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Introduction: As one of the most prevalent and malignant brain cancers, glioblastoma 
multiforme (GBM) presents a poor prognosis and the molecular mechanisms remain poorly 
understood. Consequently, molecular research, including various biomarkers, is essential to 
exploit the occurrence and development of glioma.
Methods: Weighted gene co-expression network analysis (WGCNA) was used to construct 
gene co-expression modules and networks based on the Chinese Glioma Genome Atlas 
(CGGA) glioblastoma specimens. Then, protein–protein interaction (PPI) and gene ontology 
(GO) analyses were performed to mine hub genes. RT-PCR and immunohistochemistry were 
employed to examine the expression level of GRPR, CXCL5, and CXCL11 in glioma 
patients.
Results: We confirmed two gene modules by protein–protein interaction networks. 
Functional enrichment analysis was performed to identify the significance of gene modules. 
Prognostic biomarkers GRPR, CXCL5, and CXCL11 related to the survival time of GBM 
samples were mined in The Cancer Genome Atlas (TCGA) dataset. qRT-PCR revealed that 
GRPR, CXCL5, and CXCL11 led to a significant increase in GBM sample compared to 
control.
Conclusion: In this study, we developed and confirmed three mRNA signatures (GRPR, 
CXCL5, and CXCL11) for evaluating overall survival in GBM patients. Our research assists 
in existing understanding of GBM diagnosis and prognosis.
Keywords: GBM, CGGA, TCGA, WGCNA, biomarkers

Introduction
Gliomas contain heterogeneous brain tumors which are traditionally classified 
based on distinct histological appearance and malignancy degrees.1 In 2016 
World Health Organization (WHO) classification, glioma have been assigned 
WHO grades I–IV where grade IV is regarded as glioblastoma.2 Glioblastoma 
multiforme (GBM) is known as the most aggressive primary intracranial tumor, 
with short median survival time, excessive proliferation, and invasiveness. Hence, 
developing efficient prognosis signatures is crucial for glioblastoma patients. Past 
molecular analyses of glioblastoma reported many well-known molecular markers, 
such as p53, PI3K, RAF, isocitrate dehydrogenase 1 and 2 (IDH1/2), epidermal 
growth factor receptor (EGFR), X-linked alpha thalassemia mental retardation 
syndrome gene (ATRX), platelet-derived growth factor receptor alpha (PDGFRA), 
and insulin-like growth factor 1 (IGF-1).3–7 Another prognosis marker, codeletion 
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of chromosome arms 1p and 19q (1p/19q loss), displays 
a better prognosis.8 Additionally, O(6)-methylguanine- 
DNA methyltransferase (MGMT) is associated with the 
prognosis of patients and sensitivity of temozolomide 
therapy.9 Lack of NF1 could cause increased tumor- 
associated microglia infiltration.10

Benefited from progresses of high-throughput sequen-
cing and bioinformatics, huge volumes of data make it 
easier to detect GBM-related hub genes, networks, and 
pathways. Nonetheless, identification of appropriate biolo-
gical features remains challenging. Weighted gene co- 
expression network analysis (WGCNA) serves as 
a system biology and statistical tool to describe the corre-
lation patterns among genes, as well as to recognize highly 
correlated modules.11 In this study, we performed 
WGCNA for RNA-Seq data derived from the Chinese 
Glioma Genome Atlas (CGGA) and reconstructed gene 
co-expression networks. Then, we identified glioblastoma- 
associated gene modules and delineated several prognostic 
biomarkers related to the survival time of glioblastoma 
samples both in CGGA and The Cancer Genome Atlas 
(TCGA) datasets.

The independent prognostic model were identified by 
Log rank test along with Kaplan–Meier survival analysis. 
The results found that GRPR, CXCL5, and CXCL11 has 
been put forward as biomarkers for further guiding malig-
nant glioma diagnosis and prognosis. Overall, this finding 
provides molecular considerations and points directions 
toward the molecular mechanism concerning 
gliomagenesis.

Materials and Methods
Data Acquisition
The gene expression data of 693 glioma samples was 
downloaded from the CGGA database (http://cgga.org. 
cn/). mRNA-sequencing procession methods were avail-
able for public in CGGA website (http://www.cgga.org. 
cn/about.jsp#mRNA_seq). In WGCNA, those genes 
without significant changes in expression between sam-
ples would be closely correlated. Next, the mRNA 
expression levels of 23,987 genes were calculated by 
variance analysis, and top 25% most variable genes 
(5,997) were subjected in the following steps. The clin-
ical metadata were also derived and filtered for useful 
information in Table S1 (including CGGA_ID, progres-
sion status, histology, grade, gender, age, overall survival 
(OS), censor, and IDH mutation status). Among them, 

WHO grade was closely associated with OS.12 The 
work flow diagram of this study was depicted in 
Figure S1.

