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Abstract: Fibroblast growth factor 21 (FGF21) regulates many crucial biological processes 
in human and mammals, particularly metabolic modulation and protective effect after injury. 
Therefore, determining complex regulatory mechanisms and elucidating the signaling path-
way may greatly promote the prevention, diagnosis, and treatment of related injury and 
metabolic diseases. This review focused on the metabolic modulation and protective effect of 
FGF21 and summarized the molecular mechanisms and clinical research developments. 
Keywords: fibroblast growth factor 21, molecular mechanisms, metabolic modulation, 
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Introduction
Fibroblast growth factors (FGFs) are widely expressed in the human body and have 
numerous and complicated physiological functions. FGFs regulate cell growth, prolif-
eration, differentiation, and metabolic modulation, tissue repair, and inflammatory 
response.1,2 FGFs can be divided into three types (classic, intracellular and hormone- 
like types) based on their action modes.3 Classic and intracellular FGFs mostly act in an 
autocrine or paracrine way,4 while hormone-like FGFs mainly act in the endocrine way.5 

Most autocrine and paracrine FGFs have a high affinity for the heparin glucosamine 
sulfate (HSGAG), which promotes the binding of the FGFs to the tyrosine kinase FGF 
receptor (FGFR1-4) on the cell surface, inducing FGFR activation, dimerization, and 
activation of downstream signaling pathways.6–9 HSGAGs can also stabilize FGFs, 
prevent FGFs degradation, and limit the diffusion range of FGFs.10

FGF21 is a member of the FGF19 subfamily in the FGFs family and belongs to the 
hormone-like FGFs. Compared to other FGFs members, FGF21 has three special 
features: 1. It has no obvious mitogenic or tumor-promoting function;11 2. The spatial 
configuration variation of the region that binds to HSGAGs makes it have a weaker 
affinity for HSGAG, thus not easily bound in the extracellular matrix. However, it 
enters the circulation in the form of endocrine hormones to regulate metabolism and 
cross the blood-brain barrier through simple diffusion;12 3. It does not directly bind to 
cell receptors, and it needs β-Klotho protein to form a stable combination to play its 
physiological role. Herein, the latest research progress on FGF21 is summarized.

Receptor Characteristics of FGF21
Unlike the classical FGFs, FGF21 binds to FGF receptors (FGFRs) and the co- 
receptor protein β-Klotho (a single transmembrane protein expressed during the 
differentiation of adipose precursor cells into adipocytes). Besides, FGF21 activates 
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the signal transduction downstream only when FGFRs and 
β-Klotho are dimerized and autophosphorylated.13,14 

Neither β-Klotho nor FGFRs can be activated by FGF21 
alone.15 In the FGF21-FGFRs-β-Klotho complex, β-Klotho, 
a “zip code”-like receptor, is the main high-affinity receptor 
of FGF21, providing the targeted signals for FGF21. At the 
same time, FGFR acts as a catalytic subunit that mediates 
receptor dimerization and intracellular signal transduction.16 

Studies have also shown that the C-terminus and N-terminus 
are involved in activating FGF21 receptors, and any deletion 
of the terminus greatly reduces FGF21 activity. The 
C-terminus of FGF21 has a sugar-mimicking Ser-pro-Ser 
motif, which can be recognized and bound by β-Klotho. 
Besides, the C-terminus mutation of FGF21 is associated 
with an affinity decrease of β-Klotho, indicating that the 
C-terminal also mediates the binding of FGF21 and β- 
Klotho. Although the N-terminal mutation of FGF21 is 
also associated with decreased activity, it can still bind to β- 
Klotho, suggesting that the N-terminal only participates in 
the receptor activation process.16–19 Therefore, complete 
C-terminal and N-terminal structure and simultaneous bind-
ing to β-Klotho and FGFRs promote the physiological func-
tions of FGF21.

