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Purpose: Type 2 diabetes mellitus (T2DM) increases the risk of ischemic stroke and poor 
prognosis. This study aimed to identify molecular mechanisms that are dysregulated in 
T2DM-associated ischemic stroke and candidate genes that might serve as biomarkers.
Methods: The top 25% variance genes in the GSE21321 and GSE22255 datasets were 
analyzed for coexpression. The differentially expressed mRNAs (DEmRs) between patients 
with T2DM or ischemic stroke and controls were analyzed. Then, the union of overlapping 
coexpressed genes and overlapping DEmRs was analyzed. The miRNAs differentially 
expressed in T2DM-associated ischemic stroke were also analyzed. CIBERSORT was used 
to evaluate the levels of infiltration by immune cells in T2DM-associated stroke.
Results: Thirteen coexpression modules were identified in T2DM and 10 in ischemic stroke, 
and 594 module genes were shared between the two conditions. A total of 4452 mRNAs 
differentially expressed between T2DM patients and controls were identified, as were 2390 
mRNAs differentially expressed between ischemic stroke and controls. The 771 union genes 
were enriched mainly in immune-related biological functions and signaling pathways. 
UBE2N, TGFB3, EXOSC1, and VIM were identified as candidate markers. In addition, 
we identified miR-576-3p as having the most regulatory roles in both T2DM and ischemic 
stroke. Mast cell activation was significantly down-regulated in T2DM but up-regulated in 
ischemic stroke.
Conclusion: These findings provide numerous testable hypotheses about the pathways 
underlying T2DM-associated ischemic stroke, which may help identify therapeutic targets.
Keywords: type 2 diabetes mellitus, ischemic stroke, miRNAs, candidate gene, immune 
response

Introduction
Diabetes mellitus, the most common form of which is type 2 diabetes (T2DM), is 
a major public health problem. It is estimated that the number of people in the 
world with the condition will reach 642 million by 2040.1,2 The rising prevalence of 
diabetes mellitus means rising prevalence of numerous health complications such as 
retinopathy, nephropathy, neuropathy, cognitive impairment and ischemic stroke.3 

Ischemic stroke is the leading cause of death and disability worldwide, affecting 
about 30 million people.4 It is the second most frequent cause of death in the world, 
after heart disease.5

T2DM increases the risk of ischemic stroke by nearly 2 to 3 times, thereby 
increasing the risk of associated mortality.6–8 Ischemic stroke can cause more 
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serious micro- and macrovascular damage when it occurs 
in a diabetes background, profoundly impacting multiple 
organs and aggravating pathological cascades after stroke.9 

Diabetes can aggravate the acute inflammatory response 
after ischemic stroke and increase levels of inflammatory 
factors in the brain.10 Ischemic stroke can induce or aggra
vate cerebrovascular damage, especially in diabetic 
patients under 65 years old.11

Antihypertensive, antiplatelet, and hypolipidemic 
agents can reduce the risk of ischemic stroke in diabetic 
patients,12 but even with treatment, individuals with dia
betes are at higher risk of cerebrovascular accidents than 
individuals without diabetes.13 In fact, up to 80% of indi
viduals with diabetes eventually die of macrovascular 
complications.14 The clinical symptoms of ischemic stroke 
appear late in the course of the disease, and given the 
limited therapeutic options, effective preventive treatments 
and early diagnostic markers are urgently needed.15 In 
addition, more effective risk stratification may lead to 
better management and even prevention of ischemic 
stroke.16

Identifying molecular pathways involved in ischemic 
stroke means examining gene expression, reflected in 
levels of mRNAs, but also levels of microRNAs 
(miRNAs). These regulatory molecules interact with the 
3ʹ untranslated region (3ʹUTR) of the target mRNA to 
inhibit translation.17 Various stages of cerebral ischemic 
injury and various types of brain injury involve 
miRNAs.18,19 In fact, ischemic stroke has been linked to 
dysregulation of miRNAs, which have been proposed as 
potential therapeutic strategies.10,20

The present study aimed to explore molecular mechan
isms and potential markers of ischemic stroke in patients 
with T2DM, based on analysis of differential mRNA and 
miRNA expression profiles in patients and controls.

