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Abstract: Immunomodulation is the process of alteration in immune response due to foreign 

intrusion of molecules inside the body. Along with the available drugs, a large number of herbal 

drugs are promoted in traditional Indian treatments, for their immunomodulating activity. Natural 

coumarinolignoids isolated from the seeds of Cleome viscose have been recognized as having 

hepatoprotective action and have recently been tested preclinically for their immunomodulatory 

activity affecting both cell-mediated and humoral immune response. To explore the immuno-

modulatory compound from derivatives of coumarinolignoids, a quantitative structure activity 

relationship (QSAR) and molecular docking studies were performed. Theoretical results are in 

accord with the in vivo experimental data studied on Swiss albino mice. Immunostimulatory 

activity was predicted through QSAR model, developed by forward feed multiple linear regres-

sion method with leave-one-out approach. Relationship correlating measure of QSAR model 

was 99% (R2 = 0.99) and predictive accuracy was 96% (RCV2 = 0.96). QSAR studies indicate 

that dipole moment, steric energy, amide group count, lambda max (UV-visible), and molar 

refractivity correlates well with biological activity, while decrease in dipole moment, steric 

energy, and molar refractivity has negative correlation. Docking studies also showed strong 

binding affinity to immunomodulatory receptors.

Keywords: coumarinolignoids, immunomodulation, docking, QSAR, regression model

Immunomodulation is the process of alteration in immune response due to foreign 

intrusion of molecules inside the body. It can be either immunostimulative or immu-

nosuppressive. Along with the available drugs, a large number of herbal drugs are 

mentioned in Ayurveda (a traditional system of Indian medicine), for their immuno-

modulating activity.1–2 In the past, living and attenuated microorganisms’ autologous 

and heterologous proteins and injections of animal organ preparations were used with 

the aim of restoring an impaired defense mechanism. At present thymus peptides and 

other biological response modifiers (BRM) (eg, interferon, interleukines), synthetic 

low molecular weight compounds (eg, Levamisole), chemically modified nucleotides, 

polysaccharides from fungi (eg, Lentinan), and, especially in Europe and Asia, some 

plant extracts, are also used for the same purpose.

Many medicinal plant products have been reported to show immunomodulatory 

effects, such as barberin, boswellic acid, aristolochic acid, cichoric acid, and plumbagin.2 

Natural coumarinolignoids are also among the biologically active compounds which 

have shown promising immunomodulatory activity affecting both cell mediated 

and humoral immune response.3–5 Cleomiscosins are the natural coumarinolignoids 

extracted from an annual herb Cleome viscosa (syn. C. icosandra), a common weed 

of the family Capparidaceae and they have been used in the traditional systems of 
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Indian medicine. Considerable phytochemical work on 

different parts of this plant have been studied well.3–5 These 

are newly identified class of natural products in which a 

lignan group (C
6
C

3
 unit) is linked with a coumarin moiety 

through a dioxane bridge.5 Coumarinolignoids belong to the 

cycloalkylpropanoic acid class of compounds. Attachment of 

a phenylpropane unit with a polyphenolic compound through 

a dioxin bridge was earlier witnessed in the flavono-lignoid, 

silybin, xanthono-lignoid, and kielcorin.5 Cleomiscosins are 

the members of coumarino-lignoids and represent a new class 

of lignans called coumarinolignans. The isolated compounds 

showed immunomodulatory effect on Swiss albino mice, 

weighing 16–21g with LD
50

 value .100 µM/L for racemic 

mixture of three cleomiscosin molecules viz., A, B, and C.4

In the present study, we screen out potential anti-inflam-

matory and immunomodulatory compound cleomiscosin-B 

from the isolated racemic mixture of three cleomiscosin 

isoforms through quantitative structure activity relationship 

(QSAR) and molecular docking studies. On the basis of 

binding affinity energy, possible immunomodulatory recep-

tors were identified. For the structural activity relationship, a 

multiple linear QSAR regression model was developed which 

successfully establishes the immunomodulatory activity of 

coumarinolignoids in accord with the in vivo experimental 

data.4 QSAR modeling also furnishes the activity depen-

dent structural descriptors and predicts the effective dose 

of other derivatives, thereby suggesting the possible toxic-

ity range. The relationship correlating measure of QSAR 

model was 99% (R2 = 0.99) and predictive accuracy was 

96% (RCV2 = 0.96). Druggability of studied compounds was 

evaluated using Lipinsky’s ‘Rule of Five’ and in silico ADME 

analysis through bioavailability filters. QSAR studies indi-

cate that dipole moment, steric energy, amide group count, 

lambda max UV-visible, and molar refractivity correlate well 

with anti-inflammatory and immunomodulatory activity. 

These results could offer useful references for understand-

ing mechanisms and directing the molecular design of lead 

compounds with improved immunomodulatory activity.

Materials and methods
isolation and in vivo immunomodulatory 
activity of coumarinolignoids
The chemical and structural determination of studied 

coumarinolignoid derivatives from C. viscosa have been 

studied using IR Spectra and nuclear magnetic resonance 

(NMR) techniques. Isolation and in vivo anti-inflammatory 

and immunomodulatory activity of coumarinolignoids 

from C. viscosa seeds have been carried out in the past by 

Bawankule et al.4 Anti-inflammatory and immunomodulatory 

activity of coumarinolignoids was studied in a lipopolysac-

charide- (LPS) induced toxicity model in Swiss albino mice, 

 weighing 16–21 g. Proinflammatory mediators such as cytok-

ines, interleukin-6 (IL-6), or tumor necrosis factor-α (TNF-α) 

and nitric oxide (NO) were estimated from culture superna-

tant obtained from peritoneal macrophages stimulated by LPS 

and anti-inflammatory mediator IL-4 was estimated from 

culture supernatant obtained from spleenocytes stimulated 

by concavalin-A (Con-A). For further confirmation, expres-

sions of inflammatory mediators from serum and mortality 

rate were studied in an LPS-induced toxicity model in mice. 

