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Background: Studies have found the pivotal role of miRNAs in the progression of post-
menopausal osteoporosis (OP). However, the function of miRNAs in OP is unclear. This 
study aimed to explore the biological functions of microRNA-151a-3p in OP.
Methods: RT-qPCR was employed to assess the expression of microRNA-151a-3p in serum 
isolated from OP patients and healthy controls. Dual-energy X-ray absorptiometry (DXA) 
was used to measure the bone mineral density (BMD) of the lumbar spine. The expression 
levels of c-Fos, NFATc1, and TRAP were tested by Western blot. Ovariectomized (OVX) rats 
were treated with antago microRNA-151a-3p or antago NC, and then serum and lumbar 
vertebrae were collected for ELISA and bone histomorphology analysis.
Results: The expression of microRNA-151a-3p in postmenopausal women with osteoporo-
sis was significantly up-regulated, and microRNA-151a-3p level was negatively correlated 
with BMD. During osteoclastogenesis, microRNA-151a-3p level was obviously increased. 
Overexpression of microRNA-151a-3p promoted the differentiation of RANKL-induced 
THP-1 and RAW264.7 cells into osteoclasts, whereas silencing of microRNA-151a-3p 
resulted in the opposite results. Silencing of microRNA-151a-3p in OVX rats altered 
osteoclastogenesis-related factors and raised BMD.
Conclusion: MicroRNA-151a-3p could partly regulate osteoporosis by promoting osteo-
clast differentiation, and miRNA-151a-3p could be a potential therapeutic target for post-
menopausal osteoporosis.
Keywords: miRNA-151a-3p, postmenopausal osteoporosis, osteoclast differentiation, 
RAW264.7 cells, THP-1 cells

Background
Postmenopausal osteoporosis (OP) is the most common type of osteoporosis.1 It is 
a systemic chronic bone disease without obvious clinical symptoms, and it is 
mainly caused by postmenopausal ovarian dysfunction, decrease of estrogen 
level, and degeneration of bone microstructure.2 The incidence of pathological 
fracture, a serious complication of OP, is more than 70%.3 With the rapid rise in 
the proportion of the elderly population, the incidence rate of OP has also increased 
significantly. It seriously affects the physical health and the quality of life of 
middle-aged patients.4 Physical activity not only contributes to a healthy energy 
balance and increased muscle and bone mass but also downregulates RANKL in 
bone cells.5,6 A variety of drugs have been used in the clinical treatment of OP, 
including estrogen, tamoxifen and bisphosphonate. However, due to the side 
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effects, long course of treatment, inconvenient route of 
administration, and poor compliance of patients, the ideal 
curative effect cannot be achieved.7,8 Therefore, the pre-
vention and treatment of OP has become a key issue to be 
solved urgently.

The primary cause of OP is the imbalance of the physio-
logical process of bone turnover.9 The maturation of osteo-
clasts is regulated by multiple cytokines and signaling 
pathways, of which the NF-κB pathway is the most impor-
tant regulator.10,11 NFAT is another pathway involved in 
RANK in newly discovered osteoclasts.12 During osteoclast 
activation, titanium particles strongly trigger three major 
transcription factors, NFATc1, c-Fos and TRAP, which 
play key roles in the differentiation of osteoclast.13,14 

Osteoclasts (OC) inhibit the formation and activation of 
OC by competing with RANK and binding to RANKL. 
Both TNF-α and IL-1α can affect the expression of 
RANKL in osteoblasts, and regulate the formation and acti-
vation of OC. Recent studies have shown that TNF-α can 
induce bone marrow cells to differentiate into OC in the 
presence of M-CSF and CTX-I. However, the molecular 
mechanism of osteoclast differentiation in OP patients is 
not completely clear, therefore, understanding the regulatory 
mechanism of osteoclast differentiation in OP patients may 
be the key to improve the therapeutic effect of OP.

