References
1. Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis cam-

paign: guidelines on the management of critically ill adults with 
Coronavirus disease 2019 (COVID-19). Intensive Care Med. 
2020;46(5):854–887.

2. Guan W-J, Ni Z-Y, Hu Y, et al. Clinical characteristics of Coronavirus 
disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. 
doi:10.1056/NEJMoa2002032

3. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting character-
istics, comorbidities, and outcomes among 5700 patients hospitalized 
with COVID-19 in the New York City area. JAMA. 2020;323 
(20):2052–2059. doi:10.1001/jama.2020.6775

4. Yadaw AS, Li Y-C, Bose S, Iyengar R, Bunyavanich S, Pandey G. 
Clinical features of COVID-19 mortality: development and validation 
of a clinical prediction model. Lancet Digit Health. 2020;2(10):e516– 
e525. doi:10.1016/S2589-7500(20)30217-X

5. Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity 
of COVID-19: a descriptive and predictive study. Signal Transduct 
Target Ther. 2020;5(1):33. doi:10.1038/s41392-020-0148-4

6. Cao W, Liu X, Bai T, et al. High-dose intravenous immunoglobulin 
as a therapeutic option for deteriorating patients with Coronavirus 
disease 2019. Open Forum Infect Dis. 2020;7(3):ofaa102. 
doi:10.1093/ofid/ofaa102

7. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for 
mortality of adult inpatients with COVID-19 in Wuhan, China: a 
retrospective cohort study. Lancet. 2020;395(10229):1054–1062. 
doi:10.1016/S0140-6736(20)30566-3

8. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in 
patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin 
Infect Dis. 2020;71(15):762–768. doi:10.1093/cid/ciaa248

9. Li K, Wu J, Wu F, et al. The clinical and chest CT features associated 
with severe and critical COVID-19 pneumonia. Invest Radiol. 
2020;55(6):327–331. doi:10.1097/RLI.0000000000000672

10. Wong HYF, Lam HYS, Fong AH, et al. Frequency and distribution of 
chest radiographic findings in patients positive for COVID-19. 
Radiology. 2020;296(2):E72–E78. doi:10.1148/radiol.2020201160

11. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 
associated with acute respiratory distress syndrome. Lancet Respir 
Med. 2020;8(4):420–422. doi:10.1016/S2213-2600(20)30076-X

12. Toussie D, Voutsinas N, Finkelstein M, et al. Clinical and chest 
radiography features determine patient outcomes in young and mid-
dle-aged adults with COVID-19. Radiology. 2020;297(1):E197– 
E206. doi:10.1148/radiol.2020201754

Journal of Multidisciplinary Healthcare 2021:14                                                                                 https://doi.org/10.2147/JMDH.S322431                                                                                                                                                                                                                       

DovePress                                                                                                                       
2031

Dovepress                                                                                                                                                          Aljouie et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1001/jama.2020.6775
https://doi.org/10.1016/S2589-7500(20)30217-X
https://doi.org/10.1038/s41392-020-0148-4
https://doi.org/10.1093/ofid/ofaa102
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1093/cid/ciaa248
https://doi.org/10.1097/RLI.0000000000000672
https://doi.org/10.1148/radiol.2020201160
https://doi.org/10.1016/S2213-2600(20)30076-X
https://doi.org/10.1148/radiol.2020201754
https://www.dovepress.com
https://www.dovepress.com


13. Shi W, Peng X, Liu T, et al. A deep learning-based quantitative 
computed tomography model for predicting the severity of COVID- 
19: a retrospective study of 196 patients. Ann Transl Med. 2021;9 
(3):216. doi:10.21037/atm-20-2464

14. Gong J, Ou J, Qiu X, et al. Multicenter Development and Validation 
of a Novel Risk Nomogram for Early Prediction of Severe 2019-Novel 
Coronavirus Pneumonia. Rochester, NY: Social Science Research 
Network; 2020.

