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Background: Acinetobacter baumannii is an important pathogen in clinical infections, and 
biofilm formation is an effective way for A. baumannii to survive under external pressures. In 
this study, the aims were to examine the antimicrobial resistance, biofilm formation, and 
biofilm-specific resistance in clinical isolates of A. baumannii.
Materials and Methods: A total of 104 clinical A. baumannii isolates were collected from 
a large teaching hospital in Southwest China. The antibiotics susceptibilities were tested, and 
biofilm-forming ability was evaluated by crystal violet staining by confocal laser scanning 
microscopy (CLSM). Minimum inhibitory concentration (MIC), minimum bactericidal con-
centration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm 
eradication concentration (MBEC) of ciprofloxacin, meropenem, and ceftazidime were tested 
on selected strains by broth microdilution method. Biofilm-associated genes were detected by 
polymerase chain reaction (PCR), and expression of genes at planktonic stage and biofilm 
stage were analyzed by real-time reverse transcription PCR (RT-PCR).
Results: Multidrug-resistant (MDR) isolates accounted for 65.4%, but no strain was resis-
tant to tigecycline and polymyxin B. Moreover, non-MDR strains tended to form stronger 
biofilms than MDR strains, and a negative correlation between biofilm-forming ability and 
resistance profiles to each of tested antimicrobials were observed. The MBECs and MBICs 
of ciprofloxacin, ceftazidime, and meropenem were evidently increased compared with MICs 
and MBCs among all tested strains. Additionally, the biofilm formation ability of the csuD- 
positive strains was stronger than that of the csuD-negative strains. The strains in MDR 
group had higher carrying rate of csuA and csuD genes than non-MDR group, while non- 
MDR strains possessed more ompA gene than MDR group. Finally, abaI gene was signifi-
cantly up-regulated after biofilm formation.
Conclusion: These results revealed valuable data for the negative correlation between 
antimicrobial resistance and biofilm formation, as well as phenotypic and genotypic char-
acteristics of biofilm formation in A. baumannii.
Keywords: Acinetobacter baumannii, biofilm formation, antimicrobial resistance, gene 
expression

Introduction
Acinetobacter baumannii is one of the most common nosocomial pathogen that causes 
several severe infections in critically ill patients, and a great number of multidrug-resistant 
(MDR) strains attract the attention of the whole world.1 The formation of biofilm 
contributes to A. baumannii adhere to various biological and non-biological surfaces, 
such as vascular catheters, cerebrospinal fluid shunts, and other medical devices.2 Biofilm 
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is defining composed of extracellular polymeric substances 
(EPS) that surrounding microorganisms, which mediates 
microbial adhesion and makes a lifestyle that is totally different 
from the planktonic state.3 Indeed, biofilm formation presents a 
significantly higher antimicrobial resistance than planktonic 
cells, resulting in harder eradication and easier recurrence in 
biofilm-associated infections.4 Biofilm formation is a complex 
process and regulated by a variety of factors. Taking A. bau-
mannii for example, biofilm associated protein (Bap) is 
involved in the initial adhering of biofilm, promoting the 
maturation of biofilm and maintaining the structure of mature 
biofilm.5,6 Moreover, synthesis and assembly of pili are 
encoded by csuA/BABCDE gene cluster to induce the initial 
adhesion process of biofilm.7 The BfmR-BfmS regulatory 
system senses the changes of external signals then affects the 
synthesis and secretion of pili, and induces the biofilm forma-
tion by regulating the csuA/BABCDE gene cluster as well.8,9 

The pgaABCD locus encodes the production of poly-beta-1-6- 
N-acetylglucosamine (PNAG), which is not only an important 
virulence factor but also essential for biofilm formation.10 The 
self-induced synthetase gene abaI is involved in the quorum 
sensing (QS) system and plays an important role in later stages 
of biofilm maturation.11,12 Outer membrane protein A (OmpA) 
is a well-known virulence factor that contributes to adhesion, 
invasion, and biofilm formation of A. baumannii.13 On the 
other hand, the latest research has reported that biofilm 
growth-associated repressor (BigR) directly or indirectly reg-
ulates the expression of genes related to epithelial cell adhesion 
and biofilm formation.14 Several biofilm-associated genes 
affect the antimicrobial susceptibility, indicating a relationship 
between biofilm formation and antimicrobial resistance.11

However, it is still unclear whether there is a quantita-
tive correlation between biofilm formation and antimicro-
bial resistance. The aims of this study were to analyze the 
antimicrobial susceptibility, biofilm formation, biofilm- 
specific resistance, and biofilm-associated gene carrying 
rate of 104 clinical isolates of A. baumannii. 
Furthermore, the phenotype-genotype correlation between 
planktonic and biofilm stage was also evaluated.