Almost all human chromosomes except for the 
Y chromosome express miRNAs.15 MiRNAs play key regu-
latory roles in cell division, apoptosis, signal transduction, and 
are involved in the progression of various diseases, such as 
cancer, cardiovascular disease, osteoarthritis, and bacteria.16,17 

On the other hand, whether and how miRNA participates in the 
regulation of OP through osteoclast differentiation have been 
reported.18,19 Recent study has found that the expression of 
microRNA-151a-3p is reduced in prostate cancer cells.20 At 
present, there are few reports on the functions of microRNA- 
151a-3p in OP. The main goal of this study was to investigate 
the role of microRNA-151a-3p in OP, and our findings might 
provide insights into the novel drug targets for OP treatment.

Methods
Clinical Samples
This study was approved by the ethic board of Beijing 
Jishuitan Hospital. All participants signed the written 
informed consent. The experiments were carried out 
according to the declaration of Helsinki of 1964. A total 
of 15 postmenopausal osteoporosis patients (body mass 
index 22.7 ± 6.2, age range 57–80 years old) were 

included in osteoporosis (OP) group. The patients were 
recruited with low-trauma fractures requiring surgical 
treatment (femoral neck, trochanter, and intertrochanteric 
region). Exclusion criteria included Patients with cancer, 
diabetic disease, heart disease, inflammatory, or metabolite 
disorder. Another 15 postmenopausal healthy females 
(BMI 25.8 ± 3.7, age range 61–76 years old) were selected 
as the control group.

Cell Culture
The murine macrophage cell-line RAW264.7 and the 
human monocyte cell-line THP-1 were provided by 
COBIOER (Nanjing, China). THP-1 and RAW264.7 cells 
were cultured in RPMI 1640 medium containing 10% FBS 
(Jitai, Shanghai, China). RAW264.7 macrophages were 
treated by 50 ng/mL M-CSF (Andi, Shanghai, China) 
and 50 ng/mL nuclear factor-kappa receptor activator 
(RANKL; Lizhu, Beijing, China) to the differentiation of 
osteoclast. Finally, the cells were stained for the expres-
sion of TRAP using a commercially available kit (Sigma- 
Aldrich, St. Louis, MO).

Cell Transfections
The microRNA-151a-3p mimic, inhibitor, and the corre-
sponding NCs were purchased from Ribobio (Guangzhou, 
China). For cell transfection, a total of 1×105 cells were 
transfected with 50 nM microRNA-151a-3p mimic, inhi-
bitor, or NCs by Lipofectamine 2000 reagent (Invitrogen).

Bone Density Determination
Bone mineral densities of lumbar spine were measured by 
dual-energy X-ray absorptiometry (DXA) with Hologic 
4500 bone densitometer.