Regulation of FGF21 Expression 
Level
Studies have shown that FGF21 is highly expressed in the 
liver, skeletal muscle, kidney, heart, fat, and blood 
vessels.20 FGF21 (mainly produced by liver cells) is also 
expressed in the blood circulation due to its hormone-like 
characteristics,21 targeting the heart, bones, kidneys, small 
intestine, and brain because of its strong diffusion and 
distribution ability.13 However, FGF21 produced in adi-
pose tissue most acts in an autocrine or paracrine manner 
on the metabolic regulation of itself and adjacent tissues.22 

Moreover, the expression level of FGF21 varies greatly in 
different tissues and under different conditions. FGF21 
expression level can be regulated in the following ways;

Regulation by Transcription Factors
Numerous transcription regulators can also regulate the 
FGF21 expression level. For instance, peroxisome prolif-
erator-activated receptor (PPAR) can regulate FGF21 
expression by binding to the transcriptional regulatory 
element at the beginning of the FGF21 promoter region, 
and FGF21 and PPAR can regulate each other. PPAR 
contains three subtypes: PPARα, PPARβ/δ, and PPARγ. 

PPARα and PPARγ can induce FGF21 expression. 
PPARα can induce FGF21 expression in the liver,23 and 
FGF21 level in the liver of mice was significantly 
increased after the administration of PPARα agonist feno-
fibrate, indicating the effect of PPARα on promoting 
FGF21 expression. Similarly, PPARγ can regulate the 
expression and function of FGF21 in adipose tissue. 
Muise et al24 found that the PPARγ agonist rosiglitazone 
can activate PPARγ, promoting fat cells to produce FGF21 
and synergistically regulating FGF21 to accelerate glucose 
uptake and utilization. Conversely, FGF21 in the tissue can 
also activate PPAR α and PPAR γ. Dutchak et al25 indi-
cated that FGF21 induced by PPARγ in adipose tissue can 
increase its transcription by inhibiting PPARγ ubiquitina-
tion. These processes form a cyclic loop of PPARα, 
PPARγ, and FGF21 and feed-forward to regulate FGF21 
expression.

Regulation by microRNAs
Recent studies have indicated that microRNAs (miRNAs) 
are associated with the regulation of metabolism and meta-
bolic disorders.26 MiRNAs primarily bind to the 3’- 
untranslated region (3’UTR) of mRNAs, inhibiting 
mRNAs translation and regulating the expression of 
related genes. The activity of the 3’UTR of FGF21 
mRNA in the liver can be inhibited by circulating exoso-
mal miRNAs, in which miR-99b is the identified regula-
tory factor.27 Furthermore, anti-miR-577 therapy can 
protect and restore the insulin regulation of FGF21 and 
improve the survival and function of diabetic pancreatic β- 
cells.28,29 MiR-212 can inhibit FGF21 expression in 
HepG2 cells in non-alcoholic fatty liver disease 
(NAFLD), while miR-212 inhibitors can increase FGF21 
protein level and reduce lipid synthesis. Si-FGF-21 
silences the expression of FGF21, significantly increasing 
the lipid content in HepG2 cells, thus hindering the anti- 
lipid effect of miR-212 inhibitors in these cells.30 

Collectively, these suggest that miR-212 targets FGF21, 
thus regulating FGF21 expression.

Regulation by Dietary
Fasting, ketogenic diet, high-sugar diet, and high-fat diet 
are all important transcription inducers for FGF21 expres-
sion. Fasting can strongly induce FGF21 expression.31 

A ketogenic diet or fasting can significantly increase 
FGF21 expression by recruiting PPARα in the region 
near the FGF21 transcriptional promoter.23,32 Notably, 
neither the ketogenic diet (up to 3 months) nor short- 
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term fasting (up to 48 hours) can increase serum FGF21 
levels in humans.23 However, prolonged fasting (7–10 
days) can increase serum FGF21 levels in humans, possi-
bly due to the different metabolic rates and fasting toler-
ances among different species.33 A high-fat diet induces 
excessive unsaturated fatty acids and bile acids, increasing 
the transcription and secretion of FGF21 in the liver by 
activating the farnesoid X receptor (FXR) and PPARα.34 

Lundsgaard et al35 found that a high-carbohydrate diet can 
also induce FGF21 gene expression in the liver.