Materials and Methods
Identification and Antimicrobial 
Susceptibility Testing (AST)
A total of 104 non-repetitive A. baumannii strains were 
isolated from January 2020 to April 2021 in the Affiliated 
Hospital of Southwest Medical University, and 
ATCC19606 was used as the reference strain in this 

study. Identification and antimicrobial resistance analysis 
were performed by the MicroScan Walk-Away 96 Plus 
system (Siemens, Germany), and results were interpreted 
according to the standards of the Clinical and Laboratory 
Standards Institute (CLSI) 2020-M100.15 Escherichia coli 
ATCC25922 and Pseudomonas aeruginosa ATCC27853 
(purchased from China National Health Inspection 
Center) were used as quality control. Based on the 
obtained antimicrobial resistance profiles, the tested strains 
were classified into multidrug-resistant (MDR) group if 
‘the isolates are resistant to three or more antimicrobial 
classes’,16 and non-MDR group which the isolates are 
resistant to 0–2 antimicrobial classes.

Biofilm Formation Assay
Biofilm formation ability was determined by crystal violet 
staining method as described previously,17 with slight 
modifications. Briefly, the overnight culture of each strain 
was diluted to final optical density of 600 (OD600) = 0.1, 
and then 180 μL of Luria-Bertani (LB) broth (Haibo, 
Qingdao, China) with 1% glucose (Sigma, USA) and 20 
μL of bacterial suspensions were inoculated into 96-well 
polystyrene microtiter plates (Costar #3524, Corning, NY, 
USA) in triplicate. After 24 h incubation at 37 °C, the 
plates were gently washed with phosphate-buffered saline 
(PBS) for three times and stained with 200 μL of 0.1% 
crystal violet (Solarbio, Beijing, China) for 20 min. After 
washing with PBS for three times again, the plates were 
solubilized with 200 μL of 95% ethanol, followed by 
shaking slowly at room temperature for 20 min. The 
absorbance was measured at OD570. The cut-off OD 
(ODc) was defined as three standard deviations (SD) 
above the mean OD of the negative control (LB broth 
only). Following were classification criteria: OD ≤ ODC, 
non-biofilm producers (-); ODC < OD ≤ 2×ODC, weak 
biofilm producers (+); 2×ODC < OD ≤ 4×ODC, moderate 
biofilm producers (++); and OD > 4×ODC, strong biofilm 
producers (+++).18

Determination of Biofilm Using Confocal 
Laser Scanning Microscopy (CLSM)
Four strains (two strong biofilm producers, one biofilm- 
negative producer, and ATCC19606) were selected for 
biofilm visualization by CLSM (Leica, Germany). In 
brief, strains were cultured in LB broth for 18 h and 
diluted to 0.5 McFarland standard. One hundred microlitre 
suspension and 2 mL fresh LB broth were added in the 
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petri dishes (FengRun, Beijing, China). After incubation at 
37 °C for 24 h, the petri dishes were washed three times 
with PBS and fixed with 2 mL of 2.5% glutaraldehyde for 
1.5 h. Then, the petri dishes were washed three times with 
PBS again and 200 μL fluorescein isothiocyanate-conca-
navalin A (FITC-ConA) (Sigma, Germany) were added 
and stored at 4 °C for 30 min. Two hundred microlitre 
propidium iodide (PI) (Sigma, Germany) were added and 
stored at 4 °C for 15 min after washing three times with 
PBS. Finally, the dishes were washed with PBS and sealed 
with 40% glycerol. FITC-conA binds to EPS of biofilm 
and reflects green fluorescence at the laser wavelength of 
488 nm.19 PI binds to bacterial DNA and emits red fluor-
escence at 543 nm.20 If both lasers appear at the same 
time, an orange fluorescence will be shown.21

Growth Curve Assay
The growth of eight strong biofilm producers, eight weak 
biofilm producers, and ATCC19606 were evaluated. For 
each strain, 20 μL of diluted overnight culture (0.5 
McFarland standard) and 180 μL LB broth were added in 
96-well plates and incubated at 37 °C for 24 h, and the 
OD590 was detected by microplate reader every 2 h until 
24 h. After biofilm modeling on plates, the OD570 was 
measured by microplate reader every 4 h until the number 
of biofilm biomass decreased. All assays were repeated in 
triplicate.