Weighted Gene Co-Expression Network 
Analysis (WGCNA)
WGCNA was recruited via the R package ‘WGCNA’.11 

Firstly, RNA-Seq data were filtered to reduce outliers. In 
brief, soft threshold power of β (β=3) was established 
using scale-free topology criterion and the developed 
weighted adjacency matrix. Then, we chose the bottom- 
up algorithm, dynamic tree cut method, to recognize co- 
expression gene modules. To quantify module similarity 
and further identify biological interesting modules closely 
associated with tissues type, modules eigengenes (MEs) 
were estimated by the first principal component.13 

Statistical significance was determined by a correlation 
test p-value <0.05. The module P-reservation function in 
the ‘WGCNA’ package was applied to calculate the 
Z-summary to estimate the conserved modules.

Comprehensive Functional Enrichment 
Analysis
Functional enrichment analyses including GO (Gene 
ontology), KEGG (Kyoto Encyclopedia of Genes and 
Genomes), ClinVar, Wiki pathway, and REACTOME of 
candidate genes in modules were carried out using the 
ClueGO plug-in of Cytoscape and p-value<0.05 (received 
by two-sided tests based on hypergeometric distribution) 
was the cut-off criterion.14 Enriched ontological terms and 
pathways were visualized by Cytoscape 3.8.0.

Integration of the PPI Network and Hub 
Genes Selection
The protein–protein interaction (PPI) network in gene 
module was developed using the STRING 11.0 database 
(http://string-db.org).15 P-value was received by 
a hypergeometric test. A combined score >0.4 was set in 
the PPI networks. A protein interaction relationship net-
work table was visualized by Cytoscape 3.8.0 software 
(http://www.cytoscape.org/index.html).

The cytoHubba plug-in was employed to explore impor-
tant nodes using several topological algorithms, such as 
Degree, Maximum Neighborhood Component (MNC) and 
centralities based on shortest paths, including bottleneck 
(BN), betweenness, and radiality.16 Proteins with high 
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degree and betweenness might be important candidate genes 
which have key physiological regulatory functions.

Validation of Key Candidate Genes 
Expression Levels via RNA-Seq
The expression levels of core putative genes were next 
validated by CCGA online tools and the Gene Expression 
Profiling Interactive Analysis (GEPIA 2.0, http://gepia2. 
cancer-pku.cn/#index) which could analyze the RNA-Seq 
expression data of 9,736 tumors and 8,587 normal samples 
from the TCGA and the Genotype-Tissue Expression 
(GTEx) projects.17,18 Hub genes with |log2Fold Change 
(FC)| > 1 and p-value < 0.05 (received by one-way 
ANOVA) were considered as statistically significant in 
GEPIA. p-Value was tested by t-test in CGGA tools.

Patients and Glioma Tissue Collection 
and qRT-PCR
The study protocol was approved by the Clinical 
Research Ethics Committee from the affiliated hospital 
of Zunyi medical college, which was conducted in accor-
dance with the Declaration of Helsinki. (Zunyi, Guizhou, 
China). Written informed consent was obtained from all 
participants. GBM (n=25), LGG (n=25), and control 
brain tissue (n=25, sampled during surgical procedures 
for epilepsy) were obtained from the affiliated hospital of 
Zunyi medical college, immediately frozen in liquid 
nitrogen, and stored at −80°C until use.19 All tissues 
were subjected to quantitative reverse transcriptase PCR 
(qRT-PCR) to measure key candidate genes expression. 
The qRT-PCR reaction (10 µL) was formulated using the 
2X SYBR Green qPCR Master Mix (US Everbright® 

Inc., Suzhou, China). All qRT-PCRs were carried out on 
a CFX96 Touch™ Real-Time PCR Detection System 
(Bio-Rad, Hercules, CA, USA). The primer sequences 
designed by Primer 5.0 were shown in Table S2. The 
relative mRNA expression level was quantified using 
the 2-ΔΔCt method.