FGF21 can also be highly expressed under oxidative 
stress, energy stress, endoplasmic reticulum stress, cold 
stress, and mitochondrial dysfunction, and its expression 
is also regulated by sodium butyrate, metformin, glucocor-
ticoids, etc.36–38 Animal studies have shown that one-time 
acute exercise (60 minutes on a treadmill or until repeated 
electrical stimulation rendered normal running impossible) 
promotes gene expression in the liver of mice and 
increases serum levels of FGF21. Clinical trials have also 
shown that 30 minutes of acute aerobic exercise can also 
increase circulating FGF21 levels.39 FGF21 expression 
level in skeletal muscle is very low in healthy conditions, 
and circulating FGF21 mainly comes from the liver. 
However, the expression of myogenic FGF21 significantly 
increases in some stress states, such as hunger, endoplas-
mic reticulum stress, mitochondrial dysfunction, etc.40,41 

Kim et al42 found that the FGF21 content significantly 
increased in the soleus muscle of Zucker diabetic obese 
rats after 12 weeks of resistance exercise. However, the 
phenomenon was not observed in the gastrocnemius 
muscle.

The Physiological Function of 
FGF21
Earlier research on FGF21 function mainly focused on 
reducing blood sugar and lipids, lowering body weight, 
improving insulin resistance (IR), and cardiovascular dis-
eases related to abnormal glucose and lipid metabolism, 
such as coronary heart disease, heart remodeling.12,43 In 
recent years, the functions of FGF21 in inhibiting inflam-
mation, reducing oxidative stress levels,44,45 and inhibiting 
apoptosis of endothelial cells46 and cardiomyocytes47 have 
been studied. The regulatory effects of FGF21 on meta-
bolic diseases, such as obesity, hyperlipidemia, and hyper-
glycemia, the damage repair effects on inflammation and 
apoptosis, and the blocking effects on some cancers indi-
cate that FGF21 has a broad prospect for development. 

Studies have shown that FGF21 mainly participates in the 
processes of material metabolism, heart and brain damage 
by activating Adenosine 5’-monophosphate (AMP)- 
activated protein kinase (AMPK), serine/threonine protein 
kinase (Akt), and extracellular-regulated protein kinases 
(ERK) and other downstream factors. FGF21 plays meta-
bolic regulation functions, such as promoting glucose 
uptake, gluconeogenesis, increasing the oxidation of free 
fatty acids, promoting ketogenesis, increasing energy pro-
duction and utilization.48,49 FGF21 also has the effect of 
apoptosis protection and neurocognitive function recovery.

FGF21 and Glucose Metabolism
Insulin, as one of the most important humoral factors 
regulating glucose metabolism, enhances glucose absorp-
tion by activating the Phosphatidylinositol 3-kinase 
(PI3K)/Akt signaling pathway and promoting the expres-
sion of glucose transporter 4 (GLUT4).50 FGF21 can also 
activate the PI3K signaling pathway and regulate Akt 
activation. However, FGF21 mainly inhibits the expres-
sion of related gluconeogenesis and glucose production by 
inducing phosphorylation of atypical protein kinase 
C (PKC) I/L and exerts insulin-like hypoglycemic effect 
to control blood glucose balance.51 Ge et al52 found that 
glucose transporter-1 (GLUT1) promoter is highly con-
served in serum response element (SRE) and E-26 (ETS) 
binding motifs. FGF21 binds to the receptor to activate the 
downstream factor extracellular signal-regulated kinases 
(ERK1/2)), and then activate ETS-like protein-1 (ELK-1) 
and serum response factor (SRF, the downstream target of 
ERK1/2), enhancing glucose uptake and reducing blood 
glucose concentration by combining the promoter 
sequence of GLUT1 gene, trans-activating GLUT1 gene 
and inducing GLUT1 expression. Furthermore, there can 
be a synergistic effect between insulin and FGF21. Insulin 
can activate PKC, enhancing the FGF21 regulation effect 
on the GLUT1 expression through the ERK1/2-SRF/Elk-1 
pathway.53 FGF21 can also improve insulin sensitivity and 
enhance the hypoglycemic effect of insulin. The mamma-
lian target of rapamycin complex 1 (mTORC1) and its 
downstream effector, ribosomal protein S6 kinase 1 
(S6K1), are the key regulators of nutritional overload- 
induced insulin resistance and the pathogenesis of type 2 
diabetes mellitus (T2DM).54 S6K1 phosphorylates insulin 
receptor substrate 1 (IRS-1), thereby destroying PI3K, 
a key molecular basis for inducing IR. FGF21 binds to 
the receptor complex, downregulating mTORC1 in 
a tuberous sclerosis complex (TSC)-dependent manner, 
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thus activating downstream pathways to improve insulin 
resistance and increase insulin sensitivity.55 Notably, 
FGF21 has a two-way regulatory role in lowering and 
raising blood sugar levels. Besides, animal experiments 
and clinical trials have shown different functions of 
FGF21 and the body regulation mechanism of normal 
and abnormal metabolism.