Proinflammatory mediator’s expression was significantly 

decreased in the treatment group in a dose-dependent man-

ner, whereas the anti-inflammatory mediator expression was 

significantly increased at 10 mg/kg treatment. Mortality rate 

was also significantly reduced in the treatment group in the 

LPS-induced toxicity model.4

structure cleaning, optimization,  
and molecular docking
The structures of coumarinolignoid derivatives were con-

structed using the Scigress Explorer v7.7.0.47 (Fujitsu Ltd., 

Tokyo, Japan) workspace module. The optimization of the 

cleaned molecules was done through MO-G computational 

application that computes and minimizes an energy related 

to the heat of formation. The MO-G computational applica-

tion solves the Schrodinger equation for the best molecular 

orbital and geometry of the ligand molecules. The augmented 

Molecular Mechanics (MM2/MM3) parameter was used for 

optimizing the molecules up to its lowest stable energy state. 

This energy minimization is done until the energy change is 

less than 0.001 kcal/mol or the molecules are updated almost 

300 times. However, the chemical structures of known drugs 

were retrieved through the PubChem compound database 

at NCBI (http://www.pubchem.ncbi.nlm.nih.gov). Crystal-

lographic 3D structures of Human’s target proteins were 

retrieved through Brookhaven protein databank (http://www.

pdb.org). The valency and hydrogen bonding of the ligands as 

well as target proteins were subsequently satisfied through the 

Workspace module. Hydrogen atoms were added to protein 

targets for correct ionization and tautomeric states of amino 

acid residues such as His, Asp, Ser, and Glu. Molecular dock-

ing of the drugs and the isolated coumarinolignoid derivatives, 

especially cleomiscosin molecules (A, B, and C), with the 

immunomodulatory receptors was done using the Fast-Dock-

Manager and Fast-Dock-Compute engines available with the 

Project-leader module of Scigress Explorer (7.7.0.47; Fujitsu 
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Ltd., Tokyo, Japan). For automated docking of ligands into 

the active sites we used genetic algorithm with a fast and 

simplified Potential of Mean Force (PMF) scoring scheme.6–7 

PMF uses atom types which are similar to the empirical force 

fields used in Mechanics and Dynamics. A minimization is 

performed by the Fast-Dock engine which uses a Lamarkian 

genetic algorithm (LGA) so that individuals adapt to the sur-

rounding environment. The best fits are sustained through 

analyzing the PMF scores of each chromosome and assigning 

more reproductive opportunities to the chromosomes having 

lower scores. This process repeats for almost 3,000 generations 

with 500 individuals and 100,000 energy evaluations. Other 

parameters were left to their default values. Structure-based 

screening involves docking of candidate ligands into protein 

targets, followed by applying a PMF scoring function to esti-

mate the likelihood that the ligand will bind to the protein with 

high affinity or not.7–8

selection of chemical descriptors  
for QsAr modeling
For identifying the immunomodulatory activity of the cou-

marinolignoid derivatives, QSAR study was performed. 

A total of 52 chemical properties (descriptors) were used 

for QSAR model development. A total of 61 drugs were 

involved and lethal dose was considered as the biological 

activity parameter of the compounds. Forward feed multiple 

linear regression mathematical expression was then used to 

predict the biological response of other derivatives. QSAR 

analysis is a mathematical procedure by which the chemi-

cal structures of molecules is quantitatively correlated with 

a well defined parameter, such as biological activity or 

chemical reactivity. For example, biological activity can be 

expressed quantitatively as in the concentration of a substance 

required to give a certain biological response. Additionally, 

when physicochemical properties or structures are expressed 

by numbers, one can form a mathematical relationship, or 

quantitative structure-activity relationship, between the two. 

The mathematical expression can then be used to predict the 

biological response of other chemical structures. QSAR’s 

most general mathematical form is:

Activity = f (physiochemical properties and/or 

 structural properties)

A QSAR model attempts to find consistent relationships 

between the variations in the values of molecular properties 

and the biological activity for a series of compounds which 

can then be used to evaluate properties of new chemical 

entities.9,23

Before the novel compounds can be used as potential 

drugs, the prediction of toxicity/activity ensures the cal-

culation of risk factors associated with the administration 

of that particular drug. A QSAR model ultimately helps in 

predicting these important parameters in the form of ED
50

 

or LD
50

 values. Some of the important chemical descriptors 

used in multiple linear regression analysis are: atom count 

(all atoms), atom count (carbon), atom count (hydrogen), 

atom count (oxygen), bond count (all bonds), conformation 

minimum energy (kcal/mole), connectivity index (order 0, 

standard), connectivity index (order 1, standard), connectiv-

ity index (order 2, standard), dipole moment (debye), dipole 

vector X (debye), dipole vector Y (debye), dipole vector Z 

(debye), electron affinity (eV), dielectric energy (kcal/mole), 

steric energy (kcal/mole), total energy (Hartree), group count 

(amine), group count (carboxyl), group count (ether), group 

count (hydroxyl), group count (methyl), heat of formation 

(kcal/mole), HOMO energy (eV), ionization potential (eV), 

lambda max UV-visible (nm), lambda max far-UV-visible 

(nm), LogP, LUMO energy (eV), molar refractivity, molecular 

weight, polarizability, ring count (all rings), size of smallest 

ring, size of largest ring, and solvent accessibility surface 

area (Å
2
).