Minimum Inhibitory Concentration 
(MIC), Minimum Bactericidal 
Concentration (MBC), Minimum Biofilm 
Inhibitory Concentration (MBIC), and 
Minimum Biofilm Eradication 
Concentration (MBEC)
Three antimicrobials that are commonly used for the treat-
ment of A. baumannii infections were selected in the 
determination of MICs/MBCs and MBICs/MBECs. All 
of these nine strains were originally sensitive to tested 
antimicrobials. The MICs for ceftazidime, ciprofloxacin, 
and meropenem were assessed using broth microdilution 
method in 96-well plates according to the procedures 
described in CLSI 2020-M100 guideline.15 After MIC 
determination, 10 μL aliquots from the wells with no 
observed bacterial growth were smeared on LB agar plates 
and incubated at 37 °C for 24 h, and the lowest concentra-
tion of antimicrobials that making no colony grows on 

plates was considered as MBC. AST at biofilm stage was 
performed according to the procedures described 
previously.22 Biofilm was established in 96-well plates 
for 24 h, and planktonic cells were removed by sterile 
deionized water. Each well was treated with 200 μL of 
LB broth containing serially diluted antimicrobials. The 
plates were incubated for 24 h at 37 °C. The minimum 
antimicrobial concentration at which OD600 < 0.1 was 
determined as the MBIC.

Following the MBIC examination, the plates were 
washed with sterile deionized water to remove planktonic 
cells and antibiotics. Two hundred microlitre of LB broth 
was added to each well, and the plates were incubated at 
37 °C for 24 h. The lowest concentration at which OD600 < 
0.1 was considered as the MBEC. All experiments were 
performed in triplicate.

Detection of Biofilm-Associated Genes 
by Polymerase Chain Reaction (PCR) and 
Real-Time Reverse Transcription PCR 
(RT-PCR)
The DNA template was prepared by boiling bacteria.23 

The biofilm-associated genes of all 104 clinical strains 
were detected by PCR, including bap, ompA, bigR, bfmS, 
bfmR, csuA, csuB, csuC, csuD, csuE, csuAB, pgaD, and 
abaI (Table S1). The procedures were followed by pre-
vious study with slight modifications.24 Part of nucleotide 
sequences of PCR products were analyzed by Beijing 
Qingke Biotechnology Co. Ltd. The results were com-
pared with sequences that retrieved from GenBank data-
base by the BLAST online tool at www.ncbi.nlm.nih.gov. 
Moreover, eight strong biofilm producers were selected to 
detect the expression level of 13 biofilm-associated genes 
by RT-PCR according to the protocol described 
previously.25 The fold change of mRNAs expression was 
calculated using the 2−ΔΔCt method, and the relative 
expression of each gene was normalized to the control 
sample (planktonic stage), which was assigned a value of 
1 arbitrary unit.26 All assays were performed in triplicate.

Statistical Analysis
Statistical analyses and graphs were performed using 
GraphPad Prism 8.0.1 (GraphPad Software Inc, USA), 
Origin 2018 (OriginLab, USA) and SPSS 24.0 (SPSS 
Statistics, Inc., Chicago, IL, USA). Based on the distribu-
tion and homogeneity of the variances, the OD values 
were expressed as the mean ± SD or median (interquartile 
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range, IQR). Spearman’s rank correlation test was used for 
intergroup comparison. Mann–Whitney U-test is used to 
analyze the carrying situation of 13 genes and biofilm 
formation capacity. Chi-square test was used to compare 
the positive rates of 13 genes and the number of genes 
carried in different resistance types of strains. Student’s 
t-test was used for gene expression in planktonic stage and 
biofilm stage. In all analyses, a two-sided significance 
level of <0.05 was considered as statistically significant.