Quantitative Real-Time PCR (RT-qPCR)
Total RNAs were extracted from cells by TRIzol 
(Invitrogen, CA), and then was reverse-transcribed into 
cDNA using a RT kit (Thermo Fisher Scientific, USA). In 
the ABI-7300 system (Applied Biosystems; Thermo Fisher 
Scientific, Inc.), RT-qPCR was carried out by ViiATM 7 
system (Jinuo, Shanghai, China). The thermocycling condi-
tions were as follows: Pre-denaturation at 95°C for 2 min, 
followed by 40 cycles of denaturation at 95°C for 15 sec 
and annealing at 60°C for 45 sec, with final extension at 
72°C for 10 min. GAPDH and U6 were used as internal 
references. The expression of miRNA-151a-3p was 
detected by SYBR Premix Ex Taq II (Takara 
Biotechnology).21 The primers used are listed in Table 1.
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Animal Experiments
The animal experiments were conducted under the Guide for 
the Care and Use of Laboratory Animals and were carried out 
following the institutional ethical principles for animal experi-
ments. The experiments were approved by the Ethics 
Committee of Animal Usage Board of Beijing Jishuitan 
Hospital. Female Wistar rats (48 rats in total, n = 6 per 
group) were obtained from the Animal Laboratory of the 
Jiangsu ALF Biotechnology Co., LTD (Jiangsu, China). 
Adaptive feeding was carried out in the laboratory animal 
center of the hospital for 2 weeks, and water and standard 
feed were taken freely. After intraperitoneal anesthesia, the 
abdomen of rats was fixed. The middle and lower parts of the 
back were routinely prepared, and disinfected with 3% iodo-
phor. Under sterile conditions, the incision was made at 
a junction of about 1 cm under the costal margin and about 
1 cm on both sides of the spine to separate the skin. The ovary 
was fully exposed, and the fat around the ovary was bluntly 
separated. After ligating the fallopian tubes and blood vessels, 
the ovaries were completely removed. The uterus was also 
placed in the abdominal cavity, layered sutured, and the inci-
sion was closed. The other side of the ovariectomy was per-
formed in the same way. These rats received either 
antagomicroRNA-151a-3p or antago-NC through tail vein 
injection. The samples were collected after 30 d of tail injec-
tion. For euthanasia, animals were deeply anesthetized with 
sodium pentobarbital through intraperitoneal injection and 
sacrificed by cervical dislocation. Serum was collected for 
ELISA assays. The expression levels of RANKL, M-CSF, 
interleukin (IL)-1α, tumor necrosis factor (TNF)-α, bone Gla 
protein (BGP) and type I collagen C-terminal peptide (CTX-I) 
in the serum were determined by enzyme-linked immunosor-
bent assay kit (Qincheng, Shanghai, China).

Bone Densitometry
The right femur with femoral head was fixed with 10% neutral 
formalin for 24 h. After fully rinsing, the femur was decalcified 
by 10% EDTA and PBs for 3 to 4 weeks, and the fluid was 
changed every other day. After that, the longitudinal continu-
ous section was made as the following steps: dehydration with 
ethanol gradient for 4h, transparency with xylene for 12 h, 
immersion with soaking solution for 2 h, embedding with 

paraffin for 4h. One section of each specimen was taken for 
HE staining for histological examination. Bone histomorphol-
ogy analysis was performed with BI-2000 medical image 
analysis system. The average width of trabecular bone was 
calculated. Periosteal area percentage (%) = trabecular bone 
area/total tissue area × 100%.

Western Blotting
Total protein was extracted from cells by RIPA lysis solu-
tion, and then was quantified using a BCA Kit. The same 
amount of total protein was separated by 10% SDS-PAGE 
and then transferred onto PVDF membranes. After being 
blocked with 5% skim milk for 1 h at room temperature, 
these membranes were incubated with anti-NFATc1 
(1:500, Xibosheng, Shanghai, China), anti-c-Fos antibody 
(1:500, Xibosheng, Shanghai, China), anti-TRAP antibody 
(1:500, Xibosheng, Shanghai, China) and anti-GAPDH 
(1:1000, Xibosheng, Shanghai, China) overnight. After 
that, 1:5,000 labeled anti-rabbit secondary antibody was 
added.22 Finally, the protein was visualized using ECL 
reagent (Millipore, USA).

Data Analysis
The data were displayed as mean ± standard deviation 
(SD). The analyses were performed in SPSS ver. 22.0. 
The normality of the distribution of continuous variables 
was assessed by Shapiro Wilk test. Multi-group data were 
compared by one-way ANOVA, followed by LSD test. 
The correlation between microR-151a-3p and BMD 
value was assessed by Pearson’s correlation coefficient. 
P < 0.05 was statistically significant.

