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Purpose: To investigate the potential pathophysiological association between tuberculosis 
(TB) and diabetes mellitus (DM) using bioinformatic analyses.
Patients and Methods: Gene expression datasets for healthy controls (HCs), TB patients, 
DM patients, TB+DM patients (GSE114192), and metformin-treated cells (GSE102677) 
were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed 
genes (DEGs) were identified from pairwise dataset comparisons TB vs HCs and DM vs 
HCs. DEGs were verified by comparing them to DEGs for TB+DM vs HCs. Enrichment 
analysis of DEGs common to all three dataset comparisons was conducted using DAVID. 
The protein–protein interaction (PPI) network was established via STRING and visualised in 
Cytoscape. Hub genes were identified using the Cytoscape plug-in cytoHubba and then were 
verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) ana
lysis. Targeted miRNA prediction analysis identified metformin treatment-induced gene 
expression changes in peripheral blood mononuclear cells.
Results: A total of 422 DEGs were common to all three dataset comparisons. Functional 
enrichment analysis revealed these DEGs were enriched for functional terms of type 
I interferon signaling pathway, innate immune response, inflammatory response, and infec
tious diseases. Ten hub genes identified using PPI network analysis were screened for 
interactions with metformin target gene INS using cytoHubba based on maximal clique 
centrality (MCC) score. Subsequently, five hub genes were predicted to functionally interact 
with INS, including STAT1, IFIT3, RSAD2, IFI44L, and XAF1, as verified by RT-qPCR. 
Meanwhile, seven miRNAs (miR-3680-3p, miR-3059-5p, miR-629-3p, miR-29b-2-5p, miR- 
514b-5p, miR-4755-5p, miR-4691-3p) were associated with regulation of hub genes. 
Notably, six hub genes (STAT1, IFIT3, RSAD2, ISG15, IFI44, IFI6) were down-regulated 
in cells exposed to both metformin and Mycobacterium tuberculosis antigens.
Conclusion: Network hub genes hold promise as disease status biomarkers and as metfor
min treatment targets for alleviating TB and DM. This study describes a strategy for 
exploring pathogenic mechanisms of diseases such as TB and DM.
Keywords: diabetes mellitus, tuberculosis, differentially expressed gene, metformin, 
bioinformatics

Introduction
Tuberculosis (TB) is an epidemic multifactorial disease caused by Mycobacterium 
tuberculosis (MTB). According to the World Health Organization (WHO), in 2019 
there were an estimated 10.0 million new TB cases and 1.4 million TB deaths, 
including 208,000 deaths among HIV-positive people.1 TB persists as an important 
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infectious disease threat to human health due to ineffective 
TB prevention and control measures that support contin
ued spread of the disease. Therefore, there is an urgent 
need to better understand underlying molecular mechan
isms that support perpetuation of TB.

Several common metabolic and endocrine diseases, 
including diabetes mellitus (DM), are increasingly under
mining public health around the world.2 According to 
a survey from the International Diabetes Federation, dra
matically increasing trends in diabetes incidence, if left 
unchecked, will lead to a worldwide DM patient burden of 
629 million people in 2045.2 Chronic DM illness can 
cause a series of health issues, including vision, neurolo
gical, renal, and vascular complications.3 Due to the fact 
that TB and DM are comorbid diseases, the high preva
lence of both diseases imposes major barriers to TB 
elimination.4

Accumulating evidence has demonstrated that DM is 
an independent risk factor for TB occurrence and active 
disease.5 In fact, as compared with non-DM patients, DM 
patients have a 3.59–fold increased risk of active TB.5 

Increased DM patient susceptibility to TB has been attrib
uted to several factors, of which innate and adaptive 
immune disorders play significant roles.6 In addition, 
comorbid DM significantly and adversely impacts TB 
treatment outcomes by increasing TB patient risks of treat
ment failure, TB relapse, and death.7

Metformin (MET), a time-tested biguanide-based treat
ment used for the management of type 2 diabetes mellitus 
(T2DM), has recently been reported to improve TB patient 
outcomes as well.8,9 In several studies, MET benefits were 
linked to its effects on cellular metabolism, immune func
tion, and transcriptional-level expression of genes asso
ciated with host innate immune responses to MTB.10 

However, specific pathophysiological mechanisms under
lying MET beneficial effects are still unclear.