Rat experiments showed FGF21 improves IR, 
increases insulin sensitivity, and reduces blood insulin 
concentration.12 FGF21 analogues also improve IR, 
reduces blood glucose and insulin levels, and improve 
glucose tolerance in primates.56 Moreover, scholars have 
discovered that adipose tissue is a key target of FGF21 
for glucose metabolism regulation, and a certain amount 
of adipose tissue in mice is the guarantee for FGF21 to 
regulate blood sugar.57 Clinical trials have shown that 
FGF21 analogues (LY2405319, PF-05231023, BMS- 
986036, etc.) also lower blood glucose. However, their 
effect on lowering blood glucose was not 
significant.17,58,59 Further studies have shown that 
FGF21 also promotes gluconeogenesis and maintains 
blood glucose balance, preventing hypoglycemia 
occurrence.12

FGF21 reduces blood glucose by promoting the phos-
phorylation of Akt via insulin, thereby upregulating the 
number of insulin receptors, increasing insulin sensitivity, 
and alleviating chronic inflammatory response, thus 
improving IR, thus regulating glucose metabolism.60–62 

Second, FGF21 can upregulate adiponectin expression in 
adipocytes by activating the PPARγ signaling pathway to 
promote GLUT4 migration from cytoplasm to cell mem-
brane, or directly promoting GLUT1 expression, increas-
ing glucose transport and lowering blood glucose.22,63,64 

FGF21 can also act on pancreatic islets and indirectly 
induce a hypoglycemic effect. FGF21 can inhibit islet α 
cells to reduce glucagon secretion,12 inhibiting the syner-
gistic toxicity of glycolipid and cytokine-induced β cell 
apoptosis, reducing the damage of islet β cells and enhan-
cing the function of islet β cells, thereby improving blood 
sugar level.65

In terms of gluconeogenesis, studies have shown that 
FGF21 can increase and maintain blood sugar under fast-
ing or starvation.66 FGF21 secreted by tissue cells can 
cross the blood-brain barrier and directly act on the 
hypothalamus through the hypothalamic-pituitary-adrenal 
axis, stimulating the synthesis and release of adrenal cor-
ticosterone increasing blood glucose via liver 

gluconeogenesis.67 Furthermore, FGF21 can bind to 
FGFRs in the liver to activate the downstream RAS-RAF- 
MAPK signaling pathway via the β-Klotho, resulting in 
a cascade reaction. FGF21 then induces the expression of 
early liver genes, such as PPARγ coactivator-activated 
receptor-γ coactivator 1α (PGC1α) gene, which increases 
the transcriptional activity of PPARα. It upregulates the 
expression of gluconeogenesis-related genes, thereby reg-
ulating gluconeogenesis.68,69

FGF21 and Lipid Metabolism
FGF21 is an “adipokine”, which regulates blood lipid. It 
can significantly reduce the plasma levels of total choles-
terol (TC), low-density lipoprotein (LDL), and triglyceride 
(TG) and increase the plasma levels of high-density lipo-
protein (HDL) and adiponectin in normal subjects.70 