Protein Expression Level and Immune 
Infiltrates of Candidate Genes
The protein expression levels of hub genes in normal and 
glioma tissues were investigated. The images were 
obtained from the Human Protein Atlas (HPA, http:// 
www.proteinatlas.org) database. The purity-corrected 
Spearman’s rho of CXCL11, CXCL5, and GRPR expres-
sions with the abundance of immune infiltrates, including 

dendritic cells, CD4+ T cells, neutrophils, macrophages, 
and NK cell were detected in GBM patients on TIMER 
(Tumor Immune Estimation Resource) online tools 
(https://cistrome.shinyapps.io/timer).

Survival Analysis of Key Genes
We assessed the association between hub genes and glio-
blastoma overall survival (OS) and disease free survival 
(DFS) in TCGA cohort by GEPIA 2.0.17 Survival data of 
the GBM subgroup were extracted based on Kaplan–Meier 
analysis of OS and DFS. Set the median risk score as 
cutoff, all patients in the TCGA set were classified into 
a high-risk group and a low-risk group using Log rank test. 
The prognostic value of screened hub genes in GBM was 
also analyzed using PrognoScan database (http://dna00. 
bio.kyutech.ac.jp/PrognoScan/index.html).20

Statistical Analysis
The two-sided t-tests were used to perform differential ana-
lysis. All statistical tests and graphing were implemented via 
the R language, version 3.6.1. In the figures, statistical sig-
nificance was indicated as follows: *, **, and *** represent 
p-value < 0.05, 0.01, and 0.001, respectively.

Results
Co-Expression Network Construction 
and Module Mining
WGCNA was utilized to frame a gene co-expression net-
work to mine biologically meaningful gene modules. We 
selected top 25% (5,997/23,987) most variable genes 
which derived from 693 samples in CGGA datasets to 
construct a weighted gene co-expression network. 
Validation of co-expression modules might boost identifi-
cation of hub genes that maintain important functions. 
WGCNA defined gene modules as a set of genes with 
topological overlaps. Based on scale-free topology criter-
ion, the soft threshold power of β was set as 3 while scale- 
free topology model-fit R2 was equal to 0.87 (Figure S2). 
After establishing a hierarchical clustering dendrogram, 
co-expression modules were represented by branches of 
different colors in the dendrogram (Figure 1A and B).

To determine module preservation, the Z-summary score 
was next calculated. Modules with a Z-summary score > 10 
were considered as preserved.21,22 Ultimately, 10 gene mod-
ules were distinguished with module size ranging from 54 
genes in magenta module to 2,288 genes in turquoise module 
(Table S3). The genes which were not categorized into any 
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gene modules finally were assigned to grey module (Figure 1C 
and Figure S3). With ranked in a descending order of Z-score, 
top five modules were turquoise (Z-score=39.57), 
brown (Z-score=37.68), blue (Z-score=37.10), yellow 
(Z-score=24.04), and grey (Z-score=20.28) modules. This 
observation indicated that these modules might provide better 
knowledge underlying the pathological mechanisms of GBM.

To exploit the relationship between gene modules and 
clinical indexes, the module eigengene (ME) was developed 
as the overall gene expression level of corresponding mod-
ules. We calculated correlations with ME and clinical 

phenotypes, such as primary and recurrent glioma in WHO 
II, WHO III, and WHO IV grades (Figure 1D). Genes in 
blue and yellow modules possessed similar expression pat-
terns which were significantly accumulated in grade IV 
(GBM) and declined in other grades. Moreover, hierarchical 
clustering analysis of modules found that the blue and yel-
low modules were on the same branch (Figure 1B). The 
findings illustrated that the blue and yellow modules exhib-
ited similar gene expression modes. Thus, we focused on 
analysis of the blue and yellow modules in the follow-up 
analyses.

A B

DC

Figure 1 Weighted gene co-expression network in glioma. (A) Hierarchical clustering dendrogram of genes based on co-expression network analysis. Each piece of the 
leaves (short vertical lines) corresponds to individual gene. The branches correspond to modules of highly interconnected genes. Different colors below the dendrograms 
represent different gene modules. (B) Dendrogram of consensus module eigengenes. (C) The correlation coefficient heatmap of the co-expression module genes. Each 
bright spot corresponds to the correlation between each gene and other genes. The deeper the colors, the stronger is the connectivity between the two genes in the 
corresponding row and column. (D) Correlation between the gene module and clinical traits. The clinical traits include different WHO grades of glioma. The correlation 
coefficient in each cell represented the correlation between the gene module and the clinical traits, which decreased in size from red to blue. The corresponding P value is 
also annotated.
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Functional Enrichment Analysis of Gene 
in Modules
For a more in-depth understanding of genes in two 
candidate modules, GO functional enrichment, KEGG/ 
wiki/REACTOME pathway enrichment, REACTOME 
reaction enrichment, and CLINVAR human diseases 
enrichment analyses were conducted using ClueGO 
plug-in of Cytoscape software (Table S4).21,22 As 
shown in Figure 2A, genes in blue module were parti-
cularly enriched in neuroactive ligand-receptor interac-
tion, intrinsic component of presynaptic membrane, taste 
transduction, and Golgi cis cisterna. Meanwhile, genes 
in yellow module were mainly involved in detection of 
chemical stimulus related to sensory perception of bitter 
taste, and hematopoietic stem cell differentiation 
(Figure 2B).