Materials and Methods
Data Collection
All data were obtained from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/ 
geo). The GSE21321 dataset included mRNA expression 
profiles derived from blood samples of nine men with 
T2DM and eight men with no history of T2DM based on 
the GPL6883 platform. The GSE21321 dataset included 
miRNA expression profiles derived from blood samples of 
nine men with T2DM and 10 healthy men with no history 
of T2DM, based on the GPL10322 platform. The 

GSE22255 dataset included mRNA expression profiles 
derived from peripheral blood mononuclear cells from 20 
ischemic stroke patients and 20 sex- and age-matched 
controls, based on the GPL570 platform. The 
GSE110993 dataset included miRNA expression profiles 
derived from peripheral blood samples from 20 ischemic 
stroke patients and 20 matched healthy control subjects 
according to age and sex, based on the GPL15456 
platform.

Construction of a Coexpression 
Network
Weighted gene co-expression network analysis (WGCNA), 
a method that identifies gene coexpression networks based 
on topological overlap,20 was performed on the top 25% of 
genes explaining the observed expression differences in the 
GPL6883 and GPL570 platforms. Coexpression network 
modules were constructed using the WGCNA package in 
the R suite,21 as follows. Pairwise correlations between 
genes were used to generate a similarity matrix, then soft 
threshold power values were calculated to generate a scale- 
free network topology. The topological overlap matrix 
(TOM) similarity function20 was used to convert adjacency 
values into a TOM matrix, which was used to cluster genes 
into different modules.

Analysis of Differential Expression
The limma package inR22 was used to identify mRNAs 
and miRNAs differentially expressed between T2DM 
patients and controls in the GSE21321 dataset, as well as 
mRNAs differentially expressed between ischemic stroke 
patients and controls in the GSE22255 dataset. The 
DESeq2 package inR23 was used to identify miRNAs 
differentially expressed between ischemic stroke patients 
and controls in the GSE110993 dataset. Differences asso
ciated with P < 0.05 were considered significant and 
included in subsequent analyses.

Functional and Pathway Enrichment of 
Differentially Expressed mRNAs
The clusterProfiler package inR24 was used to examine 
functional enrichment of differentially expressed mRNAs 
based on Gene Ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG). The GO 
terms included biological processes (BPs), cellular com
ponents (CCs), and molecular functions (MFs). 
Enrichment results were visualized using the ggplot2 
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package in R.25 Gene set enrichment analysis (GSEA) was 
carried out for mRNAs differentially expressed in both 
T2DM and ischemic stroke using the fgsea package in 
R.26 Enrichment was considered significant if it was asso
ciated with P < 0.05.

CIBERSORT Analysis of Immune Cell 
Infiltration
CIBERSORT (https://cibersort.stanford.edu/) was used to 
assess the levels of infiltration by 22 types of immune cells 
in T2DM and ischemic stroke. Immune cells expressed as 0 
were excluded from the analysis. The limma package in 
R was used to calculate differences in infiltration levels 
between T2DM patients and controls, as well as between 
ischemic stroke patients and controls. We also explored 
potential correlations between hub gene expression and 
immune cell infiltration using Pearson correlation analysis. 
Results associated with P < 0.05 were considered significant.

Prediction Genes Regulated by 
Differentially Expressed miRNAs
The target genes regulated by differentially expressed 
miRNAs were predicted using Targetscan (http://www.tar 
getscan.org/vert_72/). Targets were defined as those with 
a total context++ score greater than 0.1. These target genes 
were assessed for their ability to diagnose ischemic stroke 
in T2DM patients based on the area under the receiver 
operating characteristic curve (AUC), which was calcu
lated using the pROC package in R.27

Results
Construction of Coexpression Network 
Linking T2DM and Ischemic Stroke
To explore gene expression relationships between T2DM 
and ischemic stroke, we performed WGCNA (Figure 1). In 
the case of T2DM, 4658 genes explaining the top 25% in 
observed expression variance were assigned to 13 coex
pression modules based on a soft power threshold β = 20 
(Figure 2A) and the TOM matrix (Figure 2B). In the case 
of ischemic stroke, 5116 genes were assigned to 10 coex
pression modules based on a soft power threshold of β = 
20 (Figures 2C and D). A total of 594 genes were found to 
overlap between the coexpression modules in T2DM and 
ischemic stroke, and these genes were considered to be 
associated with both conditions.