In silico druggability and ADMe
For analyzing druggability, Lipinski’s rule of five pharma-

cokinetics filter was used as a drug likeness test.9 Briefly, 

this rule is based on the observation that most orally admin-

istered drugs have a molecular weight (MW) of 500 or less, 

a logP no higher than 5, five or fewer hydrogen bond donor 

sites, and 10 or fewer hydrogen bond acceptor sites (N and O 

atoms). In addition, the bioavailability of all derivatives or 

test compounds was assessed through topological polar 

surface area analysis. We calculated the polar surface area 

(PSA) by using termed topological PSA (TPSA), based on 

the summation of tabulated surface contributions of polar 

fragments (ChemAxon-Marvinview 5.2.6:PSA plugin).10 

Polar surface area (PSA) is formed by the polar atoms of 

a molecule. This descriptor was shown to correlate well 

with passive molecular transport through membranes and 

therefore allows prediction of transport properties of drugs 

and has been linked to drug bioavailability. Generally, 

passively absorbed molecules with a PSA . 140 Å2 are 

thought to have low oral bioavailability.11 Calculation of 

other important absorption, distribution, metabolism, and 

excretion (ADME) properties of studied compounds was 

done through QikProp software (version 3.2; Schrödinger, 

LLC, New York, NY).
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Results and discussion
chemical structure-activity  
relationship (sAr)
In the present work, 12 derivatives of natural coumarinoli-

gnoids were evaluated for their anti-inflammatory and immu-

nomodulatory activity through QSAR, ADME, and docking 

studies. Later results were compared with experimental in vivo 

activity data, which suggest that only three derivatives of 

coumarinolignoids (compound 1a, 1f, and 2a) have good 

anti-inflammatory and immunomodulatory activity. Results 

of the SAR study suggest in compound 1a (cleomiscosin-

A), the phenolic and alcoholic-OH groups in its molecule 

are responsible for its activity.3 The presence of a coumarin 

moiety based on other SAR studies on cleomiscosin-A (1a) 

has already been well established.3 Cleomiscosin-C (1f) has 

an extra -OMe group in the phenylpropanoid unit, and thus 

it showed less activity. It was found that the resonances for 

compound-1f were in good agreement with those for 1a, rather 

than those for 2a (cleomiscosin-B), especially in the chemical 

shifts for C-7’, C-8’, and C-9’, which were most affected by 

the structural difference between 1f and 2f. Compound 1f is 

a racemic compound and therefore has the same structural 

framework as 1a. Compound 2a (cleomiscosin-B) is the posi-

tion isomeric compound of 1a and shows striking resemblance 

with 1a in all its spectral properties, indicating a close structural 

similarity, thus become most active derivative. The two oxide 

linkages in compound 2a are at C-7 and C-8 as in 1a (Figures 

1–3). Later in vivo immunomodulatory biological activity of 

these compounds was tested on Swiss mice.4 Since in vivo 

activity was done on the racemic mixture of cleomiscosin A, 

B and C, compounds (compound 1a, 1f, and 2a), in the pres-

ent work we tried to explore the most active compound in the 

mixture based on QSAR modeling, molecular docking, and 

in silico ADME analysis. Results indicate that all compounds 

produce significant anti-inflammatory and immunomodulatory 

activity similar to that of the standard drug aristolochic acid. 

Compound 2a (cleomiscosin-B) exhibits strong anti-inflam-

matory and immunomodulatory activity, while compound 

1a (cleomiscosin-A) exhibits the least activity. In vivo dose-

dependent experimental data for immunomodulatory effect of 

studied compounds are summarized in Table 1.

Quantitative structure-activity 
relationship (QsAr) modeling
Structure activity relationship has been denoted by QSAR 

model showing significant activity-descriptors  relationship 

accuracy of 99% (R2 = 0.99) and activity prediction accu-

racy of 96% (RCV2 = 0.96). A total of 61 drugs were used 

for QSAR modeling against 52 chemical descriptors. Only 

five descriptors were found to be significant and seem to 

be responsible for in vivo immunomodulatory activity 

(Table 2). A forward feed multiple linear regression QSAR 

model was developed using leave-one-out approach for the 

prediction of biological activity of cleomiscosin molecules. 

Anti-inflammatory and immunomodulatory drugs fit well 

into this correlation, which intuitively seems very reason-

able. Results indicate that variations in stereochemistry 

do not markedly affect the binding energy of ligand and 

receptor. Therefore, we looked for a simpler descriptor for 

the prediction of biological in vivo activity for studied class 

of compounds. QSAR studies indicate that dipole moment, 

steric energy, amide group count, lambda max (UV-visible), 

and molar refractivity correlate well with biological activity 

(Table 2). The QSAR mathematical model equation derived 

through multiple linear regression method is given below, 

showing relationship between in vivo experimental activity 

(LD
50

) and dependent five chemical descriptors:

Predicted log LD
50

 (mg/kg) = −0.156436 * dipole moment 

(debye) −0.00118794 * steric energy (kcal/mole) +0.910351 * 

group count (amide) +0.0206362 * lambda max UV-visible 

(nm) −0.00834447 * molar refractivity −1.06753.

[RCV2 = 0.96 (96%) and R2 = 0.99 (99%)]

Since experimental in vivo activity was reported for 

racemic mixture of three cleomiscosin molecules A, B, and C 

(1a, 2a, and 1f) ie, 100 mg/kg (Table 1), we therefore aimed 

to predict the activity of each compound separately through 

QSAR modeling and identify the most active compound. 