Hub Genes and Pathway Determination 
with PPI and Modular Analyses
Protein–protein interaction relationships of proteins in two 
modules were established using STRING. Finally, 164, 73 
nodes and 79, 32 edges in blue (PPI enrichment 
p-value=6.62e-14) and yellow (PPI enrichment 
p-value=6.01e-08) modules were obtained, separately 
(Figure 3A and B). The degree of connectivity of genes was 
calculated using the cytoHubba plug-in of Cytoscape software. 
Genes with top 10 degree of connectivity were displayed in 
Figure 3C and D. Considering the degree and betweenness, 
HTR1B, P2RY4, GRM5, GRPR, and NMBR in blue module 
network and CXCL11, CXCL5, and IL5 in yellow module 
network were selected as hub genes (Table S5). Those candi-
date genes possibly have an important impact in glioma pro-
gression and can be regarded as diagnostic biomarkers.

A

B

Figure 2 Functional Enrichment analysis of genes in blue (A) and yellow (B) modules. Different color displayed distinct GO terms. Statistical significance was derived by 
two-sided tests.
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Transcriptional Expression Patterns of Key 
Candidate Genes in TCGA and GTEx
To investigate if the eight hub genes were potential prognos-
tic biomarkers of glioma, we first compared these mRNA 
expression levels in GTEx dataset containing 207 normal 
tissue and in TCGA cohort which comprised 163 GBM and 
518 LGG specimens. Consequently, we found that GRPR, 
CXCL5, and CXCL11 mRNA were more abundant in glioma 
than in control specimens both in GBM and LGG (Figure 
S4A-C). Whereas, mRNA expression of other five genes did 
not show significant difference even enriched highly in con-
trol compared to glioma samples. After checking the expres-
sion patterns about different progression status of glioma of 
these three central genes in CGGA database, the findings 
implicated that CXCL11 expression was relatively higher in 

recurrent than primary type significantly, especially in 
glioma and WHO II grade (Figure 4A and B and S4G).

As GRPR, CXCL5, and CXCL11 were mainly up- 
regulated in GBM, we explored these expression across 
distinct subtypes according to Verhaak’s classification by 
GEPIA 2.0.23 We compared the mRNA levels between 
four molecular stratifications, namely classical (n=40), 
mesenchymal (n=55), neural (n=28), and proneural (n=37). 
GRPR and CXCL11 mRNA were enriched in classical glio-
blastoma in comparison with other subtypes (Figure S4D 
and S4F). Meanwhile, mesenchymal glioblastoma highly 
expressed CXCL5 than other subtypes (Figure S4E). 
Immunohistochemical analysis was also investigated and 
the results revealed that the protein expression level of 
CXCL11 was accumulated in glioma tumor tissues compared 
to non-tumor tissues. Remarkably, we noted that protein 

DC

A B

Figure 3 Module visualisation and Identification of hub genes. Visualisation of the gene co-expression network of the blue (A) and yellow modules (B) were generated using 
Cytoscape. Top 10 hub genes in blue (C) and yellow (D) modules were calculated by cytoHubba ranked by degree. The darkness of red in nodes represents the depth of 
degree.
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expression of CXCL5 showed the opposite trend which need 
more investigation. Immunohistochemistry Images were 
captured from the Human Protein Atlas (http://www.protei 
natlas.org) online database (Figure 4C and D).

Survival Prediction of GBM Patients
To get an indication of the relationship between higher 
GRPR, CXCL5, and CXCL11 mRNA abundance and survival 
situation of glioma patients, we analyzed Kaplan–Meier sur-
vival curves of the all glioma cohorts in TCGA. The results 
suggested that a high level of GRPR mRNA was associated 
with clearly shorter overall survival (OS) as well as disease 
free survival (DFS) (Figure 5A). Similarly, high expressions 
of CXCL5 and CXCL11 were linked with a worse prognosis 
of glioma patients (Figure 5B and C).