Differentially Expressed mRNAs in T2DM 
and Ischemic Stroke
A total of 4452 mRNAs were differentially expressed 
between T2DM patients and controls (Figure 3A), of 
which 1878 were up-regulated and 2574 down-regulated 
in the disease. A total of 2390 mRNAs were differentially 
expressed between ischemic stroke patients and controls 
(Figure 3B), of which 1408 were up-regulated and 982 
down-regulated in the condition. We identified 70 genes 
that were up-regulated in both T2DM and ischemic stroke, 
and 107 that were down-regulated in both conditions 
(Figure 3C). We defined these genes as potentially asso
ciated with T2DM and ischemic stroke.

Functional Enrichment of Genes 
Associated with T2DM and Ischemic 
Stroke
To begin to elucidate biological processes and signaling 
pathways that might be associated with both T2DM and 
ischemic stroke, we performed enrichment analysis on 
the union genes which were common across coexpres
sion modules in the two conditions, as well as on the 
genes differentially expressed in the two conditions. 
These genes were enriched for the following GO BPs: 
neutrophil activation, regulation of leukocyte activation, 
and T cell activation (Figure 4A). The genes were 
enriched for the following CCs: adherens junction, 
receptor complex, and membrane region (Figure 4B). 
They were enriched for the following MFs: protein het
erodimerization, cell adhesion molecule binding, and 
cytokine receptor binding (Figure 4C). The genes were 
significantly enriched in the following KEGG signaling 
pathways: cytokine-cytokine receptor interaction, hema
topoietic cell lineage, and Th17 cell differentiation 
(Figure 4D).

GSEA showed that genes differentially expressed in 
T2DM were involved in neutrophil extracellular trap for
mation and bacterial invasion of epithelial cells 
(Figure 4E). Genes differentially expressed in ischemic 
stroke were involved in cytokine-cytokine receptor inter
action and MAPK signaling (Figure 4F).

Construction of an miRNA Regulatory 
Network
We identified 29 miRNAs that were differentially 
expressed between T2DM patients and controls and 4446 
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differentially expressed between ischemic stroke patients 
and controls. The two sets of miRNAs shared four 
miRNAs: hsa-miR-299-3p, hsa-miR-320a, hsa-miR-576- 
3p, and hsa-miR-665. These four miRNAs were predicted 
to target the mRNAs of 134 union genes. These genes 
were significantly enriched in 83 KEGG pathways, pri
marily apoptosis, FoxO signaling, and cytokine-cytokine 
receptor interaction (Figure S1).

The following seven genes in the GSE21321 and 
GSE22255 datasets were involved in the four signaling 
pathways mentioned above, and their expression levels 
were able to predict T2DM and ischemic stroke with an 
AUC > 0.75 (Figure 5A): UBE2N, TGFB3, EXOSC1, 
VIM, PTGS2, IL10RB, and CXCL3. In addition, the 
expression of the first four genes was altered in the same 
direction in both T2DM and ischemic stroke, so they were 
considered candidate markers (Figure 5B).

Based on these results, we generated a regulatory net
work of miRNAs in the two conditions (Figure 5C). In this 
network, miR-576-3p emerged as regulating the most tar
get genes and affecting the most KEGG pathways.

Immune Cell Infiltration in T2DM and 
Ischemic Stroke
The enrichment analysis suggested that genes differen
tially expressed in T2DM and ischemic stroke were 
enriched in immune-related functions. Therefore, we com
pared levels of immune cells in T2DM patients 
(Figure 6A) and ischemic stroke patients (Figure 6B). 
T2DM patients showed a higher proportion of resting 
mast cells, while ischemic stroke patients showed 
a higher proportion of monocytes.

Compared to controls, T2DM patients showed signifi
cantly higher levels of neutrophils, lower levels of CD8+ 
T cells, and higher levels of activated mast cells (Figure 6C). 
Compared to controls, ischemic stroke patients showed sig
nificantly lower levels of resting mast cells (Figure 6D).