In this study, we explored specific potential mechan
isms underlying MET beneficial effects for TB and DM 
patients based on screening to detect differentially 
expressed genes (DEGs) in cells of patients with TB vs 
healthy controls (HCs) and patients with DM vs HCs. 

These DEG results were verified by comparing them to 
DEG obtained for TB+DM vs HCs. Next, DEGs common 
to TB and DM patient cells were identified and then 
subjected to functional enrichment analysis followed by 
protein–protein interaction (PPI) network analysis that 
generated a PPI network. The PPI network was then used 
to predict hub genes involved in the pathogenesis of TB 
complicated by DM that were validated using reverse 
transcription-quantitative polymerase chain reaction (RT- 
qPCR) analysis. Additionally, miRNAs targeting identified 
hub genes were predicted and then associations between 
hub genes and genes associated with beneficial MET 
effects on TB patient outcomes were revealed. The results 
obtained from this study provide clues revealing details of 
underlying pathophysiological mechanisms shared by DM 
and TB.

Patients and Methods
Data Collection
GSE11419210 and GSE10267711 datasets were down
loaded from the Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) database,12 a public 
database available to researchers. GSE114192, which con
tained gene expression profiles of 46 TB patients, 52 DM 
patients, 61 patients with both TB and DM, and 36 HCs, 
was generated using the GPL18573 platform (Illumina 
NextSeq 500). GSE102677, which included gene expres
sion profiles of 22 samples, was also generated using the 
GPL18573 platform (Illumina NextSeq 500). Specifically, 
in one group, peripheral blood mononuclear cells 
(PBMCs) collected from 11 healthy donors who were 
treated with MET (1000 mg twice per day) were cultured 
in medium in the presence of 5 g of MTB lysate for 4 
hours, while in the other group, PBMCs taken from 11 
untreated healthy donors were treated with MTB lysate as 
for the MET-treated group. Detailed information pertain
ing to these datasets is listed in Table 1. Probes detecting 
no genes or multiple genes were deleted, while for multi
ple probes that detect the same gene, the average expres
sion value for all probes was determined.

Table 1 Details of GEO Data

Accession Platform Experiment Type Group Tissue Type

GSE114192 GPL18573 High throughput sequencing 46 TB, 52DM, 61 TB with DM patients and 36 controls Whole blood
GSE102677 GPL18573 High throughput sequencing 11 MET+TB treated and 11 TB treated PBMCs

Abbreviations: DM, diabetes mellitus; GEO, Gene Expression Omnibus; TB, tuberculosis; MET, metformin; PBMCs, peripheral blood mononuclear cells.
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Identification of DEGs
NetworkAnalyst (http://www.networkanalyst.ca/),13 

a visual analytics platform for comprehensive gene expres
sion profiling and meta-analysis, was used to identify 
DEGs. After uploading the readcounts matrix from 
GSE114192 to NetworkAnalyst, we screened the dataset 
for DEGs based on comparisons of TB patients vs HCs 
and DM patients vs HCs, and then verified these results by 
comparing them to results for the comparison of TB+DM 
vs HCs. Common DEGs identified were used for further 
analysis. In this study, default filtering parameters were 
used and Log2-counts per million was applied for data 
normalization. DEGs were identified using the EdgeR 
method and cutoffs for evaluating statistical significance 
were P-value <0.05 and Ilog2 (fold change)I ≥1.

Functional Enrichment Analysis of DEGs
DAVID (https://david.ncifcrf.gov/, version 6.8)14 is 
a bioinformatics database that integrates biological data 
and analytical tools to provide systematic and comprehen
sive functional annotation information on biological sys
tems. Tools used here to perform functional enrichment 
analysis of DEGs included Gene Ontology (GO)15 to 
obtain function-related terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG)16 to obtain functional path
way-related information. GO terms identified here were 
used to annotate functions falling under categories of 
biological processes (BP), cellular component (CC), or 
molecular function (MF). P-value <0.05 was considered 
statistically significant.