A study indicated that diet-induced obese mice and her-
editary db/db obese mice have weight loss, reversal of 
liver steatosis, and reduction in plasma TG levels changes 
after several weeks of continuous FGF21 administration. 
Plasma TC and LDL levels decrease, while HDL level 
increases in a dose-dependent manner in mice adminis-
tered with different FGF21 doses.71,72 Similar findings 
were found in diabetic monkeys. Besides the decrease in 
blood glucose to the normal level, the decrease of blood 
insulin level, and the enhancement of the body’s sensitiv-
ity to insulin, blood lipid also decreased, especially the 
selective decrease of TG and LDL. At the same time, HDL 
showed an upward trend after long-term injection of 
FGF21 in diabetic monkeys.73

FGF21 also plays an important role in liver fat meta-
bolism. Liu et al74 indicated that long-term alcohol expo-
sure induces liver damage and steatosis, inducing the body 
to upregulate FGF21 as compensation. Knockout of the 
FGF21 gene inhibits β-oxidation of liver fatty acids, 
aggravating alcoholic steatohepatitis (ASH). However, 
recombinant FGF21 alleviates liver steatosis and inflam-
mation induced by ASH. Furthermore, the treatment of 
rodent and non-human primate model animals of 
NAFLD, FGF21 analog, and B1344 showed an inhibited 
liver inflammation and natural immune cell infiltration, 
reduced liver injury and hepatocyte death, significantly 
improved liver lipid accumulation, liver fibrosis, and pre-
vented further development of non-alcoholic steatohepati-
tis (NASH).75 However, B1344 has greater potency, higher 
maximum response, and lower immunogenicity than 
FGF21.
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FGF21 and Energy Metabolism
Humans and animals have white adipose tissue (WAT) and 
brown adipose tissue (BAT). The WAT mainly stores 
metabolic surplus energy in the form of TG, which causes 
weight gain.76 Unlike WAT, BAT is rich in multi-crystal 
mitochondria, which is the main source of non-shivering 
thermogenesis. BAT maintains the body temperature and 
energy balance by increasing the uptake of glycolipids and 
using uncoupling protein 1 (UCP1) to decouple biological 
oxidation from ATP synthesis, thus converting energy 
released via biological oxidation into heat, reducing ATP 
synthesis.77,78 FGF21 can upregulate the expression of 
UCP1 and other thermogenesis genes, promoting the 
“Browning” of WAT, thus regulating the balance between 
body temperature and energy.79 However, scholars have 
also found that FGF21 regulates energy metabolism only 
in mice with abnormal metabolism.79,80 Furthermore, 
Liver kinase B1 (LKB1) phosphorylation activates 
AMPK, thereby increasing the content of NAD+ in cells, 
activating Sirtuin 1 (SIRT1), thus promoting mitochondrial 
energy transformation in skeletal muscles.81–83 FGF21 in 
skeletal muscle is also transported to adipose tissue 
through blood circulation, increasing the level of FGF21 
in WAT and further inducing the expression of silent mat-
ing type information regulation 2 homolog 1 (SIRT1), 
PGC1 α, UCP1 and other factors, thus promoting the 
“Browning” of WAT and increasing energy 
consumption.84 Collectively, the above studies indicate 
that FGF21 maintains the energy balance of the body 
with abnormal metabolism through the regulation of glu-
cose and lipid metabolism, which does not affect the 
normal metabolism in the body.

FGF21 and Heart
Recent studies have shown that FGF21 has an important 
protective effect on the heart, reflected by reducing myo-
cardial cell apoptosis, antagonism against ischemia- 
reperfusion injury (IRI), and oxidative stress reaction. 
Roberts et al85 and Cong et al86 showed that FGF21 
could inhibit the activity of the apoptotic factor 
C-caspase 3 through the PI3K /Akt signaling pathway, 
increase cardiac energy supply through the AMPK path-
way, thus inhibiting the apoptosis of cardiomyocytes. 
Moreover, FGF21 interferes with the PER K-eIF2α-ATF4- 
CHOP signaling axis during endoplasmic reticulum stress, 
activating the ATF4 signaling pathway and promoting the 
phosphorylation of c-Jun N-terminal kinase (JNK), thus 