15. Cheng FY, Joshi H, Tandon P, et al. Using machine learning to 
predict ICU transfer in hospitalized COVID-19 patients. J Clin 
Med. 2020;9(6):1668. doi:10.3390/jcm9061668

16. Ryan L, Lam C, Mataraso S, et al. Mortality prediction model for the 
triage of COVID-19, pneumonia, and mechanically ventilated ICU 
patients: a retrospective study. Ann Med Surg. 2020;59:207–216. 
doi:10.1016/j.amsu.2020.09.044

17. Parchure P, Joshi H, Dharmarajan K, et al. Development and valida-
tion of a machine learning-based prediction model for near-term in- 
hospital mortality among patients with COVID-19. BMJ Support 
Palliat Care. 2020: Epub. doi:10.1136/bmjspcare-2020-002602

18. Wynants L, Van Calster B, Collins GS, et al. Prediction models for 
diagnosis and prognosis of covid-19: systematic review and critical 
appraisal. BMJ. 2020;369:m1328. doi:10.1136/bmj.m1328

19. Wu G, Yang P, Xie Y, et al. Development of a clinical decision 
support system for severity risk prediction and triage of COVID-19 
patients at hospital admission: an international multicentre study. 
Eur Respir J. 2020;56(2):2001104. doi:10.1183/13993003.01104- 
2020

20. Rubin GD, Ryerson CJ, Haramati LB, et al. The role of chest imaging 
in patient management during the COVID-19 pandemic: a multina-
tional consensus statement from the Fleischner society. Chest. 
2020;158(1):106–116. doi:10.1016/j.chest.2020.04.003

21. ACR recommendations for the use of chest radiography and 
Computed Tomography (CT) for suspected COVID-19 infection; 
2020. Available from: https://www.acr.org/Advocacy-and- 
Economics/ACR-Position-Statements/Recommendations-for-Chest- 
Radiography-and-CT-for-Suspected-COVID19-Infection. Accessed 
July 19, 2021.

22. Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection 
from X-ray images utilizing transfer learning with convolutional 
neural networks. Phys Eng Sci Med. 2020;43(2):635–640. 
doi:10.1007/s13246-020-00865-4

23. Sethy PK, Behera SK, Ratha PK, Biswas P. Detection of coronavirus 
disease (COVID-19) based on deep features and support vector 
machine. Int J Math Eng Manag Sci. 2020;5(4):643–651.

24. Yoo SH, Geng H, Chiu TL, et al. Deep learning-based decision-tree 
classifier for COVID-19 diagnosis from chest X-ray imaging. Front 
Med (Lausanne). 2020;7:427. doi:10.3389/fmed.2020.00427

25. Singh D, Kumar V, Vaishali KM, Kaur M. Classification of 
COVID-19 patients from chest CT images using multi-objective 
differential evolution-based convolutional neural networks. Eur J 
Clin Microbiol Infect Dis. 2020;39(7):1379–1389. doi:10.1007/ 
s10096-020-03901-z

26. Ahuja S, Panigrahi BK, Dey N, Rajinikanth V, Gandhi TK. Deep 
transfer learning-based automated detection of COVID-19 from lung 
CT scan slices. Appl Intell. 2020;51:1–15.

27. Mechanical ventilation protocol for COVID-19; 2020. Available 
from: https://www.moh.gov.sa/Ministry/MediaCenter/Publications/ 
Documents/Mechanical-Ventilition.pdf. Accessed July 04, 2021.

28. COVID-19 Treatment Guidelines Panel. Coronavirus disease 2019 
(COVID-19) treatment guidelines; 2021. National Institutes of 
Health. Available from: https://www.covid19treatmentguidelines.nih. 
gov/management/critical-care/oxygenation-and-ventilation/. 
Accessed July 04, 2021.

29. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine 
learning in python. J Mach Learn Res. 2011;12:2825–2830.

30. Kononenko I. Estimating attributes: analysis and extensions of 
RELIEF. In: Bergadano F, De Raedt L, editors. Machine Learning: 
ECML-94. Berlin, Heidelberg: Springer Berlin Heidelberg; 
1994:171–182.