PPI Network Construction and Hub 
Gene Identification
STRING (https://string-db.org/)17 is a public online database 
that can be used to search for known proteins and predict 
protein–protein interactions, including direct physical inter
actions between proteins and indirect functional interactions 
detected through correlation analyses. After common DEGs 
among different comparison groups were uploaded to 
STRING’s official website, interrelationships between 
DEGs and STRING database proteins were determined 
based on a minimum required interaction score set to 0.40. 
Resulting PPI interaction networks were visualised using 
Cytoscape (version 3.6.1).18 CytoHubba (version 0.1),19 

a plug-in of Cytoscape, was used to identify hub genes 
based on a maximal clique centrality (MCC) algorithm.

The sequence of the target gene of MET was obtained 
from the Drug Repurposing Hub (https://www.broadinsti 
tute.org/drug-repurposing-hub).20 Subsequently, we con
structed a PPI network comprised MET target genes and 
interaction protein partners then selected hub genes to 
further reveal potential MET treatment targets associated 
with disease mechanisms shared by DM and TB.

Validation of Hub Genes
RT-qPCR assays were performed to verify the reliability of 
bioinformatics-based prediction results. A total of 40 study 
participants were recruited from Beijing Chest Hospital, 
Capital Medical University, including 12 TB patients, 12 
T2DM patients, 8 TB patients with T2DM, and 8 healthy 
controls (HCs) (Table S1). TB patients were diagnosed based 
on sputum smear or culture, GeneXpert MTB/RIF, and clin
ical symptoms. DM patients were diagnosed based on 
American Diabetes Association standards.21 Participants 
with cancer or other lung diseases were excluded. 
Peripheral venous blood was collected from each participant; 
then, total RNA was extracted from each sample using 
TRIzol (Invitrogen) according to the manufacturer’s instruc
tions. Reverse transcription was conducted using an 
EasyScript All-in-One First-Strand cDNA Synthesis 
SuperMix for qPCR (One-Step gDNA Removal) Kit 
(TransGen Biotech) with incubations conducted at 42°C for 
15 min and then at 85°C for 15 s. Subsequently, RT-qPCR 
was performed using StarLighter SYBR® Green qPCR Mix 
(Universal) (Forever Star, China) using an ABI 7500 system 
(Applied Biosystems). The reaction conditions were as fol
lows: pre-denaturation (95°C for 5 min), 40 cycles of dena
turation (94°C for 20 s), annealing and extension (60°C for 
34 s). Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was amplified to serve as an internal control 
(Table S2). The 2^-ΔΔCt method was utilised to determine 
relative expression levels. Statistical analysis was performed 
using Graph Pad Prism 8.0 (Graph Pad Software Inc.). 
Expression of hub genes was analysed using one-way 
ANOVA with a Bonferroni correction. P-value <0.05 was 
considered statistically significant.

Prediction of miRNAs and Construction 
of a Gene–miRNA Interaction Network
Hub genes were selected and analysed using the miRWalk 
database (http://mirwalk.umm.uni-heidelberg.de/)22 to pre
dict their targeted miRNAs. The filter setting was set to 
score >0.90, the target gene binding region was 3ʹ UTR, 
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and intersection with other databases was set to miRDB. 
Results were further processed using Cytoscape.

Analysis of Genes Associated with 
Metformin Treatment
NetworkAnalyst was applied to analyse the GSE102677 
dataset. The gene expression of two groups of samples was 
included in the analysis. PBMCs in both groups were 
cultured in medium in the presence of MTB lysate. 
PBMCs in the MTB group were obtained from healthy 
participants, while PBMCs for the MET+MTB group were 
obtained from healthy donors who were treated with met
formin. The readcounts matrix was uploaded to 
NetworkAnalyst, and differential gene expression analysis 
was conducted using the DESeq2 method after data was 
normalised. We observed expression changes of the 
selected hub genes between the two groups. P-value 
<0.05 was considered statistically significant.