Results
MicroRNA-151a-3p Was Upregulated in 
Postmenopausal Osteoporotic Females and 
Negatively Related with Bone Mineral 
Density
The characteristics of 30 subjects involved in this study are 
shown in Supplementary Table 1. There was no statistical 
difference in BMI value and age between OP group and the 
control group. The serum level of miRNA-151a-3p and the 

Table 1 Sequences of Primers Used in RT-qPCR

Gene Forward Primer (5ʹ-3ʹ) Reversed Primer (5ʹ-3ʹ)

MicroRNA-151a-3p GGATGCTAGACTGAAGCTCCT CAGTGCGTGTCGTGGAGT
U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT
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bone mineral density (BMD) in both groups were detected. As 
shown in Figure 1A, microRNA-151a-3p level was remark-
ably higher in the serum of OP group than that in the serum of 
the control group (P<0.01). Conversely, the BMD value in the 
OP group was significantly lower than that in the control group 
(P<0.01). The correlation between microRNA-151a-3p and 
BMD value in OP group was assessed by Pearson’s correlation 
coefficient. Results showed that microRNA-151a-3p level was 
negatively correlated with the BMD value (Figure 1B, P < 
0.01, R2 = 0.4432).

Overexpression of microRNA-151a-3p 
Improved RANKL-Induced Differentiation 
of RAW264.7 and THP-1 Cells
THP-1 and RAW264.7 cells were treated with RANKL and 
M-CSF to induce osteoclast differentiation. As shown in 

Figure 2A, TRAP-positive multinucleated cells with more 
than three nuclei were observed in Day 7 after stimulation. 
As shown in Figure 2B, the expression level of microRNA- 
151a-3p was gradually increased in RANKL/M-CSF-induced 
THP-1 and RAW264.7 cells (P < 0.01), indicating that 
microRNA-151a-3p level was up-regulated during osteoclas-
togenesis. As shown in Figure 2C, in RANKL/M-CSF- 
induced HP-1 and RAW264.7 cells, the expression of 
microRNA-151a-3p was significantly up-regulated in the 
microRNA-151a-3p mimic group compared to that in 
the control group (P < 0.05). Furthermore, compared with the 
NC group, the expression levels of TRAP, NFATc1 and c-Fos 
were greatly raised in the microRNA-151a-3p mimic group 
(P < 0.01) (Figure 2D; Supplementary Figure 1A). These 
results demonstrated that overexpression of microRNA-151a- 
3p improved RANKL-induced differentiation of THP-1 and 
RAW264.7 cells into osteoclasts.

Figure 1 Patients with osteoporosis had increased microRNA-151a-3p level and reduced BMD. (A) MicroRNA-151a-3p level and BMD in patients with osteoporosis and 
control group were detected. (B) The correlation between microRNA-151a-3p and BMD was analyzed by Pearson’s correlation coefficient. **P < 0.01. 
Abbreviation: BMD, bone mineral density.
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Silencing of microRNA-151a-3p 
Restrained RANKL-Induced 
Differentiation of RAW264.7 and THP-1 
Cells into Osteoclasts
As shown in Figure 3A, compared with NC inhibitor 
group, the expression levels of microRNA-151a-3p were 
significantly reduced in the microRNA-151a-3p inhibitor 
group (P < 0.05). Furthermore, compared with NC inhibi-
tor group, the expression levels of TRAP, NFATc1 and 
c-Fos in the microRNA-151a-3p inhibitor group were 
reduced (P < 0.01) (Figure 3B; Supplementary 
Figure 1B). These results demonstrated that silencing of 
microRNA-151a-3p restrained RANKL-induced differen-
tiation of RAW264.7 and THP-1 cells into osteoclasts.

Silencing of microRNA-151a-3p Altered 
the Osteoclastogenesis-Related Factors 
in OVX Rats
The effect of microRNA-151a-3p on OP progression was 
further determined in vivo. As shown in Figure 4A, compared 
with sham group, the expression levels of microRNA-151a-3p 
were significantly raised in OVX rats, while the expression 
levels of microRNA-151a-3p were significantly decreased in 
OVX rats after transfection with antagomicroRNA-151a-3p, 
indicating successful transfection (P < 0.01). In addition, the 
expression levels of TNF-α, RANKL, M-CSF, IL-1α and 
CTX-I were significantly increased in OVX rats, and BGP 
levels were significantly decreased. After transfection with 
antagomicroRNA-151a-3p, the expression levels of TNF-α, 