Results
Distribution and Antimicrobial 
Susceptibility Profiles of Clinical A. 
baumannii Strains
One hundred and four clinical A. baumannii isolates were 
collected from 18 departments within the major of inten-
sive care unit (27, 26.2%) and department of neurology 
(22, 21.4%). Furthermore, the majority of specimens were 
obtained from sputum, accounting for 72.8%, while only 
12.6%, 7.7%, 4.9%, and 2% specimens were isolated from 
secretion, blood, cerebrospinal fluid, and urine, respec-
tively. The AST results for 18 antimicrobials are shown 
in Figure 1. Most of isolates (68, 65.4%) were resistance 
to ciprofloxacin and piperacillin/tazobactam, followed by 
levofloxacin (67, 64.4%), cefepime (67, 64.4%), merope-
nem (67, 64.4%), imipenem (67, 64.4%), ceftazidime (67, 
64.4%), ceftriaxone (65, 62.5%), cefotaxime (65, 62.5%), 
piperacillin (62, 59.6%), ampicillin/sulbactam (61, 
58.7%), ticarcillin/clavulanic acid (60, 57.7%), gentamicin 
(54,51.9%), tobramycin (52, 50%), amikacin (52, 50%), 
and tetracycline (30, 28.8%). More than 65.4% of the 
isolates exhibited multidrug resistance (Figure 1B), but 
no strain was resistant to tigecycline and polymyxin B.

Biofilm Formation Ability and Growth 
Curve Analysis
The biofilm-forming capacity of each isolate was summar-
ized. The OD570 values for the reference strain 
(ATCC19606) and negative control were 0.84 ± 0.12 and 
0.14 ± 0.008, respectively (Table S2). The OD570 values 
for the clinical isolates ranged from 0.14 ± 0.01 to 2.54 ± 
0.26, and the IQR was 0.58 (0.36, 1.04). It is worth noting 
that 99% of these strains can form biofilm, of which 51.5% 
were strong biofilm producers. In addition, 35.6% strains 
produced stronger biofilm than ATCC19606. No signifi-
cant difference was observed between eight strong and 
eight weak biofilm producers in growth curves, indicating 

that the difference in biofilm formation was not due to 
growth rate (Figure 2). Furthermore, four strains were 
selected to observe the biofilm formation ability using 
CLSM. The strongest biofilm-forming strain 20047 
reflected the highest fluorescence intensity, followed by 
strain 20192 and ATCC19606, and biofilm-forming nega-
tive strain 19014 presented the lowest fluorescence inten-
sity (Figure 3A). The fluorescence intensities under CLSM 
were consistent with the OD570 values obtained by crystal 
violet staining (Figure 3B).

Correlation Between Antimicrobial 
Resistance and Biofilm Formation Ability
Spearman’s rank correlation analysis determined that non- 
MDR strains tended to form stronger biofilms than MDR 
strains (rs= -0.212, P = 0.03; Table 1), suggesting a nega-
tive correlation between biofilm formation capacity and 
antimicrobial resistance phenotypes. Moreover, the results 
revealed that in addition to tigecycline and polymyxin B, 
susceptible strains could form stronger biofilm than resis-
tant strains, indicating a negative correlation between bio-
film-forming ability and resistance profiles to each of 
tested antimicrobials (rs= 0.204 − 0.288, P = 0.003 − 
0.037; Table 2)

Comparison of MICs/MBICs and MBCs/ 
MBECs
The MICs and MBICs of three antimicrobials (ceftazi-
dime, ciprofloxacin, and meropenem) were tested against 
nine strains with different biofilm-forming ability (three 
strong biofilm producers, three moderate biofilm produ-
cers, and three weak biofilm producers), and all strains 
were sensitive to these three antibiotics being investigated. 
MBICs for biofilms increased drastically compared with 
MIC for planktonic cells among all tested strains (Table 3). 
The increases ranged from 256- to 4096-fold for cipro-
floxacin, 16- to 1024-fold for meropenem, and 128- to 
1024-fold for ceftazidime. Indeed, when biofilms were 
established, the antimicrobial susceptibility profiles of all 
strains changed from sensitive to resistance.