31. Robnik-šikonja M, Kononenko I. Theoretical and empirical analysis 
of ReliefF and RReliefF. Mach Learn. 2003;53(1):23–69. 
doi:10.1023/A:1025667309714

32. Liu N, Li X, Qi E, Xu M, Li L, Gao B. A novel ensemble learning 
paradigm for medical diagnosis with imbalanced data. IEEE 
Access. 2020;8:171263–171280. doi:10.1109/ 
ACCESS.2020.3014362

33. López V, Fernández A, García S, Palade V, Herrera F. An insight into 
classification with imbalanced data: empirical results and current 
trends on using data intrinsic characteristics. Inf Sci (NY). 
2013;250:113–141. doi:10.1016/j.ins.2013.07.007

34. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: syn-
thetic minority over-sampling technique. J Artif Int Res. 2002;16 
(1):321–357.

35. Lemaître G, Nogueira F, Aridas CK. Imbalanced-learn: a python 
toolbox to tackle the curse of imbalanced datasets in machine learn-
ing. J Mach Learn Res. 2017;18(1):559–563.

36. Haibo H, Yang B, Garcia EA, Shutao L. ADASYN: adaptive syn-
thetic sampling approach for imbalanced learning. 2008 IEEE 
International Joint Conference on Neural Networks (IEEE World 
Congress on Computational Intelligence); 2008; 1322–1328.

37. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20 
(3):273–297. doi:10.1007/BF00994018

38. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. 
doi:10.1023/A:1010933404324

39. Landis JR, Koch GG. The measurement of observer agreement for 
categorical data. Biometrics. 1977;33(1):159–174. doi:10.2307/ 
2529310

40. Hui TCH, Khoo HW, Young BE, et al. Clinical utility of chest 
radiography for severe COVID-19. Quant Imaging Med Surg. 
2020;10(7):1540–1550. doi:10.21037/qims-20-642

41. Alsofayan YM, Althunayyan SM, Khan AA, Hakawi AM, Assiri 
AM. Clinical characteristics of COVID-19 in Saudi Arabia: a 
national retrospective study. J Infect Public Health. 2020;13 
(7):920–925. doi:10.1016/j.jiph.2020.05.026

42. Pradhan A, Olsson P-E. Sex differences in severity and mortality 
from COVID-19: are males more vulnerable? Biol Sex Differ. 
2020;11(1):53. doi:10.1186/s13293-020-00330-7

43. Zeng F, Li L, Zeng J, et al. Can we predict the severity of coronavirus 
disease 2019 with a routine blood test? Pol Arch Intern Med. 
2020;130(5):400–406.

44. Foy BH, Carlson JCT, Reinertsen E, et al. Association of red blood 
cell distribution width with mortality risk in hospitalized adults with 
SARS-CoV-2 infection. JAMA Netw Open. 2020;3(9):e2022058. 
doi:10.1001/jamanetworkopen.2020.22058

45. Henry B, Cheruiyot I, Vikse J, et al. Lymphopenia and neutrophilia at 
admission predicts severity and mortality in patients with COVID-19: 
a meta-analysis. Acta Biomed. 2020;91:e2020008.

46. Liu Y, Mao B, Liang S, et al. Association between ages and clinical 
characteristics and outcomes of Coronavirus disease 2019. Eur 
Respir J. 2020;55:2001112. doi:10.1183/13993003.01112-2020

47. Romero Starke K, Petereit-Haack G, Schubert M, et al. The age- 
related risk of severe outcomes due to COVID-19 infection: a rapid 
review, meta-analysis, and meta-regression. Int J Environ Res Public 
Health. 2020;17(16):5974. doi:10.3390/ijerph17165974

48. Zuo Y, Zuo M, Yalavarthi S, et al. Neutrophil extracellular traps and 
thrombosis in COVID-19. J Thromb Thrombolysis. 2021;51(2):446– 
453. doi:10.1007/s11239-020-02324-z