Results
Identification of DEGs
In the GSE114192 dataset, 355 up- and 123 down-regulated 
genes were identified in TB patients as compared with HCs 
(Figure 1A, Table S3). Meanwhile, 98 up- and 28 down- 
regulated genes were identified in DM patients as compared 
with HCs (Figure 1B, Table S4). In addition, 626 up- and 243 
down-regulated genes were identified in TB+DM patients as 
compared with HCs (Figure 1C, Table S5). A total of 350 
DEGs (289 up- and 61 down-regulated) were shared by both 
TB and TB+DM comparison groups, while 72 DEGs (57 up- 
and 15 down-regulated) were shared by DM and TB+DM 
comparison groups, as verified using Venn analysis 
(Figure 1D and E). Next, this final set of 422 verified, over
lapping DEGs was subjected to further analysis and included 
346 up- and 76 down-regulated genes (Table S6).

Functional Enrichment Analysis of DEGs
We used DAVID to conduct functional enrichment analyses 
of DEGs. Enriched GO terms associated with DEGs were 
divided into BP, CC, and MF ontologies. Major BP terms 
associated with DEGs included type I interferon signaling 
pathway, innate immune response, and inflammatory 
response, etc. (Figure 2A). Major CC terms associated 
with these DEGs included extracellular region, extracellular 
space, and collagen trimers, etc. (Figure 2B). Finally, MF- 
associated GO terms were mainly associated with calcium 
ion binding, oxygen transporter activity, and protein 

homodimerisation activity, etc. (Figure 2C). With regard to 
KEGG pathway analysis results, DEGs were mainly 
enriched for pathways associated with Staphylococcus aur
eus infection, complement and coagulation cascades, and 
malaria, among others (Figure 2D).

PPI Network Formation
We uploaded 422 DEGs to the STRING online database to 
generate a PPI network, of which a total of 293 DEGs were 
extracted for network analysis using an interaction score set 
to 0.40. The resulting PPI network contained a total of 293 
nodes and 1158 edges. Next, based on MCC scores, ten hub 
genes (STAT1, IFIT3, RSAD2, IFI44L, GBP1, XAF1, IRF7, 
ISG15, IFI44, and IFI6) were selected using the plug-in 
cytoHubba of Cytoscape and were all revealed to have 
been up-regulated (Table 2, Figure 3A).

Met target genes (INS, ACACB, and PRKAB1) derived 
from the Drug Repurposing Hub database were uploaded 
with the ten abovementioned selected hub genes to the 
STRING database. Network analysis results revealed that 
several uploaded genes interacted with INS to form 
a network containing 13 nodes and 53 edges (Figure 3B).

Validation of Hub Gene Expression
RT-qPCR was performed to confirm expression levels of the 
ten hub genes, leading to elimination of ISG15 from further 
analysis, as its expression level was too low to be reliably 
quantified in each group. Notably, expression of five genes 
(STAT1, IFIT3, RSAD2, IFI44L, and XAF1) in TB+DM 
patients exceeded corresponding expression levels found in 
HCs, thus confirming our predictions. Notably, no signifi
cant expression level differences were found for STAT1 and 
XAF1 in patients with TB only vs HCs or patients with DM 
only vs HCs. Thus, we speculated that comorbid DM mag
nified predicted hub gene expression changes occurring in 
TB patients as compared to HCs (Figure 4).

Further miRNA Prediction and 
Interaction Gene-miRNA Network 
Analysis
We uploaded ten hub genes to the miRWalk database and 
predicted 176 miRNAs targeting eight hub genes. The 
gene–miRNA interaction network is shown in Figure 5. 
Seven miRNAs (miR-3680-3p, miR-3059-5p, miR-629- 
3p, miR-29b-2-5p, miR-514b-5p, miR-4755-5p, and miR- 
4691-3p) were detected that were associated with high 
numbers of gene cross-links (≥2) are shown in Table 3.
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Association Between Hub Genes and 
Metformin Treatment
Furthermore, we investigated expression differences of the 
ten hub genes between the MET+MTB group and MTB 
group for the GSE102677 dataset. As shown in the hier
archical clustering heat map of these genes (Figure 6A), 
a total of six hub genes (STAT1, IFIT3, RSAD2, ISG15, 
IFI44, and IFI6) were down-regulated after MET treat
ment (P < 0.05), while the other four hub genes were not 
(P > 0.05) (Figure 6B–K).