Figure 2 Overexpression of microRNA-151a-3p promoted RANKL-induced differentiation of THP-1 and RAW264.7 cells into osteoclasts. (A and B) RAW264.7 and THP- 
1 cells were treated with RANKL and M-CSF. (A) The representative images of TRAP-stained cells. Magnification, x200 (Day 0) and x400 (Day 7). (B) The expression levels 
of microRNA-151a-3p in RANKL/M-CSF-induced cells. (C and D) RANKL/M-CSF-induced RAW264.7 and THP-1 cells were treated with microRNA-151a-3p mimic. (C) 
Expression levels microRNA-151a-3p in RAW264.7 and THP-1 cells. (D) The expression levels of TRAP, NFATc1 and c-Fos. ** P < 0.01.
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RANKL, M-CSF, IL-1α and CTX-I were significantly reduced 
in OVX rats, and BGP levels were significantly increased 
(Figure 4A–D). These results demonstrated that silencing of 
microRNA-151a-3p can regulate OP progression by affecting 
the osteoclastogenesis-related factors in OVX rat serum.

Knockdown of microRNA-151a-3p 
Increased Lumbar Spine BMD and 
Changed Bone Histomorphology in OVX 
Rat
Compared with sham group, BMD values in OVX rats 
were significantly reduced. BMD values were significantly 
increased after transfection with antagomicroRNA-151a- 
3p (P < 0.05) (Figure 5A and D). As shown in Figure 5B 
and C, compared with Sham group, BV/TV, Tb.Th and Tb. 
N values were significantly reduced in OVX rats. Tb.Th, 
BV/TV and Tb.N values in OVX rats after transfection 
with antagomicroRNA-151a-3p were significantly 
increased (P < 0.01). These results demonstrated that 
knockdown of microRNA-151a-3p can attenuate bone 
loss in OVX rats.

Discussion
Osteoporosis is a systemic disorder of bone metabolism.23 

Menopause is a natural physiological process, mainly due to 

ovarian function decline, cell apoptosis or programmed death, 
and decreased estrogen secretion.24 However, the pathogenesis 
of postmenopausal osteoporosis is not fully understood. 
Osteoporosis is mainly caused by the weakening of osteogenic 
differentiation and the enhancement of osteoclast 
differentiation.25 Osteoclasts are the dominant players in 
osteoclastosis.26 Osteoclasts are also the only cells in the 
body that can resorb bone matrix. It is also important to 
shape, repair and regulate calcium in the body.27,28 

Therefore, osteoclasts are of great significance in patients 
with osteoporosis or other pathological osteoporosis.

Studies have found that microRNAs act as upstream reg-
ulators of multi-gene multi-target regulation.29,30 For example, 
microRNA-124 can regulate osteoclast differentiation by inhi-
biting the expression of NFATc1.31 MicroRNA-155 can simul-
taneously act on cytokine signaling inhibitory protein (SOCS1) 
and MITF to inhibit osteoclast differentiation.32 MicroRNA- 
155 and microRNA-144-3p inhibit osteoclast 
differentiation.32,33 These studies indicate that miRNAs play 
important roles in osteoclast differentiation. MicroRNA-151a- 
3p play a part in many diseases.34,35 Our study found that the 
expression of microRNA-151a-3p in the serum of osteoporosis 
women was significantly up-regulated, and the expression 
levels of microRNA-151a-3p were also gradually increased. 
In addition, the expression of microRNA-151a-3p in 

Figure 3 Silencing of microRNA-151a-3p restrained RANKL-induced differentiation of THP-1 cells and RAW264.7 cells into osteoclasts. RAW264.7 and THP-1 cells were 
treated with microRNA-151a-3p inhibitor. (A) The expression levels of microRNA-151a-3p in THP-1 cells and RAW264.7 cells. (B) The expression levels of TRAP, NFATc1 
and c-Fos. **P < 0.01.
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postmenopausal women with osteoporosis was negatively cor-
related with BMD. Therefore, microRNA-151a-3p can be used 
as a target to control the development of OP.