Furthermore, MBCs and MBECs of these nine isolates 
were also evaluated. Undoubtedly, the MBECs were much 
higher than the MBCs among all tested strains (Table 4). 
Up to a 4096-fold increase in the concentration of cipro-
floxacin and up to a 1024-fold increase in the concentra-
tion of ceftazidime and meropenem were required to 
eradicate biofilms compared with planktonic cells.
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Distribution and Expression of Biofilm- 
Associated Genes in Clinical A. baumannii 
Strains
In order to further explore the correlation between biofilm- 
forming ability and antimicrobial resistance, the presence of 
13 reported biofilm-associated genes was detected by using 
PCR. The results showed that bfmR (98, 94.2%) was occurred 
mostly, followed by csuC (95, 91.3%), csuE (95, 91.3%), bigR 
(92, 88.5%), csuAB (91, 87.5%), csuB (90, 86.5%), OmpA (89, 

85.6%), bfmS (88, 84.6%), bap (85, 81.7%), pgaD (80, 
76.9%), csuA (76, 73.1%), csuD (73, 70.2%), and abaI (73, 
70.2%). Twenty-five clinical isolates contained all 13 tested 
genes, including 23 strong biofilm producers and two moder-
ate biofilm producers (Table S3). Remarkably, the biofilm 
formation ability of the csuD-positive strains was stronger 
than that of the csuD-negative strains (U = 365, P < 0.01).

The harboring rates of 13 biofilm-associated genes 
among two groups were evaluated by Chi-square test. 

Figure 1 Antimicrobial susceptibility profiles of clinical A. baumannii isolates. (A) Resistance rate of all strains to 18 antimicrobials; (B) approximately 65.4% of isolates 
exhibited MDR (including XDR). 
Abbreviations: MDR, multiple drug resistance; XDR, extensively drug resistance.

Infection and Drug Resistance 2021:14                                                                                             https://doi.org/10.2147/IDR.S310081                                                                                                                                                                                                                       

DovePress                                                                                                                       
2617

Dovepress                                                                                                                                                                 Li et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=310081.docx
https://www.dovepress.com
https://www.dovepress.com


Three genes were significantly related to antimicrobial 
resistance. In detail, the strains in MDR group had higher 
carrying rate of csuA and csuD genes than non-MDR 
group (P < 0.05); however, the non-MDR strains pos-
sessed more ompA gene than MDR group (P = 0.002) 
(Figure 4A).

Eight strong biofilm-forming strains that carrying 13 
biofilm-associated genes were selected to investigate the 
relationship between biofilm-associated genes and biofilm 
formation ability (Table S4). The RT-PCR results showed 
that the expression of abaI gene in the biofilm stage was 
significantly up-regulated compared with that in the plank-
tonic stage (P < 0.001) (Figure 4B), while no significant 
difference was found for the rest of the 12 genes between 
planktonic stage and biofilm stage.

Discussion
Drug-resistant A. baumannii shows superior ability to dis-
seminate worldwide, and the proportion of extreme drug 
resistance (XDR) A. baumannii has increased from less 
than 4% in 2000 to more than 60% recently, even close to 
90% in some regional nosocomial settings.27 According to 
the National Institutes of Health and the Center for 
Disease and Prevention, it is estimated that 65% to 80% 

Figure 2 Growth curves and biofilm growth curves in representative A. baumannii 
strains. (A) Growth curves of 17 representative A. baumannii strains at planktonic stage, 
and OD590 values of each strain were measured every 2 h until 24 h; (B) growth curves 
for 17 representative A. baumannii strains at biofilm stage, and OD570 values of each 
strain were measured every 4 h until 48 h. The data were presented as the average of 
three measurements. Error bars (standard deviation <10%) were omitted for simplicity.

Figure 3 Evaluation of biofilm formation capacity of strains by confocal laser scanning microscopy. (A) Biofilm Images of four representative A. baumannii strains under 
CLSM (B) Comparison of biofilm formation capabilities between crystal violet and CLSM. Data were expressed as mean ± SD; fluorescence intensity represents CLSM 
results and OD570 indicates crystal violet results.

https://doi.org/10.2147/IDR.S310081                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Infection and Drug Resistance 2021:14 2618

Li et al                                                                                                                                                                 Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=310081.docx
https://www.dovepress.com
https://www.dovepress.com


Table 1 Biofilm Formation Ability of Strains with Different Antimicrobial Resistance

Resistance Profile N OD570 rs P

Non-MDR 36 0.98 (0.36, 1.47) -0.212 0.03
MDR 68 0.55 (0.36, 0.85)

Notes: OD570: The absorbance value at the wavelength of 570 nm. Data was shown in median (interquartile range, IQR).