To further confirm the prognostic roles of GRPR, 
CXCL5, and CXCL11, two GEO (Gene Expression 

Omnibus) datasets (GSE4412 and GSE7696) of GBM and 
glioma were evaluated by PrognoScan database.20 As shown 
in Figure S5, the higher expression of these hub genes might 
figure a worse OS in GBM and glioma, especially for 
CXCL5 and CXCL11 whose showed statistical significance. 
These findings offered evidence for the prognostic power of 
the candidate implications GRPR, CXCL5, and CXCL11.

Association of Immune Infiltration Level 
and Immune Checkpoints
Tumor infiltrating lymphocytes (TILs) have been found to be 
an independent predictor of survival in cancers.24 Thus, we 
researched whether GRPR, CXCL5, and CXCL11 expression 
was correlated with immune infiltration levels in GBM by 
TIMER tools. The findings implied that CXCL5 and CXCL11 
had marginal positively associations with infiltrating levels of 

A B

DC

Figure 4 Expressions patterns about different grades and progression status of CXCL5 (A) and CXCL11 (B) in CGGA. Expression levels of CXCL5 (A) and CXCL11 (B) 
among normal, GBM and LGG samples. as well as in different molecular subtypes of GBM. P-value was tested by t-test. Immunohistochemical analyses of CXCL5 (C) and 
CXCL11 (D) protein expression levels in normal brain tissues (cerebral cortex) and glioma cancer specimens. Images were obtained from the HPA resource.
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A

B

C

Figure 5 Survival curves between groups with low and high GRPR (A), CXCL5 (B), and CXCL11 (C) expressions in TCGA. The red and green lines represent cases with high 
and low expressions, separately. The X axis indicates survival time (months) and the Y axis indicates the present survival (%).
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neutrophil, B and dendritic cell, while negatively correlated 
with CD8+ T cell and CD4+ T cell in GBM. GRPR expression 
had relatively negative relationships with these immune cells 
except B cell and CD8+ T cell (Figure 6A–C). Then, Pearson 
correlation analysis was performed between three candidates 
and several immune checkpoints, which have been developed 
as therapeutic targets in clinical characterization.25 As shown 
in Figure 6D, the outcomes revealed that CXCL11, CXCL5, 
and GRPR was positively associated with 20 checkpoint mem-
bers, suggesting possible synergistic effects of the hub genes 
with immune checkpoints, especially with CD28, CD80, 
IDO1, and PDCD1LG2. Notably, co-expression of PD-1 
with CXCL5 was consistent with the finding in past study.26

Verification of Functional Roles Using 
qRT-PCR
To gain better insight on mRNA expression levels of three 
core DEGs in vivo, qRT-PCR validation was performed 
based on our study cohort patients. The Clinical data of 75 

patients were tabulated in Table S6. The qRT-PCR results 
revealed that the relative expression of GRPR, CXCL5, 
and CXCL11 were distinctly increased in the glioma 
group as compared to the control treatment (Figure 7A– 
C). Moreover, the same trends were observed between 
LGG and control specimens (Figure 7D–F). To sum up, 
the qRT-PCR results were consistent with our integrative 
meta-analysis, suggesting the critical role of these core 
DGEs might play necessary roles in the mechanism of 
glioma, especially in GBM.

Discussion
Glioblastoma multiforme (GBM) is a common aggressive 
form of primary brain tumor, characterized by rapid cell 
proliferation, resistance to apoptosis, and extensive 
invasion.27 Due to resistance to currently available thera-
peutic regimens, the prognosis for patients with GBM is 
remarkably poor. As a key factor of glioma classification, 
glioma grade is involved in metastasis and tumor relapse 

A

B

C

D

Figure 6 Correlation of CXCL5 (A), CXCL11 (B), and GRPR (C) expressions with immune infiltration level in GBM. (D) Corrplot map of three DEGs and immune 
checkpoint markers in TCGA-GBM database.

Cancer Management and Research 2021:13                                                                                     https://doi.org/10.2147/CMAR.S310346                                                                                                                                                                                                                       

DovePress                                                                                                                       
5485

Dovepress                                                                                                                                                              Cao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=310346.docx
https://www.dovepress.com
https://www.dovepress.com


while usually estimated by tumor imaging and biopsy.28 

To be a supplement to existing techniques, molecular 
biomarker analysis has a wide application perspective. 
Although there are several published studies using 
WGCNA on glioma, most of them has focused on the 
relationship between module and traits like age, gender, 
overall survival, IDH mutation, and so on.21,29–31 In this 
case, our study paid more attention to identify genes which 
are clustered with primary and recurrent types of four 
WHO grade I to IV. Similarly, Mukherjee’s work has 
analyzed relationship between module and WHO grade II 
to IV.32 The enriched GO terms in above previous research 
contain negative regulation of response to cytokine stimu-
lus, fall in line with our findings about chemokines.