We successfully developed the QSAR model for both anti-

inflammatory and immunomodulatory activity. More than 

50 known drugs with reported anti-inflammatory as well 

as immunomodulatory activity were included in the train-

ing data set for comparison and evaluation of prediction 

accuracy of QSAR model. Results showed that predicted 

activity of cleomiscosin molecules (A, B, and C) were 

comparable with experimental activity. Results indicate that 

cleomiscosin-B (2a) had higher immunomodulatory activity 

than cleomiscosin-C (1f) and cleomiscosin-A (1a). Moreover, 

based on the results of molecular docking, cleomiscosin-B 

showed much better binding energy with immunomodu-

latory receptors, and is therefore considered as the most 

active compound in the coumarinolignoids mixture. We also 

checked the compliance of isolated compounds to Lipinski’s 
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Prototype-1

R2

R2

R1O
OR1

CH2OR

ROH2C

OMe

O

O O O

O OO

O

MeO
MeO

MeO

Prototype-2 

Derivative R R1 R2 Name 

1a H H H Cleomiscosin-A*

1b H Me H Monomethyl ether

1c H Et H Monoethyl ether

1d Ac Ac H Diacetate

1e Ac Et H Monoacetate

1f H H OMe Cleomiscosin-C*

2a H H H Cleomiscosin-B*

2b H Me H Monomethyl ether

2c H Et H Monoethyl ether

2d Ac Ac H Diacetate

2e H H OH Hydroxy derivative

2f H H OMe Methoxy derivative

Figure 1 Molecular differences in different coumarinolignoids derivatives. Prototype 1 and 2 are showing fusion of coumarin moiety with the phenylpropanoid unit (c6c3). 
Bold face indicates active and isolated compounds. Asterisk indicates that compounds were isolated as racemic mixture.

1a 1f 2a

H3C
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O
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O
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Figure 2 Molecular structure of the purified active natural coumarinolignoids isoforms 1a (Cleomiscosin-A), 1f (Cleomiscosin-C), and 2a (Cleomiscosin-B) isolated from 
the seeds of C. viscosa.
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rule-of-five for drug likeness (Table 3). Results indicate that 

isolated compounds follow most of the ADME properties, 

thus leading to a good drug candidate for anti-inflammatory 

and immunomodulatory activity (Table 4). This helped in 

establishing the pharmacological activity of these isolated 

novel compounds for their use as potential drugs. Moreover, 

when we calculated the topological polar surface area (TPSA) 

as a chemical descriptor for passive molecular transport 

through membranes, results showed higher TPSA of iso-

lated compounds than standard drugs but within  acceptable 

range (Table 3). TPSA allows for prediction of transport 

properties of drugs and has been linked to drug bioavail-

ability. Generally, it has been seen that passively absorbed 

molecules with a TPSA . 140 Å2 are thought to have low 

oral bioavailability.11 On the basis of bioavailability scores, 

we concluded that isolated compounds have marked immu-

nomodulatory activity but lower bioavailability as compared 

to standard drugs. Isolated compound cleomiscosin-B (2a) 

and cleomiscosin-C (1f) showed comparatively low TPSA 

than cleomiscosin-A (1a).

Binding affinity of coumarinolignoids  
for immunomodulatory receptors
The effect of coumarinolignoids when studied in Swiss 

albino mice for anti-inflammatory and immunomodulatory 

activity showed a significant decrease in the expression 

of pro-inflammatory mediators such as IL-6, TNF-α, and 

nitric oxide in a dose-dependent manner. Also the expres-

sion of immunomodulatory mediator IL-4 was found to 

increase with cleomiscosin A, C, and B (1a, 1f, and 2a) 

Diclofenac (CID: 3033)
Cleomiscosin (1a)
Cleomiscosin (2a)
Cleomiscosin (1f)

Distance RMS (Å)
Compd.

1a 2a 1f Diclofenac

1a 0 1.612 1.173 0.7942

2a 1.612 0 1.893 1.3895

1f 1.173 1.893 0 1.390

Diclofenac 0.7942 1.306 1.390 0

Figure 3 superimposition of most favorable conformations of compounds 1a, 2a, 1f, and diclofenac docked into binding site of cOX-2 receptor showing common 
pharmacophore ring structure.

Table 1 In vivo experimental anti-inflammatory and immuno-
modulatory activity data of isolated mixture of cleomiscosin A, B, 
and c molecules

Treatment (in vivo oral dose) Response % Mortality*

Vehicle control 0 0/6
LPs control 100 6/6
coumarinolignoids (10 mg/kg) + LPs 17 1/6

coumarinolignoids (30 mg/kg) + LPs 67 4/6

coumarinolignoids (100 mg/kg) + LPs 50 3/6

Note: * = no. of female swiss albino mice (n = 6).
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Table 2 comparison of experimental and predicted in vivo activity data calculated through QSAR modeling based on the five most 
highly correlated chemical descriptors

Drug/compound Exp LD50 
(mg/kg)

Exp 
log LD50

Pred 
log LD50

Dipole moment 
(debye)

Steric energy 
(kcal/mol)

Group count 
(amide)

Lambda max 
UV-visible 
(nm)