49. Karthikeyan A, Garg A, Vinod PK, Priyakumar UD. Machine learn-
ing based clinical decision support system for early COVID-19 
mortality prediction. Front Public Health. 2021;9:475. doi:10.3389/ 
fpubh.2021.626697

https://doi.org/10.2147/JMDH.S322431                                                                                                                                                                                                                                

DovePress                                                                                                                                         

Journal of Multidisciplinary Healthcare 2021:14 2032

Aljouie et al                                                                                                                                                          Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.21037/atm-20-2464
https://doi.org/10.3390/jcm9061668
https://doi.org/10.1016/j.amsu.2020.09.044
https://doi.org/10.1136/bmjspcare-2020-002602
https://doi.org/10.1136/bmj.m1328
https://doi.org/10.1183/13993003.01104-2020
https://doi.org/10.1183/13993003.01104-2020
https://doi.org/10.1016/j.chest.2020.04.003
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
https://doi.org/10.1007/s13246-020-00865-4
https://doi.org/10.3389/fmed.2020.00427
https://doi.org/10.1007/s10096-020-03901-z
https://doi.org/10.1007/s10096-020-03901-z
https://www.moh.gov.sa/Ministry/MediaCenter/Publications/Documents/Mechanical-Ventilition.pdf
https://www.moh.gov.sa/Ministry/MediaCenter/Publications/Documents/Mechanical-Ventilition.pdf
https://www.covid19treatmentguidelines.nih.gov/management/critical-care/oxygenation-and-ventilation/
https://www.covid19treatmentguidelines.nih.gov/management/critical-care/oxygenation-and-ventilation/
https://doi.org/10.1023/A:1025667309714
https://doi.org/10.1109/ACCESS.2020.3014362
https://doi.org/10.1109/ACCESS.2020.3014362
https://doi.org/10.1016/j.ins.2013.07.007
https://doi.org/10.1007/BF00994018
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.21037/qims-20-642
https://doi.org/10.1016/j.jiph.2020.05.026
https://doi.org/10.1186/s13293-020-00330-7
https://doi.org/10.1001/jamanetworkopen.2020.22058
https://doi.org/10.1183/13993003.01112-2020
https://doi.org/10.3390/ijerph17165974
https://doi.org/10.1007/s11239-020-02324-z
https://doi.org/10.3389/fpubh.2021.626697
https://doi.org/10.3389/fpubh.2021.626697
https://www.dovepress.com
https://www.dovepress.com


50. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lympho-
cyte-to-C-reactive protein ratio in patients with severe coronavirus 
disease 2019 (COVID-19): a meta-analysis. J Med Virol. 2020;92 
(10):1733–1734. doi:10.1002/jmv.25819

51. Chowdhury MEH, Rahman T, Khandakar A, et al. An early warning 
tool for predicting mortality risk of COVID-19 patients using 
machine learning. Cognit Comput. 2021; Epub. doi:10.1007/s12559- 
020-09812-7

52. Rousan LA, Elobeid E, Karrar M, Khader Y. Chest x-ray findings and 
temporal lung changes in patients with COVID-19 pneumonia. BMC 
Pulm Med. 2020;20(1):245. doi:10.1186/s12890-020-01286-5

53. Yoon SH, Lee KH, Kim JY, et al. Chest radiographic and CT findings 
of the 2019 Novel Coronavirus disease (COVID-19): analysis of nine 
patients treated in Korea. Korean J Radiol. 2020;21(4):494–500. 
doi:10.3348/kjr.2020.0132

54. Yu Z, Li X, Sun H, et al. Rapid identification of COVID-19 severity 
in CT scans through classification of deep features. Biomed Eng 
Online. 2020;19(1):63. doi:10.1186/s12938-020-00807-x

55. Homayounieh F, Ebrahimian S, Babaei R, et al. CT radiomics, radi-
ologists and clinical information in predicting outcome of patients 
with COVID-19 pneumonia. Radiology. 2020;2(4):e200322.

56. Stephanie S, Shum T, Cleveland H, et al. Determinants of chest X-ray 
sensitivity for COVID- 19: a multi-institutional study in the United 
States. Radiology. 2020;2(5):e200337.