Chemokines, a multifunctional type of small-conserved 
proteins, are reported to be essential for many biological 
processes, especially tumor cell proliferation, migration 
and invasion.33,34 Chemokines and its receptors have 
been found to dictate cancer development and progression 
through epithelial-mesenchymal transition.35 Chemokines 

act as principal components which express at tumor site 
and interact with immune cells.36 For sample, CXCL11 is 
elevated in diverse solid tumors mediating tumor progres-
sion, metastasis, and lymphocyte infiltration.37 Inhibition 
of CXCL11 by neutralizing antibodies might prominently 
decrease the degree of morphine tolerance and attenuate 
the activation of astrocytes.38 As for another important 
chemokine CXCL5, overexpressed CXCL5 is found in 
various cancers and also facilitates tumor progression 
and metastasis.39,40 CXCL5 promotes the metastatic poten-
tial of cells by upregulation of Snail in breast cancer.41 In 
nasopharyngeal carcinoma, CXCL5 induces epithelial- 
mesenchymal transition (EMT) and activates neutrophils 
to promotes nasopharyngeal carcinoma, lung, and gastric 
cancer metastases.42,43 Furthermore, CXCL5 from cancer- 
related fibroblasts enhances PD-L1 expression in color-
ectal carcinoma and melanoma cells.26 Of note, recent 
studies demonstrate that CXCL chemokines play impor-
tant roles in glioblastoma biology, involved in cell prolif-
eration, death and migration.44 CXCL5 stimulates glioma 

A B C

D E F

Figure 7 GRPR (A), CXCL5 (B), and CXCL11 (C) expression levels correlated in glioma tissue. qRT-PCR analysis of GRPR (A and D), CXCL5 (B and E), and CXCL11 (C and 
F) in GBM (n=25), LGG (n=25), and control brain tissues (n=25). P-value was tested by t-test.
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cells proliferation and migration in autocrine- and para-
crine-dependent ways.45

Besides, gastrin-releasing peptide receptor (GRPR) 
acts as proliferative and inflammatory factors in living 
systems.46 The activation of GRPR promotes cell prolif-
eration, whereas GRPR antagonists induce antiprolifera-
tive effects in both in vitro and in vivo experimental GBM 
models. In addition, according to the knockdown of GRPR 
induces senescence in GBM cells, GRPR have the poten-
tial to serve as a therapeutic target in brain tumors.47

These studies implicate that GRPR, CXCL11, and 
CXCL5 play diverse roles in oncoma development and 
progression. As mentioned, GRPR, CXCL11, and CXCL5 
are the centermost upregulated gene in our network ana-
lysis. Expression of GRPR, CXCL11, and CXCL5 were 
higher in glioma patients than health control. Thus, our 
findings that GRPR, CXCL11, and CXCL5 are tightly 
linked to glioma is consistent with above earlier reports, 
suggesting our analysis method is reliable and practical. 
Moreover, expression of CXCL11 involves in mitogen- 
activated protein kinase (MAPK) pathway,48 known as 
hyperactivated by genetic alteration in GBM. We conse-
quently investigated the Pearson correlation between the 
expression of three candidate genes and that of Top 10 
altered genes in GBM (Figure S6). The significant associa-
tions were observed between CXCL11 with EGFR, CXCL5 
with ATRX and PTEN, as well as GRPR with FLG, NF1, 
TP53, and TTN. The observations implied high expression 
of these DEGs might mirror the existence of the oncogenic 
mutations frequently existed in GBM. We next tested 
whether these DEGs have an intrinsic relationship in 
glioma by analyzing the STRING database. We found 
that there is one significant connection between CXCL11 
and CXCL5. However, there are some limitations need to 
be addressed in this study. Since the glioma patient sam-
ples are usually hard to get, we just checked a small cohort 
of 25 GBM patients in this study. Functional verification 
of the selected genes in large-scale patient samples would 
support our results better. Moreover, the knockout mouse 
model of each candidate DEG will facilitate a clear under-
standing of its role in glioma pathological mechanisms.
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