Table 2 Correlation Between Biofilm Formation Ability and Antimicrobial Resistance to 18 Antimicrobials

Antimicrobial Category Antimicrobial Agent OD570 rs P

S R

Aminoglycosides Gentamicin 0.71 (0.34,1.28) 0.55 (0.38,0.84) −0.211 0.032
Tobramycin 0.82 (0.36,1.33) 0.53 (0.37,0.82) −0.211 0.032
Amikacin 0.84 (0.36,1.34) 0.53 (0.37,0.82) −0.214 0.03

Carbapenemase Imipenem 0.92 (0.36,1.43) 0.53 (0.37,0.85) −0.215 0.029
Meropenem 0.92 (0.36,1.43) 0.53 (0.37,0.85) −0.215 0.029

Fluoroquinolones Ciprofloxacin 0.92 (0.36,1.34) 0.55 (0.37,0.87) −0.213 0.031
Levofloxacin 0.92 (0.36,1.34) 0.55 (0.37,0.87) −0.213 0.031

Penicillins + β-lactamase inhibitors Ampicillin/sulbactam 0.98 (0.36,1.47) 0.69 (0.49,0.72) −0.239 0.018
Piperacillin/tazobactam 0.98 (0.36,1.47) 0.53 (0.36,0.85) −0.235 0.016

Ticarcillin/clavulanic acid 1.09 (0.37,1.52) 0.53 (0.36,0.84) −0.288 0.003

Cephalosporins Ceftazidime 0.92 (0.36,1.43) 0.53 (0.37,0.85) −0.215 0.029
Ceftriaxone 0.92 (0.36,1.43) 0.53 (0.37,0.85) −0.215 0.029
Cefotaxime 0.98 (0.37,1.38) 0.53 (0.36,0.78) −0.263 0.007
Cefepime 0.98 (0.36,1.47) 0.53 (0.36,0.85) −0.235 0.016

Tetracyclines Tetracycline 0.91 (0.38,1.25) 0.59(0.36,1.00) −0.209 0.034
Tigecycline 0.57 (0.36, 1.1) 0 NA NA

Penicillins Piperacillin 0.88 (0.36,1,30) 0.53 (0.37,0.78) −0.204 0.037

Lipopeptides Polymyxin B 0.57 (0.36, 1.1) 0 NA NA

Notes: S, sensitive; R, resistance; bold indicates P < 0.05.

Table 3 Comparison of MICs and MBICs of A. baumannii Strains

Strain Ciprofloxacin Meropenem Ceftazidime

MIC for 
Planktonic 

Cells 
(µg/mL)

MBIC for 
Biofilm 
Cells 

(µg/mL)

Fold 
Change

MIC for 
Planktonic 

Cells 
(µg/mL)

MBIC for 
Biofilm 
Cells 

(µg/mL)

Fold 
Change

MIC for 
Planktonic 

Cells 
(µg/mL)

MBIC for 
Biofilm 
Cells 

(µg/mL)

Fold 
Change

20053a 0.125 32 256 0.5 8 16 8 1024 128
20061a 0.0625 32 512 0.25 16 64 4 1024 256

20068a 0.0625 32 512 0.5 16 32 2 1024 512

20098b 0.0625 64 1024 0.25 16 64 4 1024 256
20101b 0.125 32 256 0.25 16 64 2 1024 512

20110b 0.125 32 256 1 16 16 4 1024 256

20047c 0.125 512 4096 0.5 512 1024 4 4096 1024
20180c 0.125 64 512 0.5 16 32 8 2048 256

20250c 0.0625 64 1024 1 16 16 8 2048 256

Notes: aIndicates weak biofilm producer, bIndicates moderate biofilm producer, cIndicates strong biofilm producer.
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of the human infectious are caused by biofilm-forming 
bacteria.28 The lifestyle changes from planktonic pheno-
type to biofilm is a highly regulated developmental process 
that depends on species-dependent environmental and 
genetic factors.4

This study evaluated the biofilm-forming ability of 104 
clinical A. baumannii strains, and explored the effect of 
biofilm production on antimicrobial susceptibility. The 
MDR strains have reached 65.4%, which increased the 
difficulty of infection treatment. The AST results revealed 

that all tested strains remained sensitive to polymyxin B 
and tigecycline, and it seemed that these two antimicro-
bials were the most effective strategy for MDR-A. bau-
mannii infections. However, two meta-analyses discourage 
using tigecycline for the treatment of MDR-A. baumannii 
infections due to the higher in-hospital mortality and 
longer hospitalization when compared with other active 
antimicrobials.29,30 Moreover, polymyxin B rarely used 
in clinical treatment because of the lack of pharmacoki-
netic/pharmacodynamic studies and highly renal toxicity.31 