Discussion
Both tuberculosis and type 2 diabetes mellitus (T2DM) are 
global epidemic diseases that place a large burden on 
patients and health services. Many reports have indicated 
that T2DM is an independent risk factor for TB,5 but 
specific underlying mechanisms responsible for this asso
ciation are not well understood. We therefore conducted 
a series of bioinformatic analyses aiming to investigate the 
potential pathophysiological association between TB and 
T2DM.
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Figure 1 Identification of DEGs in TB, DM, and HC samples. (A) 478 significant DEGs detected in TB as compared to HC samples. (B) 126 significant DEGs detected in DM 
as compared to HC samples. (C) 869 significant DEGs detected in TB+DM as compared to HC samples. Red dots represent selected up-regulated genes and blue dots 
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In the present study, we screened gene expression 
datasets and then identified 422 DEGs shared by DM 
and TB patients that included 346 up- and 76 down- 
regulated genes. Functional enrichment analysis demon
strated that these DEGs were enriched for functional terms 
that included type I interferon signaling pathway, innate 
immune response, inflammatory response, calcium ion 
binding, oxygen transporter activity, and infectious 

diseases. Furthermore, analysis of the PPI network based 
on interactions among STRING database genes and shared 
DEGs revealed ten hub genes (STAT1, IFIT3, RSAD2, 
IFI44L, GBP1, XAF1, IRF7, ISG15, IFI44, and IFI6) 
that were subsequently identified using the plug-in 
cytoHubba of Cytoscape based on MCC scores. Of these 
ten hub genes, five of them (STAT1, IFIT3, RSAD2, 
IFI44L, and XAF1) were verified using RT-qPCR.

A B

C D

Figure 2 Functional enrichment analysis of common DEGs. (A–D) represent results of BP, CC, MF, and KEGG pathway analyses of DEGs, respectively. 
Abbreviations: DEGs, differentially expressed genes; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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Of the five verified hub genes, STAT1 has been shown 
to play an important role in the host immune defence 
against TB infection, whereby mutation of STAT1 can 
lead to susceptibility to MTB infection.23,24 A previous 
study revealed that STAT1 protein phosphorylation status 
was closely related to host resistance to MTB infection, 
as high levels of phosphorylated STAT1 could drive 
expression of many pro-apoptotic genes, resulting in anti- 
tuberculosis effects. However, unphosphorylated STAT1 
represses macrophage apoptosis and thus facilitates 
immune evasion by MTB that supports continued MTB 
infection.25 With regard to other STAT1 functions, Kim 

et al found that STAT1 played critical role in beta-cell 
death, T-cell immunoregulation, and progression of type 
1 diabetes in vivo.26 Moreover, a more recent study has 
found that in obese individuals, STAT1 uncouples adi
pose tissue inflammation from insulin sensitivity.27 

Another hub gene, XAF1, was shown in a previous 
study to encode a strongly pro-apoptotic protein that is 
induced by IFN exposure with significant value in cancer 
therapy.28 In recent years, XAF1 has been reported to be 
up-regulated in several TB transcriptomic studies.29,30 

Nevertheless, it is not clear whether this gene participates 
in TB pathogenesis. We speculate that MTB may induce 

Table 2 Top 10 Hub Genes

Rank Name Full Name Pathway Involved

1 STAT1 Signal transducer and activator of transcription 1 Influenza A, Toll-like receptor signaling pathway

2 IFIT3 Interferon induced protein with tetratricopeptide 

repeats 3

/

3 RSAD2 Radical S-adenosyl methionine domain containing 2 Influenza A

4 IFI44L Interferon induced protein 44 like /

5 GBP1 Guanylate binding protein 1 /

6 XAF1 XIAP associated factor 1 /

7 IRF7 Interferon regulatory factor 7 Influenza A, RIG-I-like receptor signaling pathway, Toll-like receptor 

signaling pathway

8 ISG15 ISG15 ubiquitin like modifier RIG-I-like receptor signaling pathway

9 IFI44 Interferon induced protein 44 /

10 IFI6 Interferon alpha inducible protein 6 /

Notes: Pathways with P < 0.05 were considered significantly enriched pathways.
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ISG15
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STAT1
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STAT1