The strongest correlations between differentially 
expressed genes and immune cell infiltration were the 
positive correlation of TGS2 and CXCL3 with mast cell 
activation in T2DM (Figure 6E), and the positive correla
tion of VIM with levels of resting mast cells in ischemic 
stroke (Figure 6F).

Figure 1 Flowchart of the study. 
Abberviations: AUC, area under the receiver operating characteristic curve; WGCNA, weighted gene co-expression network analysis.
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Discussion
The rising prevalence of T2DM worldwide means rising 
risk of ischemic stroke. To enable screening of diabetic 
patients for stroke risk and to guide appropriate manage
ment and treatment strategies, we identified numerous 
candidate markers and their potential miRNA regulators 
in T2DM-associated ischemic stroke. The findings from 

this study will guide future experimental and bioinfor
matics analyses that may help treat and even prevent 
ischemic stroke among individuals with diabetes.

To maximize the probability of identifying genes asso
ciated with T2DM-related ischemic stroke, we searched 
for genes whose expression was up- or down-regulated in 
both conditions. Our enrichment analysis suggests that 

Figure 2 WGCNA of the top 25% variance genes in T2DM and ischemic stroke. (A) Scale independence and mean connectivity were used to obtain a scale-free fit index of 
network topology for T2DM. (B) Clustering dendrograms of coexpressed genes in T2DM. Each color represents a module in the coexpression network from the WGCNA. 
(C) Scale independence and mean connectivity were used to obtain the scale-free fit index of network topology for ischemic stroke. (D) Clustering dendrograms of 
coexpressed genes in ischemic stroke. Each color represents a module in the coexpression network from the WGCNA.

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S319503                                                                                                                                                                                                                       

DovePress                                                                                                                       
3217

Dovepress                                                                                                                                                            Zhou et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


many immune responses may be altered in the two condi
tions. Weak immune activation is a risk factor for T2DM 
onset and for T2DM-associated ischemic stroke.28 In 
ischemic stroke patients, an excessive number of neutro
phils infiltrate ischemic brain tissue, which can lead to 
systemic inflammation and breakdown of the blood-brain 
barrier.29 Acute ischemic stroke patients show an elevated 
ratio of neutrophils to lymphocytes and worse prognosis.30 

T cells are involved in the late phase of cerebral ischemia, 
and different T cell subtypes play different roles in 
ischemic stroke.31 Our results link down-regulation of 
resting mast cells with greater risk of ischemic stroke. 
Animal models of ischemic stroke showed elevated num
bers of activated mast cells, and activation of mast cells 
can increase angiogenesis by increasing proinflammatory 
monocyte responses,32,33 which in turn can promote the 
progression of diabetes and increase risk of ischemic 
stroke.4,34 Our work may help guide further research into 

how immune cell changes, immune responses, and inflam
matory events interact to contribute to ischemic stroke in 
T2DM patients.

Several studies have suggested that in T2DM and 
ischemic stroke, miRNAs regulate the expression of target 
genes that mediate inflammatory responses, cell prolifera
tion and apoptosis.35–37 We identified four miRNAs that 
may be associated with the occurrence of ischemic stroke 
among T2DM patients: hsa-miR-299-3p, hsa-miR-320a, 
hsa-miR-576-3p, and hsa-miR-665. The miR-299-3p tar
get is associated with N-terminal pro brain natural peptide, 
levels of which can predict in-hospital mortality of patients 
with acute ischemic stroke.38,39 Levels of miR-320 can 
discriminate between diabetic and non-diabetic patients 
and are significantly reduced in stroke patients, especially 
those with good prognosis.40,41 The miR-576-3p has been 
reported to induce interferon production, and gene therapy 
to restore interferon production may improve prognosis 
after ischemic stroke.42,43 The miR-665 is down- 

Figure 3 Genes differentially expressed in T2DM and ischemic stroke. (A) Genes differentially expressed between T2DM patients and controls (red, up-regulated in the 
disease; blue, down-regulated). (B) Genes differentially expressed between ischemic stroke and controls (red, up-regulated in the disease; blue, down-regulated). (C) Genes 
differentially expressed in the same direction in both T2DM and ischemic stroke.
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regulated in T2DM patients and up-regulated in stroke 
patients.44,45 This suggests that the four miRNAs that we 
identified – especially miR-576-3p, with the most target 
genes – may be risk factors and markers for the develop
ment of ischemic stroke in T2DM patients.