Molar 
refractivity

Aristolochic acid 81 1.91 1.91 9.48 32.21 0 252.40 85.12
Azimexon 170 2.23 2.22 3.86 509.14 1 194.44 51.20
Bowellic acid 5000 3.70 3.70 2.61 114.53 0 311.39 133.70
ciamexon 130 2.11 2.15 4.02 251.32 0 223.73 56.96
cichoric acid 1750 3.24 3.24 4.50 −12.68 0 287.34 112.13
emetin 32 1.51 1.50 1.91 39.04 0 197.41 139.75
imemixon 150 2.18 2.16 5.94 134.83 0 220.48 28.47
isopteropodin 162 2.21 2.22 5.07 40.63 1 196.12 99.27
Levamisol 180 2.26 2.26 4.12 27.81 0 218.54 60.74
curcumin 2000 3.30 3.71 3.74 5.20 0 302.16 103.42
celecoxib 2000 3.30 1.39 4.29 52.90 0 191.16 90.98
calanolide 800 2.90 3.17 4.97 8.49 0 285.83 104.11
Acetylsalicylic 200 2.30 2.47 1.58 5.49 0 201.60 43.95
cortisol 5120 3.71 2.07 3.42 75.13 0 221.89 97.49
cyclophosphamide 200 2.30 2.39 4.01 −10.67 0 220.69 58.48
cleomiscosin-A 100* 2.00 1.50 6.28 5.29 0 211.49 97.37
cleomiscosin-B 1.44 4.27 5.87 0 193.71 97.37
cleomiscosin-c 1.49 5.18 5.76 0 205.71 103.84
Diclofenac 2.59 2.30 1.02 51.40 0 204.28 75.46

*Anti-inflammatory and immunomodulatory activity data for racemic mixture of cleomiscosin-A, B, and C.

Table 3 compliance of compounds with computational parameters of drug likeness

S No. Compd TPSA (Å2) Molecular weight Log P H-bond donors 
(OH group) 

H-bond acceptors 
(O atom) 

No. of rule of 
five violations

 1. Diclofenac 49.33 296.152 3.965 0 2 0
 2. 1a 91.29 386.357 1.822 2 8 0
 3. 1b 74.22 400.384 1.853 1 8 0
 4. 1c 83.45 414.411 2.196 1 8 0
 5. 1d 106.59 502.431 2.276 0 12 2
 6. 1e 63.22 472.448 2.596 0 10 0
 7. 1f 83.45 416.384 1.569 2 9 0
 8. 2a 83.45 386.357 1.821 2 8 0
 9. 2b 72.45 400.384 1.853 1 8 0
10. 2c 72.45 414.411 2.196 1 8 0
11. 2d 44.76 502.431 2.276 0 12 2
12. 2e 103.68 402.357 1.537 3 9 0
13. 2f 92.68 416.384 1.569 2 9 0
14. 3 101.91 460.48 2.554 0 9 0
15. 4 112.91 448.469 1.886 1 9 0
16. 5 106.91 386.357 1.722 2 8 0

 administration. The expressions of inflammatory  mediators 

from serum and mortality rate were studied in an LPS-

induced acute inflammation model.4 We predicted the 

orientations and binding affinities of caumarolignoids 

with proinflammatory proteins and others with the aim 

of determining which units interact better. We know that 

the innate immune recognition is mediated by a structur-

ally diverse set of receptors that belong to several dis-

tinct protein families. Among them are humoral proteins 

circulating in the plasma, endocytic receptors expressed 

on the cell  surface, and signaling receptors that can be 

expressed either on the cell surface or intracellularly.12 The 

proinflammatory cytokines such as IL-1, IL-6, or TNF-α 

have been found to contribute to a variety of inflamma-

tory condition such as ischemic tolerance,13 rheumatoid 

arthritis,14 nephritis,15 and liver diseases.16 Nitric oxide 

generated through inducible NO synthase (iNOS) enzy-

matic activity has been found to be participating in various 
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Table 4 compliance of compounds with computational parameters of ADMe

Principal  
descriptors

Levamisole Aristolochic acid Cleomiscosin-A Cleomiscosin-B Cleomiscosin-C (Range 95%  
of drugs)

solute molecular  
weight

204.289 341.276 386.357 386.357 416.384 (130.0/725.0)

solute dipole  
moment (D)

5.344 14.344* 8.366 10.631 7.109 (1.0/12.5)

solute total  
sAsA

427.221 503.667 591.932 598.957 619.895 (300.0/1000.0)

solute hydrophobic  
sAsA

161.747 156.135 233.265 223.883 282.155 (0.0/750.0)

solute hydrophilic  
sAsA

26.205 164.026 177.359 163.462 173.297 (7.0/330.0)

solute carbon  
pi sAsA

191.048 183.506 181.307 211.612 164.443 (0.0/450.0)

solute weakly  
polar sAsA

48.22 0 0 0 0 (0.0/175.0)

solute molecular  
volume (A^3)

698.974 900.195 1084.061 1076.777 1161.989 (500/2000)

solute vdW  
Polar sA (PsA)

17.591 110.831 117.094 111.88 125.462 (7.0/200.0)

solute no. of  
rotatable bonds

0 3 5 5 6 (0.0/15.0)

solute as donor –  
hydrogen bonds

0 1 2 2 2 (0.0/6.0)

solute as acceptor –  
hydrogen bonds

2 5.25 7.95 7.95 8.7 (2.0/20.0)

solute globularity  
(sphere = 1)

0.892 0.895 0.862 0.848 0.862 (0.75/0.95)

solute ionization  
potential (eV)

8.874 9.345 8.951 8.835 8.854 (7.9/10.5)

solute electron  
affinity (eV)

0.381 2.484* 1.546 1.393 1.681 (−0.9/1.7)

Polarizability  
(angstroms^3)

23.643 M 29.698 M 35.751 35.749 38.067 (13.0/70.0)

log P for  
hexadecane/gas

6.610 M 9.430 M 11.315 11.330 11.880 (4.0/18.0)

log P for  
octanol/gas

8.972 17.260 M 19.997 20.480 20.872 (8.0/35.0)

log P for water/gas 4.212 9.269 M 13.240 13.369 13.683 (4.0/45.0)
log P for  
octanol/water