Table 4 Comparison of MBCs and MBECs of A. baumannii Strains

Strain Ciprofloxacin Meropenem Ceftazidime

MBC for 
Planktonic 

Cells  
(µg/mL)

MBEC for 
Biofilm 
Cells  

(µg/mL)

Fold 
Change

MBC for 
Planktonic 

Cells  
(µg/mL)

MBEC for 
Biofilm 
Cells  

(µg/mL)

Fold 
Change

MBC for 
Planktonic 

Cells  
(µg/mL)

MBEC for 
Biofilm 
Cells  

(µg/mL)

Fold 
Change

20053a 0.25 128 512 1 128 128 16 2048 128

20061a 0.125 64 512 0.5 32 64 8 2048 256
20068a 0.125 64 512 1 32 32 4 2048 512

20098b 0.125 128 1024 0.5 32 64 8 2048 256

20101b 0.25 64 256 0.5 128 256 4 2048 512
20110b 0.25 64 256 2 256 128 8 2048 256

20047c 0.25 1024 4096 1 1024 1024 8 8192 1024

20180c 0.25 128 512 1 256 256 16 4096 256
20250c 0.125 128 1024 2 64 32 16 4096 256

Notes: aIndicates weak biofilm producer, bIndicates moderate biofilm producer, cIndicates strong biofilm producer.

Figure 4 Role of biofilm-associated genes in antimicrobial resistance and biofilm of clinical A. Baumannii. (A) Percentage of biofilm-associated gene in different antimicrobial- 
resistant strains; (B) the relative expression of abaI in eight selected A. Baumannii strains. Data were shown as fold changes between planktonic and biofilm stage, and control 
represented planktonic cells. 
Notes: **P<0.01, ***P<0.001.
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Therefore, the optimal treatment for MDR-A. baumannii 
infections have not been established so far.32

Then, the crystal violet staining results demonstrated 
that 99% strains have biofilm-forming ability and nearly 
one-half of strains can produce strong biofilms, which was 
consistent with the previous reports.24,33 Up to date, there 
is still no regular pattern in the relationship between bio-
film formation ability and bacterial antimicrobial resis-
tance, and the conclusions between different researches 
were even contradictory.24,33–36 In our research, the non- 
MDR strains could produce stronger biofilm compared 
with MDR strains, indicating that the antimicrobial resis-
tance and biofilm formation ability were negatively corre-
lated in A. baumannii. Rodriguez-Bano et al have 
illustrated that biofilm-forming A. baumannii isolates 
were more sensitive to ciprofloxacin and imipenem,37 

suggesting that these strains were not as dependent on 
antimicrobial resistance as non-biofilm-forming isolates 
for survival, which was consistent with our result. 
Moreover, a research has found that the biofilm-forming 
ability of ciprofloxacin-sensitive Pseudomonas aeruginosa 
was significantly promoted after exposure to 
ciprofloxacin,38 highlighting the importance of biofilms 
for the survival of sensitive bacteria. Therefore, it seems 
that the biofilm formation is another survival mechanism 
besides antimicrobial resistance. Furthermore, MIC/MBIC 
and MBC/MBEC values confirmed that the resistance of 
isolates was greatly enhanced after biofilm formation, 
regardless of whether the isolates were originally sensitive 
or resistant to this antimicrobial. Remarkably, antimicro-
bials inhibit biofilms mainly through a complex penetra-
tion process,39 however, this still cannot complete remove 
the bacteria in the biofilm stage due to multifactorial 
tolerance of biofilms.40 For example, beta-lactam antimi-
crobials can be inactivated by beta-lactamases in the bio-
film matrix, which restricts their penetration. Biofilm-stage 
bacteria with low metabolic activity can resistant to kinds 
of antimicrobials that target processes that occur in grow-
ing bacteria, such as cell wall synthesis and DNA 
replication.41 In addition, the expression of specific genes 
and dormant state persister cells are also responsible for 
the failure inhibition of biofilms.40,42