57. Jacobi A, Chung M, Bernheim A, Eber C. Portable chest X-ray in 
coronavirus disease-19 (COVID-19): a pictorial review. Clin 
Imaging. 2020;64:35–42. doi:10.1016/j.clinimag.2020.04.001

58. Cozzi D, Albanesi M, Cavigli E, et al. Chest X-ray in new 
Coronavirus disease 2019 (COVID-19) infection: findings and corre-
lation with clinical outcome. Radiol Med. 2020;125(8):730–737. 
doi:10.1007/s11547-020-01232-9

59. Xie J, Hungerford D, Chen H, et al. Development and external 
validation of a prognostic multivariable model on admission for 
hospitalized patients with COVID-19. medRxiv. 2020; preprint. 
doi:10.1101/2020.03.28.20045997

60. Lu X, Jiang L, Chen T, et al. Continuously available ratio of SpO2/ 
FiO2 serves as a noninvasive prognostic marker for intensive care 
patients with COVID-19. Respir Res. 2020;21(1):194. doi:10.1186/ 
s12931-020-01455-4

61. Wang K, Zuo P, Liu Y, et al. Clinical and laboratory predictors of in- 
hospital mortality in patients with Coronavirus disease-2019: a cohort 
study in Wuhan, China. Clin Infect Dis. 2020;71(16):2079–2088. 
doi:10.1093/cid/ciaa538

62. Marcos M, Belhassen-García M, Sánchez-Puente A, et al. 
Development of a severity of disease score and classification model 
by machine learning for hospitalized COVID-19 patients. PLoS One. 
2021;16(4):e0240200. doi:10.1371/journal.pone.0240200

63. Bolourani S, Brenner M, Wang P, et al. A machine learning predic-
tion model of respiratory failure within 48 hours of patient admission 
for COVID-19: model development and validation. J Med Internet 
Res. 2021;23(2):e24246.

Journal of Multidisciplinary Healthcare                                                                                             Dovepress 

Publish your work in this journal 
The Journal of Multidisciplinary Healthcare is an international, peer- 
reviewed open-access journal that aims to represent and publish 
research in healthcare areas delivered by practitioners of different 
disciplines. This includes studies and reviews conducted by multi-
disciplinary teams as well as research which evaluates the results or 
conduct of such teams or healthcare processes in general. The journal 

covers a very wide range of areas and welcomes submissions from 
practitioners at all levels, from all over the world. The manuscript 
management system is completely online and includes a very quick and 
fair peer-review system. Visit http://www.dovepress.com/testimonials. 
php to read real quotes from published authors.   

Submit your manuscript here: https://www.dovepress.com/journal-of-inflammation-research-journal

Journal of Multidisciplinary Healthcare 2021:14                                                                             DovePress                                                                                                                       2033

Dovepress                                                                                                                                                          Aljouie et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1002/jmv.25819
https://doi.org/10.1007/s12559-020-09812-7
https://doi.org/10.1007/s12559-020-09812-7
https://doi.org/10.1186/s12890-020-01286-5
https://doi.org/10.3348/kjr.2020.0132
https://doi.org/10.1186/s12938-020-00807-x
https://doi.org/10.1016/j.clinimag.2020.04.001
https://doi.org/10.1007/s11547-020-01232-9
https://doi.org/10.1101/2020.03.28.20045997
https://doi.org/10.1186/s12931-020-01455-4
https://doi.org/10.1186/s12931-020-01455-4
https://doi.org/10.1093/cid/ciaa538
https://doi.org/10.1371/journal.pone.0240200
https://www.dovepress.com
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
https://www.dovepress.com
https://www.dovepress.com

	Introduction
	Materials and Methods
	Data Collection and Study Design
	Radiologists Scoring of Chest Radiographs
	Chest X-Rays Inter-Rater Variability Assessment
	Data Preprocessing and Feature Selection
	Class Balancing in Train Set
	Classifiers
	Model Selection and Performance Estimation
	Performance Metrics

	Results
	Discussions
	Conclusions
	Data Sharing Statement
	Ethical Consideration
	Acknowledgments
	Author Contributions
	Funding
	Disclosure
	References