3.108 2.395 1.723 1.798 1.913 (−2.0/6.5)

log s for aqueous  
solubility

−3.476 −3.281 −3.553 −3.664 −3.613 (−6.5/0.5)

log s – conformation 
independent

−3.064 −5.011 −4.962 −4.962 −5.262 (−6.5/0.5)

log K hsa serum  
protein binding

0.112 −0.194 −0.12 −0.15 −0.099 (−1.5/1.5)

log BB for  
brain/blood

0.462 −0.982 −1.329 −1.252 −1.352 (−3.0/1.2)

no. of primary  
metabolites

2 2 5 5 6 (1.0/8.0)

Predicted cns  
activity

++ – – – – –2 (inactive), 
+2 (active)

herg K+ channel  
blockage: log ic50

−4.198 −2.296 −4.627 −4.997 −4.545 (concern 
below −5)

Apparent caco-2  
permeability (nm/sec)

5589 69 206 279 225 (,25 poor, 
.500 great)

(Continued)
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Table 4 (Continued)

Principal  
descriptors

Levamisole Aristolochic acid Cleomiscosin-A Cleomiscosin-B Cleomiscosin-C (Range 95%  
of drugs)

Apparent MDcK  
permeability (nm/sec)

5839 35 89 124 98 (,25 poor, 
.500 great)

QP log Kp for skin  
permeability

−3.392 −3.608 −3.669 −3.307 −3.558 (−8.0 to −1.0, 
Kp in cm/hr)

Jm, max transdermal  
transport rate

0.028 0.058 0.023 0.041 0.028 (micrograms/
cm^2-hr)

Lipinski rule of 5  
violations

0 0 0 0 0 (maximum is 4)

Jorgensen rule of 3  
violations

0 0 0 0 0 (maximum is 3)

% human oral  
absorption in gi (±20%)

100 74 78 81 80 (,25% is 
poor)

Qual. model for  
human oral absorption

high high high high high (.80% is high)

Note: *indicates a violation of the 95% drug likeness range.

immune and inflammatory reactions. Immunomodulatory 

cytokines like IL-4, IL-10, and IL-13 are responsible for 

inhibiting the proinflammatory signaling and hence reduce 

inflammation. Recent advances in the studies of innate 

immunity have yielded better understanding of inflam-

matory mechanisms.

Toll-like receptors (TLRs) have been found to recog-

nize and respond to the moieties related to tissue injury and 

microbial infections.17 TLRs are mediators of various cell 

mediated and humoral immune response caused by differ-

ent agents or TLR specific ligands. Different TLRs have 

been found to respond to variety of pathogen-associated 

molecular pattern (PAMP) such as microbial agents, viral 

proteins, RNA, CpG DNA, bacterial lipopolysaccharides 

(LPS), and peptidoglycan. Signaling through TLRs results 

in inflammatory reactions mediated by various cytokines 

such as TNF-α, IL-6, IL-8, and IL-1ß. The inhibitors of 

TLR mediated signaling of inflammatory reactions are 

the decoy receptors, signaling inhibitors, and immu-

nomodulatory cytokines (IL-4, IL-10, and IL-13).13–18 

Additionally, cluster of differentiation (CD) plays a very 

important role in the various immunological cascades of 

reactions and acts as a costimulatory signaling molecule 

for the activation of several lymphocytes. This activity is 

responsible for producing numerous immune responses 

such as production of T-helper cells, T-cytotoxic cells, 

macrophage activation, and antibody production.19–22 

Results of molecular docking were comparable with the 

experimental results,4 which suggest that proinflamma-

tory mediator expression was significantly decreased in 

the coumarinolignoids treatment group in dose dependent 

manner. This suggests that oral administration of cou-

marinolignoids inhibits the proinflammatory mediators 

and enhances the production of the immunomodulatory 

mediator (Table 5; Figures 4–6).

Conclusion
Molecular modeling calculations accompanied by in vivo 

experimental data on Swiss albino mice were used to predict 

potential immunomodulatory compounds among natural cou-

marinolignoids namely, cleomiscosin-A (1a), cleomiscosin-C 

(1f), and cleomiscosin-B (2a) isolated from C. viscosa seeds. 

The obtained results indicate that all studied compounds pos-

sess significant anti-inflammatory and immunomodulatory 

activity after oral administration and that cleomiscosin-B 

possess higher immunomodulatory activity comparable to 

standard drugs eg, Levamisole and cyclophosphamide. The 

QSAR analysis established the immunostimulatory activity 

of the cleomiscosin molecules in a dose dependent manner, 

which is in accord with the in vivo data. Results of molecu-

lar docking combined with in vivo data for inhibition of the 

human proinflammatory mediators suggest that compound 

cleomiscosin-B is preferentially more active than others with 

strong binding affinity to most of the immuno-modulatory 

receptors.