IFI44
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Figure 3 PPI network analysis. (A) Ten hub genes were selected using the plug-in cytoHubba of Cytoscape based on MCC scores. (B) Interactions between MET target 
genes and hub genes. Dots represent genes and edges represent functional connections between genes. 
Abbreviations: PPI, protein–protein interaction; MCC, maximal clique centrality; MET, metformin.
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apoptosis of immunocytes by increasing XAF1 expres
sion, although this speculation awaits experimental con
firmation. In another study, metabolic endotoxemia, 
a disorder associated with T2DM pathogenesis, has 
been shown to lead to activation of macrophages. 
Activated macrophages then infiltrate pancreatic islets 
and produce IFN-β, which induces β-cell apoptosis by 

increasing XAF1 expression.31 Meanwhile, with regard to 
hub gene RSAD2, induction of expression its correspond
ing protein RSAD2 has been shown to occur in MTB- 
infected macrophages, with significantly decreased 
expression observed after six months of isoniazid 
treatment.29,30 Consistent with previous studies, we 
observed up-regulated expression of hub genes 
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IFIT332,33 and IFI44L33,34 after MTB infection. These 
genes have been shown to be related to IFN-inducible 
signatures, but their specific roles in resistance to MTB 
infection have not yet been clarified. Meanwhile, Gupta 
et al have reported five different hub genes (CCL2, 

ELMO1, VEGFA, FOS, and TCF7L2) with major roles 
in T2DM.35 The discordance between their results and 
ours may reflect different sample types, sample sizes, and 
sample collection and normalization methods. To our 
knowledge, no study has correlated expression of 
RSAD2, IFIT3, IFI44L genes with DM disease thus far, 
warranting investigations of their roles in DM pathology 
in the future. Interestingly, we found no significant dif
ference between expression levels of STAT1 and XAF1 in 
patients with TB or DM only. However, DEG results 
from dataset comparison TB+DM patients vs HCs exhib
ited expression level differences that were statistically 
significant. We, therefore, believe that DM increased 
the magnitude of hub gene expression changes in TB 
patients. Although the specific mechanisms of action for 
this phenomenon have yet to be elucidated, novel 
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Table 3 miRNA and Its Target Genes

miRNA Genes Targeted by miRNA Gene Count

miR-3680-3p IFI44L, XAF1 2
miR-3059-5p IFI44L, RSAD2 2

miR-629-3p IFI44L, STAT1 2

miR-29b-2-5p XAF1, RSAD2 2
miR-514b-5p XAF1, STAT1 2

miR-4755-5p RSAD2, STAT1 2

miR-4691-3p RSAD2, STAT1 2
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findings might offer novel insights into the pathogenesis 
of TB complicated with DM.

Importantly, endogenous, noncoding single-stranded 
RNAs known as miRNAs can regulate gene expression at 
the post-transcriptional level to degrade or inhibit translation 
of target genes.36 Using the miRWalk database, we predicted 
176 miRNAs that were able to target eight hub genes. From 
the gene–miRNA interaction network, we observed seven 
miRNAs (miR-3680-3p, miR-3059-5p, miR-629-3p, miR- 
29b-2-5p, miR-514b-5p, miR-4755-5p, and miR-4691-3p) 
that targeted at least 2 genes. Therefore, we speculate that 
these seven miRNAs may play important regulatory roles in 
disease mechanisms of T2DM with comorbid TB.

Metformin, a first-line medication used for the treatment 
of T2DM, has been reported to have potential for treating 
TB. Metformin affects the immune response and inflamma
tion in multiple ways.9 Its protective effect in TB patients is 
associated with increased production of mitochondrial reac
tive oxygen species in host cells and acidification of pha
gocytes by MTB.8 Furthermore, the anti-inflammatory 
effect of MET may be related to the activation of AMP- 
activated protein kinase (AMPK), a negative regulator of 
inflammation.8 In our study, several direct or indirect inter
actions were detected between MET target genes and 
selected hub genes. Moreover, our research showed that 
six hub genes, STAT1, IFIT3, RSAD2, ISG15, IFI44, and 