reducing the accumulation of abnormally folded proteins 
and inhibiting myocardial cell apoptosis.87 FGF21 can also 
effectively prevent palmitate-induced cardiac apoptosis by 
upregulating the ERK1/2-dependent p38 mitogen- 
activated protein kinase (MAPK)-AMPK signaling 
pathway88 and reduce cardiomyocyte IRI and apoptosis 
after oxidative stress through PI3K/AKT-dependent path-
ways. 1. FGF21, as an antioxidant factor, induces the 
expression of antioxidant genes, such as Ucp3, Ucp2, 
and Sod2 in the heart, thereby preventing the production 
of reactive oxygen species (ROS).89 2. FGF21 can also 
activate MAPK to produce a cascade reaction by binding 
FGFR1c/β-klotho. Therefore, FGF21 can promote the acti-
vation of AMPK, the target gene of Liver kinase B1 
(LKB1), and reduce the accumulation of ROS, inhibiting 
apoptosis.89 3. FGF21 promotes transcriptional activation 
of PPARγ by regulating PPARγ coactivator 1, thus con-
trolling energy metabolism and oxidative stress in multiple 
tissues,90 inducing a protective role on cardiac 
hypertrophy.

FGF21 and Brain
Although it is unknown whether the brain can directly 
generate FGF21, it has been proved that FGF21 can 
move to the brain through the blood-brain barrier via 
simple diffusion,91,92 playing a key role in metabolic reg-
ulation, neuroprotection, and the potential role of 
cognition.

FGF21 can bind to FGFRs and β-klotho expressed in the 
hypothalamus, the suprachiasmatic nucleus (SCN), paraven-
tricular nucleus of the hypothalamus (PVN), and other 
regions of the brain, and act on the Hypothalamus-pituitary- 
adrenal axis (HPA) and hypothalamic-pituitary-gonad axis 
(HPG) to regulate the levels of corticotropin-releasing hor-
mone (CRH) and vasopressin (AVP). The increased release 
of CRH can promote the substantial release of adrenal cortex 
hormones, which combine with the liver to induce PGC1α 
expression. Therefore, FGF21 can upregulate the expression 
of gluconeogenesis genes, such as glucose 6 phosphatase and 
phosphoenolpyruvate carboxykinase via PGC1α, increasing 
liver gluconeogenesis and preventing hypoglycemia.67 

Moreover, increased CRH in the circulation can increase 
sympathetic nerve activity in BAT, upregulate UCP1 expres-
sion and increase lipolysis in BAT, leading to an increase in 
energy use and a decrease in weight gain in diet-induced 
obese mouse models.93 The inhibited release of AVP 
decreases kisspeptin in the hypothalamus, causing 
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a decrease in the release of luteinizing hormone, affecting 
ovulation and fertility.94

Several studies have shown that FGF21 has an important 
protective effect on nerve injury and cognitive impairment. 
Shahror et al95 showed that FGF21 can significantly improve 
the spatial memory deficits, hippocampal nerve damage, and 
dendritic morphology abnormalities induced by traumatic 
brain injuries (TBI). Therefore, FGF21 alleviates TBI- 
induced defects in neurogenesis and maturation of immature 
hippocampal neurons, thereby restoring the hippocampal 
independent learning and memory impairment caused by 
TBI. Sa-Nguanmoo et al96 also confirmed that FGF21 
enhances hippocampal synaptic plasticity, increases the den-
sity of dendritic spines, restoring the function of brain mito-
chondria. FGF21 can prevent defective neuroprotective 
molecules in astrocytes, alleviating memory dysfunction 
and neurodegeneration, such as amyloid plaque pathology 
and pathological Tau hyperphosphorylation, thus acting as 
a neuroprotective agent in Alzheimer’s disease (AD).97,98 

FGF21 can also protect the blood-brain barrier after ischemic 
stroke by activating PPARγ in cerebral blood vessels,99 

antagonize the M1 polarization of microglia and the accu-
mulation of pro-inflammatory cytokines by inhibiting NF-κB 
and upregulating PPARγ, and reduce cerebral edema and 
inflammation after TBI and stroke.100,101