Table 5 Molecular docking based identification of potential 
immunomodulatory targets of cleomiscosin molecules

Coumarinolignoids Potential target

cleomiscosin A (1a) TLr-4
cleomiscosin B (2a) inOs, cOX-2, cD14, iKK ß
cleomiscosin c (1f) cD86, cOX-1
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Figure 4 Binding affinity of cleomiscosin A, B, and C against toll-like receptors (TLRs). Docking scores (kcal/mol) in negative are acceptable.
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Figure 5 Binding affinity of cleomiscosin A, B, and C with various cluster of differentiation molecules (CD molecules) and T-cell receptor proteins. Negative docking scores 
(kcal/mol) are acceptable.
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Figure 6 Binding affinity of cleomiscosin A, B, and C with various immune reaction cascade proteins and inducible nitric oxide synthase (iNOS) protein. Negative docking 
scores (kcal/mol) are acceptable.
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Appendix
Appendix 1 List of training data set of drugs/compounds used 
in QSAR modeling. Anti-inflammatory and immuno-stimulatory 
drugs/compounds. Asterisk mark indicates that compounds 
retrieved from Pubchem database, ncBi, UsA (www.pubchem.
ncbi.nlm.nih.gov) 

S No. Compound Reference*  
(PubChem ID)

 1. Aristolochic acid ciD: 2236
 2. cichoric acid ciD: 5281764
 3. indometacin ciD: 3715
 4. Plumbagin ciD: 10205
 5. Berberine ciD: 2353
 6. emetin ciD: 10219
 7. isopteropodin ciD: 122813
 8. Bowellic acid ciD: 168928
 9. gelsemin ciD: 6713959
10. Azimexon ciD: 47294
11. ciamexon ciD: 71759
12. imemixon ciD: 68791
13. Methyl inosin monophasphate ciD: 454158
14. Diethyl dithiocarbamate ciD: 28343
15. Levamisol ciD: 26879
16. Urushiol ciD: 5478166
17. Ubiquinone ciD: 4462
18. saikosaponin ciD: 11968912
19. Tabernanthine ciD: 442136
20. helenalin ciD: 23205

Appendix 2 List of training data set of drugs/compounds used in 
QsAr modeling. immuno-suppressive drugs/compounds

S No. Drug/compound Reference

 1. 5-Fluorouracil Drug bank database
 2. cytarabine hydrochloride Drug bank database
 3. Busulfan Drug bank database
 4. Thalidomide Drug bank database
 5. saikosaponin http://articles.directorym.com/

chai_hu_-a853270.html
 6. Methyl cellosolve Drug bank database
 7. Butenolide Moniliformin and butenolide: 

effect on mice of high-level, 
long-term oral intake pdf

 8. Methoxyacetic acid Drug bank database
 9. carboxylic acid http://www.maximpowercorp.

com/_pdf/deerland%20project/
alberta%20environment/
ePeAdeerlandapplication_
appendix%20g_16oct07.pdf

10. Azodicarbonamide http://www.sciencelab.
com/xMsDs-
azodicarbonamide_F_c_c-
9922989

11. cyclophosphamide  
monohydrate

http://www.sciencelab.com/
xMsDs-cyclophosphamide_
monohydrate-9923635

(Continued)

Appendix 2 (Continued)
S No. Drug/compound Reference
12. gemcitabine/gemzar http://www.flexyx.com/g/

gemcitabine%20hcl.html

13. rapamycin (sirolimus) www.fermentek.co.il/MsDs/
rapamycin-MsDs.htm

14. Tacrolimus fujimycin Drug bank database
15. Melphalan Drug bank database
16. Dimethyl sulphate www.chembargains.com/

attachfile/msds-100234.doc
17. Thalidomide http://msds.chem.ox.ac.uk/Th/

thalidomide.html
18. radanil/benznidazol http://wisda.pharmazie.

uni-marburg. de/index.
html?http&&&wisda.pharmazie.
uni-marburg. de/dossier 
e.php?s _inn=benznidazol

19. Mizoribine http://www.msdshazcom.com/
web_docs/emd/doc/wcd00008/
wcd008a9.pdf

20. nitrosodimethyl urea http://hazard.com/msds/tox/f/
q140/q167.html

21. Azaserine http://www.msdshazcom.com/ 
WeB_DOcs/eMD/docs/
wcd0000b/wcd00b3d.pdf

22. Thiotepa http://wfldelearn.pssd.
com/binderview_Pss/
vault/001/001100.pdf. in the 
search for new anticancer 
drugs/sosnovsky g, Li sW

23. cytarabine hydrochloride http://msds.chem.ox.ac.uk/cY/
cytarabine_hydrochloride.html

24. cytarabine/cylocide http://www.labseeker.com/
chemicalbiotech/chem-
moreinfo. asp? catalog_ no 
=21384

25. cytoxan http://www.pfeist.net/ALL/
cytoxan.html

26. coformycin  
(deoxy-coformycin)

Purine metabolism in 
adenosine deaminase 
deficiency chapter authors:  
h Anne simmonds, A sahota, 
cF Potter, D Perrett,  
K hugh-Jones, Jg Watson

27. Thioinosine http://www.coleparmer.in/
catalog/msds/26568.htm

28. Leflunomide Drug bank database
29. Dibutyltin dichloride http://www.aladdin-reagent. 

com/msds/18969.htm
30. Azathioprine/imuran Drug bank
31. Mycophenolate mofetil Drug bank
32. Triamcinolone acetonide http://msds.chem.ox.ac.uk/Tr/

triamcinolone_acetonide.html
33. Lantadin/deflazacort http://www.labseeker.

com/cn/chemicalbiotech/
chemmoreinfo.asp?catalog_
no = 23945

(Continued)
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Appendix 2 (Continued)

S No. Drug/compound Reference

34. D-amethopterin hydrate/ 
D-methotrexate

http://www.aladdinreagent. 
com/msds/18362.htm

35. glimepiride http://wisda.pharmazie. uni-
arburg.de/ 
http://www.labseeker.com/ 
chemical biotech/chem-moreinfo.
asp?catalog_no = 26445

36. gusperimus themerckindex.cambridgesoft.
com/themerckindex/
themerckindex/reversed/
M0004582.txt