MTB MET+MTB
0

5000

10000

15000
20000

30000

STAT1

R
ea
dc
ou
nt
s

* *
*

*
*

*

MTB MET+MTB
0

2000

4000

6000
14000

15000

IFIT3

R
ea
dc
ou
nt
s

MTB MET+MTB
0

1200

2400

3600

4800
12000

13000

RSAD2

R
ea
dc
ou
nt
s

MTB MET+MTB
0

300

600

900
1500

2500

3500

IFI44L

R
ea
dc
ou
nt
s

MTB MET+MTB
0

2000

4000

6000

8000
17000

18000

GBP1

R
ea
dc
ou
nt
s

MTB MET+MTB
0

500

1000

1500
2000

3000

4000

XAF1

R
ea
dc
ou
nt
s

MTB MET+MTB
0

1500

3000

4500
7000

8000

IRF7

R
ea
dc
ou
nt
s

MTB MET+MTB
0

1000

2000

3000
8000

8500

ISG15

R
ea
dc
ou
nt
s

MTB MET+MTB
0

500

1000

1500

2000
3500

4000

IFI44
R
ea
dc
ou
nt
s

MTB MET+MTB
0

600

1200

1800

2400
6000

7000

IFI6

R
ea
dc
ou
nt
s

G
S
M
2742764

G
S
M
2742768

G
S
M
2742772

G
S
M
2742776

G
S
M
2742780

G
S
M
2742784

G
S
M
2742788

G
S
M
2742792

G
S
M
2742796

G
S
M
2742800

G
S
M
2742804

G
S
M
2742766

G
S
M
2742770

G
S
M
2742774

G
S
M
2742778

G
S
M
2742782

G
S
M
2742786

G
S
M
2742790

G
S
M
2742794

G
S
M
2742798

G
S
M
2742802

G
S
M
2742806

IRF7
IFI44L
XAF1
STAT1
GBP1
IFI6
RSAD2
ISG15
IFIT3
IFI44

Group Group
MET+MTB
MTB

0

2

4A

B

G

C

H

D

I

E

J

F

K
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IFI6, were down-regulated in cells exposed to MTB and 
MET treatment, as compared to cells exposed to MTB 
alone. This result suggests that these genes may participate 
mechanistically in MET treatment-associated improvement 
of TB outcomes and provides evidence that MET may have 
value for TB patient treatment. However, the exact relation
ship between MET and hub genes is unknown, warranting 
further examination.

To our knowledge, the current study is the first explora
tion of the role of ten genes with shared functions, as 
detected via bioinformatic analysis, in comorbid DM-TB 
diseases. These results provide useful information that 
enhances our understanding of DM and TB while guiding 
future research. Nevertheless, this research study also has 
limitations. First, the sample size was comparatively small, 
which resulted in bias to some extent. Second, the 7 
miRNAs that were predicted to have a high number of 
gene interactions were not further validated. Third, 
mechanisms by which several hub genes participate in 
pathological processes associated with comorbid TB-DM 
disease remain unclear. Finally, mechanisms underlying 
MET treatment benefits to TB patients were not fully 
elucidated in this study, warranting further research.

Conclusion
In conclusion, we have identified ten hub genes, of which 
five genes (STAT1, IFIT3, RSAD2, IFI44L, and XAF1) 
were verified using RT-qPCR. Importantly, these genes 
may have value as biomarkers for use in diagnosing and 
monitoring TB with comorbid DM. Meanwhile, seven 
miRNAs (miR-3680-3p, miR-3059-5p, miR-629-3p, 
miR-29b-2-5p, miR-514b-5p, miR-4755-5p, and miR- 
4691-3p) were identified here that may be involved in 
regulation of hub genes. In addition, we found six genes 
(STAT1, IFIT3, RSAD2, ISG15, IFI44, and IFI6) that were 
predicted to be targeted by MET. These genes thus may 
contribute to positive MET-associated treatment outcomes 
when MET is administered to patients with comorbid TB 
and DM. These results provide a new experimental foun
dation on which to further explore pathogenic mechanisms 
associated with TB and DM. Nevertheless, the specific 
mechanisms of action of key genes shown here to be 
associated with comorbid DM and TB require further 
investigation.
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