In addition to the correlation between antimicrobial 
resistance and biofilm formation, the relationship between 
biofilm formation and biofilm-associated genes expression 
was also evaluated in this study. All the biofilm-associated 
genes were detected in more than 70% of tested strains, 
bring with the most frequent gene bfmR (98, 94.2%) as 

well as the least genes csuD and abaI (70.2%). It has been 
known that the chaperone usher pili assembly system is 
essential for the initial steps of biofilm formation.43 

Tomaras et al have certified that the inactivation of the 
csuE gene resulted in the disappearance of both pili for-
mation and biofilm formation in A. baumannii.44 The gene 
csuD is part of the CsuA/BABCDE chaperone-usher pili 
assembly system, in this study, csuD-positive strains can 
form stronger biofilm than csuD-negative strains. This 
result was consistent with the previous study that indicat-
ing csuD was highly expressed in stronger biofilm 
producers.45 Moreover, in this work, three genes had a 
obviously distributed regularity among strains with differ-
ent antimicrobial-resistant profiles. With the increase of 
resistance, there was a growing positive rate of ompA 
and a decreasing positive rate of csuA and csuD. 
Although CsuA/BABCDE system is able to enhance bio-
film formation, the relationship between this system and 
antimicrobial resistance still not clear. OmpA is a major 
component of outer membrane proteins (OMPs) in A. 
baumannii, which is related to antimicrobial resistance, 
aggressiveness, and biofilm formation.13 Smani et al first 
determined that the deletion of ompA decreased the MICs 
of chloramphenicol, nalidixic and aztreonam by 8-, 2.67-, 
and 8-fold, respectively.46 Sanchez-Encinales et al demon-
strated that overproduction of OmpA was an independent 
risk factor for nosocomial pneumonia, bacteremia, and 
higher mortality caused by A. baumannii infections.47 A 
previous study confirmed that ompA measured by RT-PCR 
can be used as a rapid diagnostic factor for antimicrobial- 
resistant A. baumannii due to the high consistency with 
MICs.48 In A. baumannii, QS system is consists of AbaI/ 
AbaR system, which is closely interconnected with biofilm 
development.12 The abaI gene encodes the self-induced 
synthase which activates the synthesis of AHL signals, and 
abaI mutant leads a greatly reduction of biofilm 
formation.12,34 In this study, abaI was the only gene that 
up-regulated in biofilm stage; however, other tested genes 
did not show regular changes between planktonic and 
biofilm stages. A recent study has shown that the absence 
of AHL signal in shaking cultures (planktonic) seemed to 
be the result of low expression of abaI, while the AHL 
signal was significantly up-regulated under static condi-
tions (biofilm).49 Niu et al have demonstrated that the 
biofilm formation ability of wild type and abaI mutant 
was no difference at 8 h, but the biofilm formation ability 
of the mutant was significantly lower than that of wild type 
at 16 h and 24 h, which was 40% and 41%, respectively. 
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These results suggest that the abaI-directed QS pathway is 
required for the later stages of biofilm maturation.12 The 
biofilms were established for 24 h in this study, and it 
might be the reason why only abaI was overexpressed and 
the expressions of other genes that contributed to the initial 
steps of biofilm formation were not significantly changed.1 

Indeed, the mechanism of biofilm-associated genes in bio-
film formation and antimicrobial resistance needed to be 
further explored.

Conclusion
In this study, most of A. baumannii have biofilm formation 
ability and high carrying rate of biofilm-associated genes. 
There was a negative correlation between biofilm formation 
ability and antimicrobial resistance, which was stronger bio-
film formation occurring in non-MDR strains. Moreover, once 
the biofilm was formed, whether the biofilm was strong or 
weak, the antimicrobial resistance can be greatly improved. In 
addition, presence of csuD was significantly associated with 
biofilm-forming capacity. The csuA and csuD genes more 
occured in non-MDR strains, but ompA was more common 
in MDR strains. Notably, the expression of QS-related gene 
abaI up-regulated in biofilm stage. In fact, the number and 
type of biofilm-associated genes carried by biofilm-forming 
strains are quite different among different regions,11,50,51 indi-
cating that the biofilm-forming ability is not only determined 
by the presence of biofilm-associated genes but a complex 
process depended on multiple factors. Deeper exploration of 
mechanisms of biofilm formation and biofilm-specific resis-
tance in A. baumannii are highly needed.
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