37. Ledertrexate http://www.flexyx.com/L/
Ledertrexate.html

38. hexabutylditin oxide https://fscimage.fishersci.com/
msds/08596.htm

39. Tetrandrine Pharmacology and applications 
of chinese materia medica 
books. google.co.in/books? 
isbn 9810236921

40. Pheanthine http://www.chemdrug.
com/databases/13_0_
vwdsmntgaekxfsfg.html  
http://www.chemcas.com/msds/
cas/msds87/1263–79–2_v2.asp

41. Methotrexate Drug bank database

List of chemical descriptors  
used in QSAR modeling
 1. Atom count (all atoms)

 2. Bond count (all bonds)

 3. Conformation minimum energy (kcal/mole)

 4. Connectivity index (order 0, standard)

 5. Connectivity index (order 1, standard)

 6. Connectivity index (order 2, standard)

 7. Dipole moment (debye)

 8. Dipole vector x (debye)

 9. Dipole vector y (debye)

10. Dipole vector z (debye)

11. Electron affinity (ev)

12. Dielectric energy (kcal/mole)

13. Steric energy (kcal/mole)

14. Total energy (Hartree)

15. Group count (aldehyde)

16. Group count (amide)

17. Group count (amine)

18. Group count (sec-amine)

19. Group count (carbonyl)

20. Group count (carboxyl)

21. Group count (carboxylate)

22. Group count (cyano)

23. Group count (ether)

24. Group count (hydroxyl)

25. Group count (methyl)

26. Group count (methylene)

27. Group count (nitro)

28. Group count (nitroso)

29. Group count (sulfide)

30. Group count (sulfone)

31. Group count (sulfoxide)

32. Group count (thiol)

33. Heat of formation (kcal/mole)

34. HOMO energy (eV)

35. Ionization potential (eV)

36. Lambda max visible (nm)

37. Lambda max UV-visible (nm)

38. Lambda max far-UV-visible (nm)

39. Lambda max far-UV-visible (nm)

40. Log P

41. LUMO energy (eV)

42. Molar refractivity

43. Molecular weight

44. Polarizability

45. Ring count (all rings)

46. Size of smallest Ring

47. Size of largest Ring

48. Shape index (basic kappa, order 1)

49. Shape index (basic kappa, order 2)

50. Shape index (basic kappa, order 3)

51. Solvent accessibility surface area (angstromsquare)

52. Formal charge

Details of some important 
descriptors
 1.  Molecular formula (MF): The molecular formula of 

the molecule.

 2.  Molecular weight (MW): The molecular weight of 

the molecule. 

 3. Log P: The octanol-water partition coefficient.

 4.  Solvent accessible surf area (SASA): The molecular 

surface area accessible to a solvent molecule.

 5.  Polarizability (P): The molecule’s average alpha 

polarizability.

 6.  Shape index order 3 (SI3): A topological index quan-

tifying the shape of a chemical sample. The shape index 

of order 3 (Kappa 3) quantifies the degree of branching 

toward the center of the  chemical sample.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/drug-design-development-and-therapy-journal

Drug Design, Development and Therapy is an international, peer-
reviewed open-access journal that spans the spectrum of drug design 
and development through to clinical applications. Clinical outcomes, 
patient safety, and programs for the development and effective, safe, 
and sustained use of medicines are a feature of the journal, which 

has also been accepted for indexing on PubMed Central. The manu-
script management system is completely online and includes a very 
quick and fair peer-review system, which is all easy to use. Visit 
http://www.dovepress.com/testimonials.php to read real quotes from 
published authors.

Drug Design, Development and Therapy 2010:4submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

186

Yadav et al

 7.  Shape index order 2 (SI2): A topological index quan-

tifying the shape of a chemical sample. The shape index 

of order 2 (Kappa 2) quantifies the degree of linearity or 

star-likeness of the chemical sample.

 8.  Shape index order 1 (SI1): A topological index quan-

tifying the shape of a chemical sample. The shape index 

of order 1 (Kappa 1) quantifies the number of cycles in 

the chemical sample.

 9.  Largest ring size (LRS): The number of atoms forming 

the largest ring in the chemical sample, or 0 if the chemi-

cal sample contains no ring of size 12 or less.

10.  Smallest ring size (SRS): Information about rings pres-

ent in the compound. Rings with more than 12 atoms 

are ignored. The number of atoms forming the smallest 

ring in the compound, or 0 if the compound contains no 

ring of size 12 or less.

11.  Ring count (RC): The number of rings present in 

the compound. Rings with more than 12 atoms are 

ignored. The number of rings with 12 or fewer atoms 

(All = all aromatic, small, 5-membered, 5-membered 

aromatic, 6-membered, 6-membered aromatic, large, 

large aromatic).

12.  Molar refractivity (MR): The molar refractivity of 

the compound.

13.  LUMO energy: The energy gained when an electron 

is added to the lowest unoccupied molecular orbital 

(LUMO).

14.  Lambda max far-UV-visible (LMFUV): The maxi-

mum absorption line in the far UV-visible spectrum 

(150–1000 nm).

15.  Lambda max-UV-visible (LMUV): The maxi-

mum absorption line in the UV-visible spectrum 

(190–1000 nm).

16.  Ionization potential (IP): The energy required to remove 

an electron from a molecule in its ground state.

17.  HOMO energy: The energy required to remove an 

electron from the highest occupied molecular orbital 

(HOMO).

18.  Heat of formation (HF): The energy released or used 

when a molecule is formed from elements in their stan-

dard states.

19.  Conformation minimum energy (CME): Energy calcu-

lated for an optimized conformation of the compound.

20.  Formal charge (FC): The net positive or negative 

charge on the molecule. Atom count (AC): The number 

of atoms.

21.  Bond count (BC): The number of bonds. Weak and 

ionic bonds are ignored.
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