NFATc1, c-Fos and TRAP are important transcription 
factors in the stage of osteoclast differentiation.36 The 
abnormal gene expression may cause serious osteoclasto-
genesis disorders.37 In this study, the expression levels of 
TRAP, c-Fos and NFATc1 were raised in the microRNA- 
151a-3p mimic group, indicating that microRNA-151a-3p 
can promote RANKL-induced the differentiation of 
osteoclasts.

There are two pathways for osteoclast proliferation, 
differentiation, and maturation,38 and the main pathway 
is the RANKL/RANK/OPG system, which has been 

expressed in the early stage of OP.39 The secondary path-
way is the pathway of inflammatory factors.40 RANKL is 
the only factor currently found to induce osteoclast differ-
entiation, development, and function.41 A large number of 
pro-inflammatory cytokines have been found to affect OP 
and promote the differentiation or activation of OP.42 Pro- 
inflammatory cytokines act directly or indirectly on OP 
through the RANK/RANKL/OPG system, TNF-α and IL-1 
play key roles in the development of OP.43,44 In this study, 
after transfected with antagomicroRNA-151a-3p, the 
expression levels of TNF-α, M-CSF, RANKL, IL-1α and 
CTX-I were significantly decreased in OVX mice, and 
BGP levels were significantly increased. These results 
demonstrated that microRNA-151a-3p can regulate OP 

Figure 4 Silencing of microRNA-151a-3p altered the expression levels of osteoclastogenesis-related factors in sera of OVX rats. OVX rats were treated with antago 
microRNA-151a-3p or antago NC. (A) Expression levels of microRNA-151a-3p was detected in different groups. The expression levels of M-CSF (B), RANKL (B), TNF-α 
(C), IL-1α (C), CTX-I (D), and BGP (D) in different groups. N = 6 per group, *P < 0.05, **P < 0.01.
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by affecting osteoclastogenesis-related factors in OVX rat 
serum. It’s well known that microRNAs can inhibit the 
expression of target genes by binding to complementary 
segments of messenger RNA and interfering with the for-
mation of proteins by translation.39 Previous studies have 
found that miR-93-5p and miR-378 were involved in the 
regulation of OP by binding to BMP-2, a number of active 
bone morphogenetic proteins.46,47 Therefore, BMP-2 may 
play a critical role in miRNA-mediated regulation of OP. 
In our future study, we will further investigate whether 
microRNA-151a-3p functions in OP by directly binding to 
BMP-2. However, there were several limitations in our 
study. For instance, there is a risk of miRNA degradation 
in blood since tail vein injection is used as a delivery 

method for microRNAs and antagomirs. In addition, the 
tail vein injection was an unspecific method to target bone, 
which may introduce some bias into the study.

Conclusion
MicroRNA-151A-3P could partly regulate osteoporosis by 
promoting osteoclast differentiation. It is suggested that 
microRNA-151a-3p may be a potential pathogenic gene 
of OP, which provides experimental evidence for the clin-
ical prognosis or targets of treatments in this disease.

Abbreviations
OP, osteoporosis; OC, osteoclasts; mi RNAs, microRNAs.

Figure 5 Knockdown of microRNA-151a-3p increased BMD and altered bone histomorphology in OVX rats. OVX rats were treated with antago microRNA-151a-3p or 
antago NC. (A) BMD was measured in different groups. (B and C) Bone histomorphometric parameters (BV/TV, Tb.Th, and Tb. N) were assessed. (D) Representative HE 
staining used to evaluate the pathological changes of osteogenic tissues in rats. 400×, Bar = 50 μm. N = 6 per group, *P < 0.05, **P < 0.01. 
Abbreviations: OVX, ovariectomized; BV/TV, bone volume fraction; Tb. Th, trabecular thickness; Tb. N, trabecular number.
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