Clinical Application
The level of FGF21 in normal human circulation is low, 
while it is significantly increased in patients with athero-
sclerosis, hypertension, and liver disease.102–104 Some 
scholars have also indicated that FGF21 levels in obese 
or hyperlipidemia patients are 1.5–2 times higher than in 
normal people. Patients with renal insufficiency may also 
accumulate FGF21, while FGF21 levels in patients with 
long-term malnutrition (such as patients with anorexia 
nervosa) are low.105–107 FGF21 expression is decreased 
in patients with type 1 diabetes mellitus (T1DM) and 
increased in patients with T2DM in individuals with 
abnormal glucose metabolism, indicating that FGF21 
resistance or compensatory increase may exist in patients 
with T2DM.108 Similarly, FGF21 up-regulation occurs in 
patients with metabolic syndrome,109 possibly because 
FGF21 plays a compensatory role in the early stage of 
the disease, promoting the occurrence and development of 
the disease. Li et al110 found that the plasma FGF21 
content and liver FGF21 levels are significantly higher in 
NAFLD patients than in healthy people. Therefore, FGF21 
may be a new biomarker for NAFLD diagnosis. Taken 

together, these findings indicate that FGF21 has broad 
prospects as a serum marker in the prevention, diagnosis, 
treatment, and efficacy evaluation of metabolic abnormal-
ities. Presently, FGF21 has been partially used in clinical 
practice.

The routine auxiliary examination items, such as serum 
lactic acid, alanine, creatine kinase have low specificity 
and sensitivity during the diagnosis of mitochondrial dis-
eases. Recent studies have shown that serum levels of 
FGF21 are elevated when mitochondrial DNA mutations 
occur in skeletal muscle but not when similar mutations 
occur in other organs. Therefore, serum FGF21 is 
a relatively good biomarker for muscle mitochondrial dis-
eases than other indicators.111

Serum FG21 can also be used for early disease detec-
tion. For instance, the incidence rate of myocardial ische-
mia, cardiac hypertrophy, and diabetic cardiomyopathy is 
positively correlated with serum FGF21 levels.112–114 

Some studies have also indicated that higher serum 
FGF21 levels are associated with a higher risk of coronary 
heart disease, NAFLD, and T2DM.89,115–117 Besides, 
higher circulating FGF21 levels are associated with higher 
mortality in patients with end-stage renal disease.110 

However, animal experiments and clinical trials have 
shown different results. Therefore, further studies are 
necessary to determine whether FGF21 can be used as 
a molecular marker for the early diagnosis and evaluation 
of related diseases.

FGF21 also has important clinical significance for dis-
ease treatment. Animal experiments have shown that the 
metabolic phenotypes, such as decreased blood glucose, 
serum TC and TG levels, increased insulin sensitivity and 
glucose uptake of two groups of mice overexpressing 
human and mouse FGF21 are highly similar. However, 
there are also some differences. For instance, the weight 
and body fat rate of mice overexpressing human FGF21 
decreased, while those overexpressing mouse FGF21 were 
obese and unresponsive despite having normal 
metabolism.17 This study provides a basis for the clinical 
treatment of FGF21. Clinically, FGF21 levels are elevated 
in patients with various metabolic abnormalities. In con-
trast, the findings have shown that FGF21 effectively 
treats various metabolic abnormalities in animal models. 
However, it is speculated that the phenomenon is similar 
to hyperinsulinemia. The increase of FGF21 may be due to 
“FGF21 resistance” produced by the activation of its com-
pensatory mechanism,118 indicating that the elevated 
FGF21 is the body’s self-protection mechanism. 
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Therefore, FGF21 can treat metabolic disorders, such as 
diabetes and lipid metabolism disorders, because it does 
not possess the classic mitogenic activity of the FGFs.119

Conclusion and Prospect
This article reviews the metabolic regulation, injury protec-
tion, and other physiological and pathological functions of 
FGF21 in various tissues and organs in the body, such as the 
liver, heart, brain, and adipose tissue, and related regulatory 
mechanisms. To date, the relevant signal pathways of FGF21 
have not been fully elucidated. Therefore, an in-depth study on 
the systemic biological functions and regulatory pathways of 
FGF21 can promote the prevention and treatment of metabolic 
disorders, such as diabetes and obesity, and cardiac and brain 
diseases, such as myocardial IRI and AD, TBI, and stroke.
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