Among the target genes of these miRNAs linked to 
T2DM and ischemic stroke, we identified several that 
showed particularly high AUCs for predicting disease: 
UBE2N, TGFB3, PTGS2, IL10RB, EXOSC1, CXCL3, 
and VIM. In particular, the differential expression of 
UBE2N, TGFB3, EXOSC1, and VIM was similar in 
T2DM and ischemic stroke, so we consider them candi
date markers. UBE2N, an E2 ubiquitin-conjugating 
enzyme, is a key enzyme in Parkin-dependent 

mitophagy.46 It plays a key role in synaptosomal accumu
lation of mutant huntingtin and is involved in multiple 
neurodegenerative disease processes.47 Transforming 
growth factor-β (TGF-β) is a multifunctional inflammatory 
cytokine that is produced by a variety of inflammatory 
cells, including leukocytes and macrophages.48 TGF-β 
and interleukin-10 (IL-10) drive damage to the blood- 
brain barrier in ischemic stroke and may have neuroin
flammatory effects.49 Expression of the IL10RB gene has 
been associated with the risk of ischemic stroke.50 

EXOSC1 has been associated with intracerebral 
hemorrhage,51 though it appears never to have been linked 
to risk of ischemic stroke. CXCL3 is up-regulated in 
ischemic brain tissue and can predict stroke.52 Up- 

Figure 4 Gene Ontology functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways involving genes differentially expressed in T2DM and 
ischemic stroke. (A) Main biological processes (BPs). (B) Main cellular components (CCs). (C) Molecular functions (MFs). (D) KEGG pathways. (E and F) GSEA to identify 
genes involved in activation or inhibition of KEGG pathways dysregulated in T2DM or ischemic stroke.
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regulation of VIM, which encodes vimentin, can drive 
injury after ischemic stroke by triggering reactive gliosis 
and scar formation.53

The findings from our study require validation in addi
tional, larger samples and in experimental studies. This 
work should begin to test the ability of miRNAs to 

Figure 5 Regulation of mRNAs by miRNAs in T2DM and ischemic stroke. (A) Areas under the receiver operating characteristic curves (AUCs) describing the ability of 
mRNAs regulated by differentially expressed miRNAs from the GSE21321 and GSE22255 datasets to predict T2DM or ischemic stroke (red, mRNA up-regulated in the 
disease condition; blue, mRNA down-regulated). (B) Differences in key gene expression between controls and patients with T2DM (left) or ischemic stroke (right). ***P < 
0.001. (C) Comprehensive network diagram of target genes regulated by miRNAs involved in KEGG signaling pathways.
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regulate the expression of certain differentially expressed 
genes and thereby contribute to risk of ischemic stroke in 
T2DM.

Conclusion
This study explored molecular mechanisms that may be 
dysregulated in ischemic stroke associated with T2DM, 
and it identified potential diagnostic markers of such 
stroke. Potential candidate driver genes and regulatory 
miRNAs were identified, which will help guide further 
studies into this debilitating complication of T2DM as 
well as efforts to develop effective therapies.
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Figure 6 Differences of immune cell infiltration between controls and patients with T2DM or ischemic stroke. (A) Bar plot of levels of infiltration by 22 types of immune 
cells in patients with T2DM. (B) Bar plot of levels of infiltration by 22 types of immune cells in patients with ischemic stroke. (C) Differences in immune cell infiltration 
between T2DM patients and controls (red, significant up-regulation in patients; blue, significant down-regulation). (D) Differences in immune cell infiltration between 
ischemic stroke patients and controls. The blue line represents significant down-regulation in patients. (E) Correlations between immune cell infiltration and hub gene 
expression in T2DM. *P < 0.05, **P < 0.01. (F) Correlations between immune cell infiltration and hub gene expression in ischemic stroke. *P < 0.05, **P < 0.01.
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